COLÉGIO APROVAÇÃO LTDA. (21)
|
|
|
- Débora Farinha Carvalho
- 8 Há anos
- Visualizações:
Transcrição
1 COLÉGIO APROVAÇÃO LTDA. (1) ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 18 (Grandezas Proporcionais e Porcentagem) 1. (Enem 016) O censo demográfico é um levantamento estatístico que permite a coleta de várias informações. A tabela apresenta os dados obtidos pelo censo demográfico brasileiro nos anos de 1940 e 000, referentes à concentração da população total, na capital e no interior, nas cinco grandes regiões. População residente, na capital e interior segundo as Grandes Regiões 1940/000 População residente Grandes Total Capital Interior regiões Norte Nordeste Sudeste Sul Centro-Oeste Fonte: IBGE, Censo Demográfico 1940/000. O valor mais próximo do percentual que descreve o aumento da população nas capitais da Região Nordeste é a) 15% b) 31% c) 331% d) 700% e) 800%. (Enem 016) O LlRAa, Levantamento Rápido do Índice de Infestação por Aedes aegypti, consiste num mapeamento da infestação do mosquito Aedes aegypti. O LlRAa é dado pelo percentual do número de imóveis com focos do mosquito, entre os escolhidos de uma região em avaliação. O serviço de vigilância sanitária de um município, no mês de outubro do ano corrente, analisou o LlRAa de cinco bairros que apresentaram o maior índice de infestação no ano anterior. Os dados obtidos para cada bairro foram: I. 14 imóveis com focos de mosquito em 400 imóveis no bairro; II. 6 imóveis com focos de mosquito em 500 imóveis no bairro; III. 13 imóveis com focos de mosquito em 50 imóveis no bairro; lv. 9 imóveis com focos de mosquito em 360 imóveis no bairro; V. 15 imóveis com focos de mosquito em 500 imóveis no bairro. O setor de dedetização do município definiu que o direcionamento das ações de controle iniciarão pelo bairro que apresentou o maior índice do LlRAa. As ações de controle iniciarão pelo bairro a) I. b) II. c) III. d) IV. e) V. Disponível em: Acesso em: 8 out (Enem 016) A fim de acompanhar o crescimento de crianças, foram criadas pela Organização Mundial da Saúde (OMS) tabelas de altura, também adotadas pelo Ministério da Saúde do Brasil. Além de informar os dados referentes ao índice de crescimento, a tabela traz gráficos com curvas, apresentando padrões de crescimento estipulados pela OMS. O gráfico apresenta o crescimento de meninas, cuja análise se dá pelo ponto de intersecção entre o comprimento, em centímetro, e a idade, em mês completo e ano, da criança.
2 Uma menina aos 3 anos de idade tinha altura de 85 centímetros e aos 4 anos e 4 meses sua altura chegou a um valor que corresponde a um ponto exatamente sobre a curva p50. Qual foi o aumento percentual da altura dessa menina, descrito com uma casa decimal, no período considerado? a) 3,5% b) 1,% c) 19,0% d) 11,8% e) 10,0% 4. (Enem 016) Uma pessoa comercializa picolés. No segundo dia de certo evento ela comprou 4 caixas de picolés, pagando R$ 16,00 a caixa com 0 picolés para revendê-los no evento. No dia anterior, ela havia comprado a mesma quantidade de picolés, pagando a mesma quantia, e obtendo um lucro de R$ 40,00 (obtido exclusivamente pela diferença entre o valor de venda e o de compra dos picolés) com a venda de todos os picolés que possuía. Pesquisando o perfil do público que estará presente no evento, a pessoa avalia que será possível obter um lucro 0% maior do que o obtido com a venda no primeiro dia do evento. Para atingir seu objetivo, e supondo que todos os picolés disponíveis foram vendidos no segundo dia, o valor de venda de cada picolé, no segundo dia, deve ser a) R$ 0,96. b) R$ 1,00. c) R$ 1,40. d) R$ 1,50. e) R$ 1, (Enem 015) Uma indústria produz malhas de proteção solar para serem aplicadas em vidros, de modo a diminuir a passagem de luz, a partir de fitas plásticas entrelaçadas perpendicularmente. Nas direções vertical e horizontal, são aplicadas fitas de 1 milímetro de largura, tal que a distância entre elas é de (d 1) milímetros, conforme a figura. O material utilizado não permite a passagem da luz, ou seja, somente o raio de luz que atingir as lacunas deixadas pelo entrelaçamento consegue transpor essa proteção. A taxa de cobertura do vidro é o percentual da área da região coberta pelas fitas da malha, que são colocadas paralelamente às bordas do vidro.
