Resolução da Prova 735 (Matemática B)
|
|
|
- Levi Belém da Mota
- 7 Há anos
- Visualizações:
Transcrição
1 Resolução da Prova 75 (Matemátia B) Proposta da Isabel: margaridas rosas violetas 7 arranjos tipo A arranjos tipo B Total de flores neessárias Proposta do Dinis: margaridas rosas violetas 10 arranjos tipo A arranjos tipo B Total de flores neessárias A proposta da Isabel é viável e a proposta do Dinis não é viável, uma vez que não existem margaridas (nem violetas) em número sufiiente. 1.. Sejam x n.º arranjos do tipo A e y n.º arranjos do tipo B. Pretendemos maximizar a função L x + y (função objetivo). De aordo om o problema podemos organizar os dados do seguinte modo: n.º margaridas n.º rosas n. violetas x arranjos do tipo A 16x 4x 8x y arranjos do tipo B 8y 8y 8y n.º total de flores 16x+8y 4x+8y 8x+8y onstrangimentos 16x+8y 19 4x+8y 88 8x+8y 11 As restrições para as variáveis são, então, 16x + 8y 19 4x + 8y 88 8x + 8y 11 x, y ln 0 y x + 4 y 0,5x + 11 y x
2 Geometriamente, tem-se: 1.º proesso: L L x + y y 1,5 x +. Esta expressão define a família de retas om delive 1, 5. A reta da família que nos dá a informação sobre o maior luro é, por observação geométria, a que ontém o ponto de oordenadas (10, 4). Logo, devem produzir-se 10 arranjos do tipo A e 4 do tipo B (o luro será de ). euros ( ).º proesso: A solução óptima é, habitualmente, um dos vérties do polígono de onstrangimentos. Assim, basta testar ada uma das soluções. x y L x+y Verifia-se que o luro máximo é no ponto (10, 4).
3 ..1. O n.º de adeiras de ada uma das n filas da plateia são termos onseutivos de uma progressão aritmétia. Sabemos que a soma destes n termos é igual a 465. Assim, n 465 1n 465 n 15 Logo, onfirma-se que a plateia tem 15 filas... 1.ª fila.ª fila.ª fila 15.ª fila k 10 + k k Tem-se, então, k k Assim, o valor de k é igual a... Das 15 filas da plateia existem 0 lugares om má visibilidade, em ada uma das filas. Assim, a Nazaré verá satisfeita a sua pretensão se lhe for atribuído um dos 45 bilhetes orrespondentes aos restantes lugares. Tem-se: p ou p Logo, a probabilidade pedida é igual a r 4 A π 4 16π (m ) área da manha irular de raio 4 Para determinar o valor pedido tem de resolver-se a ondição A ( 5) 16π, equivalente a k e 16π. Considerando as funções x 1+ 4 e e y 16 π, vamos alular o ponto de interseção dos seus gráfios. No editor de funções da aluladora obtém-se: y 1 16π y O valor de k é aproximadamente igual a -0,8.
4 .. A( 4) A( 0) 40,461 0 t. m. v. 5 (m /s) [ 0 ; 4] 4 4 Durante os quatro primeiros segundos, a área da manha aumentou, em média, 5 m por segundo Sabe-se que 1 os ( x ) 1, para todo o valor de x. Como b > 0, virá b b os ( x) b e a b a + b os ( x) a + b, ou seja, a b y a + b Assim, omo queríamos mostrar, o ontradomínio da função é o intervalo a b, a + b. [ ] π é período da função se e só se y x + π y( x), para todo o valor de x do domínio da função. Tem-se π π y x + a + b os x a + b + os os Confirma-se, assim, o pretendido. ( x + π ) a + b ( x ) y( x) π é período da função o-seno 4.. Por observação das figuras 1 e o ontradomínio da função é [ 0, 71 ; 0, 87 ], intervalo de amplitude 1,58. Amplitude do intervalo [ a b, a + b ] b. Logo, b 1,58 b 0, 79. Como a + b 0, 87, temos a 0,87 0,79 0, 08 Finalmente, dois maximizantes onseutivos são 0,00 e 0,004. O período positivo mínimo da função é 0,00. Assim, π 0,00 14 Logo, a 0, 08, b 0, 79 e
5 5.1. O número total de lientes é igual ao número total de telemóveis vendidos. Assim, a empresa vendeu 8,5 milhares de telemóveis (7 + 6, ,5 + +,5). Destes, 1,5 milhares foram vendidos a um preço inferior a 180 euros. 1,5 9 A probabilidade pedida é, assim, p. 8, Introduzindo em L1 o preço, em euros, de ada telemóvel e em L o número de unidades vendidas, em milhares, obtém-se Para este onjunto de dados, o oefiiente de orrelação linear é aproximadamente igual a -0,97 (ver figura ao lado). Este valor india-nos que existe uma orrelação negativa muito forte entre as variáveis n e p. As variáveis variam inversamente, isto é, à medida que o preço do telemóvel aumenta, o número de unidades vendidas diminui e vie-versa. 5.. A quantia, em euros, que a empresa prevê vir a reeber pela venda dos telemóveis do novo modelo é dada por q 1000 n p Dado que n 0,0p + 10, vem ( 0,0 p + 10 ) p 0 p + p q 1000n p sen α α 1, 0949 (radianos) 18 Sabe-se que P irunf de raio 18 Pbase do π α. one Assim, P base do one π 18 π 1,0949 P 9, 4164 m base do one 5
6 P base Cálulo do raio da base do one: 9,4164 π r π r 9,4164 r 6,7 π m Cálulo da altura do one: h 18 6, 7 h 16,8714 m Cálulo do volume do one: 1 V π 6, 7 V 695, m 16, 8714 Ora, 695, m > 500 m superior a meio litro., pelo que o filtro onstruído tem apaidade Fim Esta proposta de resolução também pode ser onsultada em 6
EXAME NACIONAL DO ENSINO SECUNDÁRIO
EXAME NACIONAL DO ENSINO SECUNDÁRIO 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 735/11 Págs. Curso Científico-Humanístico de Artes Visuais Duração da prova: 150 minutos 2006
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 0. Uma geladeira é vendida em n parelas iguais, sem juros. Caso se queira adquirir o produto, pagando-se ou parelas
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Turma A. TESTE Nº 1 Grupo I
ESOL SEUNDÁRI OM º ILO D. DINIS 11º NO DE ESOLRIDDE DE MTEMÁTI Turma TESTE Nº 1 Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
Distâncias inacessíveis
U UL L esse: http://fuvestibular.om.br/ Distânias inaessíveis Introdução Na ula 20 aprendemos a alular distânias que não podiam ser medidas diretamente. Nessa aula, os oneitos utilizados foram a semelhança
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1.ª FASE 25 DE JUNHO 2019
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 Fax: +351 21 716 64 24 http://www.apm.pt email: [email protected] PROPOSTA
EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO
EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo
Os Teoremas de Cavalieri 1. 2 Os Princípios de Cavalieri para áreas e volumes
Os Teoremas de Cavalieri 1 Roerto Rieiro Paterlini 1 Introdução O estudo de volumes de sólidos no ensino médio tem omo ase o Prinípio de Cavalieri Esse prinípio tamém pode ser usado para áreas de regiões
Capítulo I Geometria no Plano e no Espaço
Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 5) ª FASE 18 DE JUNHO 01 Grupo I Questões 1 4 5 7 8 Versão 1 B C A D B A C A Versão A D B B C A D C Grupo II 1 11 z
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Trata-se de uma permutação com repetições, ou seja, é uma sequência de oito letras em que a letra repete-se
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 25 DE JUNHO 2013 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 25 DE JUNHO 2013 GRUPO I 1. A função objetivo é o lucro, que se pretende maximizar: L (x, y) = 500 x +
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
Cálculo IV EP1 Aluno
Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Probabilidades e Combinatória
ESOLA SEUNDÁRIA OM 3º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A Tema I Probabilidades e ombinatória Tarefa nº do plano de trabalho nº 5. onsidere o seguinte problema: Um saco contém doze bolas,
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2018 / 201 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 0 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.
Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em )
Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em 8-05-0). O Dinis dispõe de dez cartas todas diferentes: quatro do naipe de espadas,
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I
Associação de Professores de Matemática Contactos: Rua Dr João Couto, nº 7-A 1500- Lisboa Tel: +51 1 71 90 / 1 711 0 77 Fa: +51 1 71 4 4 http://wwwapmpt email: geral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 25 DE JUNHO 2013
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 Fax: +351 21 716 64 24 http://www.apm.pt email: [email protected] PROPOSTA
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Soluções dos Problemas do Capítulo 4
Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A. Ficha de revisão n.º 6
ESCOL SECUNDÁRI COM 3º CICLO D. DINIS COIMBR 11º NO DE ESCOLRIDDE MTEMÁTIC Ficha de revisão n.º 6 1. Num referencial o.n. ( O,i, j,k ) do espaço são dados os pontos (,0,0); B(,,0); C(0,,0) e D(0,0,5) Sejam
COEFICIENTES DE ATRITO
Físia Geral I MIEET Protoolos das Aulas Prátias Departamento de Físia Universidade do Algarve COEFICIENTES DE ATRITO 1. Resumo Corpos de diferentes materiais são deixados, sem veloidade iniial, sobre um
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE
Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações
PREPARAR EXAME NACINAL NACINAL PRVA-MDEL Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Uma A estimação tem por objetivo forneer informações sobre parâmetros populaionais, tendo omo base uma amostra aleatória extraída da
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
Prova-modelo de Exame
Prova-modelo de Exame Nome N. o Turma Data /maio/019 Avaliação Professor Duração da Prova (Caderno 1 + Caderno ): 150 minutos Tolerância: 0 minutos A prova é constituída por dois cadernos (Caderno 1 e
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica
MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão B.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para
QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens
QUESTÃO ÚNI MÚLTIPL ESOLH 10,00 (dez) pontos distribuídos em 0 itens Marque no cartão de respostas, anexo, a única alternativa que responde de maneira correta ao pedido de cada item. 1. Leandro tinha,
Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações
PREPARAR EXAME O NACIONAL NACIONAL PROVA-MODELO Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Aprete o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando, para
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões
Associação de rofessores de Matemática Contactos: Rua Dr João Couto, nº 7-A 500- Lisboa Tel: +5 7 0 / 7 0 77 Fax: +5 7 http://wwwapmpt email: geral@apmpt ROOSTA DE RESOLUÇÃO DA ROVA DE MATEMÁTICA A DO
Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago
Polos Olímpios de Treinamento urso de Geometria - Nível 3 Prof. íero Thiago ula 9 Relações métrias no triângulo. Teorema 1. (Lei dos Senos) Seja um triângulo tal que = a, = b e =. Seja R o raio da irunferênia
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
Escola Secundária com 3ºCEB de Lousada
Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar
4 3 10! Resposta pedida: 3! x 4! = 144 Resposta: C
ágina 80. reparar o Exame 0 07 Matemática A 4 0! 4 x x 0!. Devemos escolher, das oito posições, duas para as letras A: temos 8 formas de o fazer. Das seis posições restantes, uma tem de ser para a letra
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 1o Ano 01 - Época especial Proposta de resolução GRUPO I 1. Como o primeiro e último algarismo são iguais, o segundo e o penúltimo também, o mesmo acontecendo com o terceiro
Avaliação individual. Questões: 1) Apresente a leitura completa correspondente a cada uma das medidas abaixo ilustradas:
Engenharia de Controle e Automação Físia Experimental para Engenharia 1 (N1FE1) Professor Osvaldo Canato Júnior e Wilson Elmer Avaliação individual Formulário: s v 1 1 1 vm ; am ; s s0 vt; s s0 v0t at
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 20 DE JULHO 2018
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 75) ª FASE 0 DE JULHO 018 Grupo I 1. 1.1. Analisando o sistema de restrições e atendendo a que x representa o número
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1
ANALYTICAL METHODS IN VIBRATION Leonard Meirovith Capitulo Comportamento de sistemas Um sistema é definido omo uma montagem de omponentes atuando omo um todo. Os omponentes são lassifiados e definidos
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A TURMA A. TESTE Nº 2 Grupo I
ESOL SEUNÁRI OM º ILO. INIS º NO E ESOLRIE E MTEMÁTI TURM TESTE Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 2 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 2 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2016
ssociação de Professores de Matemática ontactos: Rua Dr. João outo, n.º 7-1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 http://www.apm.pt email: [email protected] PROPOST DE RESOLUÇÃO D PROV DE MTEMÁTI DO
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II 2º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma
A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0.
Preparar o Eame 0 06 Matemática A Página 55. Sabemos que radianos equivalem a 80º, pelo que a um ângulo de radianos vai corresponder 80,6 graus. Este ângulo só pode estar representado na opção D. Na opção