3 Essa indústria recebeu a encomenda de uma malha de proteção solar para ser aplicada em um vidro retangular de 5m de largura por 9m de comprimento. A medida de d, em milímetros, para que a taxa de cobertura da malha seja de 75% é a) b) 1 c) 11 3 d) 4 3 e) 3 6. (Enem 015) Segundo dados apurados no Censo 010, para uma população de 101,8 milhões de brasileiros com 10 anos ou mais de idade e que teve algum tipo de rendimento em 010, a renda média mensal apurada foi de R$ 1.0,00. A soma dos rendimentos mensais dos 10% mais pobres correspondeu a apenas 1,1% do total de rendimentos dessa população considerada, enquanto que a soma dos rendimentos mensais dos 10% mais ricos correspondeu a 44,5% desse total. Disponível em: Acesso em: 16 nov. 011(adaptado). Qual foi a diferença, em reais, entre a renda média mensal de um brasileiro que estava na faixa dos 10% mais ricos e de um brasileiro que estava na faixa dos 10% mais pobres? a) 40,40 b) 548,11 c) 1.73,67 d) 4.06,70 e) 5.16,68 7. (Enem 014) Uma lata de tinta, com a forma de um paralelepípedo retangular reto, tem as dimensões, em centímetros, mostradas na figura. Será produzida uma nova lata, com os mesmos formato e volume, de tal modo que as dimensões de sua base sejam 5% maiores que as da lata atual. Para obter a altura da nova lata, a altura da lata atual deve ser reduzida em a) 14,4% b) 0% c) 3,0% d) 36,0% e) 64,0% 8. (Enem 014) Os vidros para veículos produzidos por certo fabricante têm transparências entre 70% e 90%, dependendo do lote fabricado. Isso significa que, quando um feixe luminoso incide no vidro, uma parte entre 70% e 90% da luz consegue atravessá-lo. Os veículos equipados com vidros desse fabricante terão instaladas, nos vidros das portas, películas protetoras cuja transparência, dependendo do lote fabricado, estará entre 50% e 70%. Considere que uma porcentagem P da intensidade da luz, proveniente de uma fonte externa, atravessa o vidro e a película. De acordo com as informações, o intervalo das porcentagens que representam a variação total possível de P é a) [35; 63]. b) [40; 63]. c) [50; 70]. d) [50; 90]. e) [70; 90]. 9. (Enem 014) Uma organização não governamental divulgou um levantamento de dados realizado em algumas cidades brasileiras sobre saneamento básico. Os resultados indicam que somente 36% do esgoto gerado nessas cidades é tratado, o que mostra que 8 bilhões de litros de esgoto sem nenhum tratamento são lançados todos os dias nas águas. Uma campanha para melhorar o saneamento básico nessas cidades tem como meta a redução da quantidade de esgoto lançado nas águas diariamente, sem tratamento, para 4 bilhões de litros nos próximos meses. Se o volume de esgoto gerado permanecer o mesmo e a meta dessa campanha se concretizar, o percentual de esgoto tratado passará a ser a) 7% b) 68% c) 64% d) 54% e) 18%
4 10. (Enem 013) Um comerciante visita um centro de vendas para fazer cotação de preços dos produtos que deseja comprar. Verifica que se aproveita 100% da quantidade adquirida de produtos do tipo A, mas apenas 90% de produtos do tipo B. Esse comerciante deseja comprar uma quantidade de produtos, obtendo o menor custo/benefício em cada um deles. O quadro mostra o preço por quilograma, em reais, de cada produto comercializado. Produto Tipo A Tipo B Arroz,00 1,70 Feijão 4,50 4,10 Soja 3,80 3,50 Milho 6,00 5,30 Os tipos de arroz, feijão, soja e milho que devem ser escolhidos pelo comerciante são, respectivamente, a) A, A, A, A. b) A, B, A, B. c) A, B, B, A. d) B, A, A, B. e) B, B, B, B. 11. (Enem 013) A Lei da Gravitação Universal, de Isaac Newton, estabelece a intensidade da força de atração entre duas massas. Ela é representada pela expressão: F mm 1 G d onde m1 e m correspondem às massas dos corpos, d à distância entre eles, G à constante universal da gravitação e F à força que um corpo exerce sobre o outro. O esquema representa as trajetórias circulares de cinco satélites, de mesma massa, orbitando a Terra. Qual gráfico expressa as intensidades das forças que a Terra exerce sobre cada satélite em função do tempo? a) b) c) d) e)
5 1. (Enem 016) Um paciente necessita de reidratação endovenosa feita por meio de cinco frascos de soro durante 4 h. Cada frasco tem um volume de 800 ml de soro. Nas primeiras quatro horas, deverá receber 40% do total a ser aplicado. Cada mililitro de soro corresponde a 1 gotas. O número de gotas por minuto que o paciente deverá receber após as quatro primeiras horas será a) 16. b) 0. c) 4. d) 34. e) (Enem 016) No tanque de um certo carro de passeio cabem até 50 L de combustível, e o rendimento médio deste carro na estrada é de 15 km L de combustível. Ao sair para uma viagem de 600 km o motorista observou que o marcador de combustível estava exatamente sobre uma das marcas da escala divisória do medidor, conforme figura a seguir. Como o motorista conhece o percurso, sabe que existem, até a chegada a seu destino, cinco postos de abastecimento de combustível, localizados a 150 km, 187 km, 450 km, 500 km e 570 km do ponto de partida. Qual a máxima distância, em quilômetro, que poderá percorrer até ser necessário reabastecer o veículo, de modo a não ficar sem combustível na estrada? a) 570 b) 500 c) 450 d) 187 e) (Enem 016) Em uma empresa de móveis, um cliente encomenda um guarda-roupa nas dimensões 0 cm de altura, 10 cm de largura e 50 cm de profundidade. Alguns dias depois, o projetista, com o desenho elaborado na escala 1: 8, entra em contato com o cliente para fazer sua apresentação. No momento da impressão, o profissional percebe que o desenho não caberia na folha de papel que costumava usar. Para resolver o problema, configurou a impressora para que a figura fosse reduzida em 0%. A altura, a largura e a profundidade do desenho impresso para a apresentação serão, respectivamente, a),00 cm, 1,00 cm e 5,00 cm. b) 7,50 cm, 15,00 cm e 6,50 cm. c) 34,37 cm, 18,75 cm e 7,81cm. d) 35,0 cm, 19,0 cm e 8,00 cm. e) 44,00 cm, 4,00 cm e 10,00 cm. 15. (Enem 016) Para a construção de isolamento acústico numa parede cuja área mede 9 m, sabe-se que, se a fonte sonora estiver a 3m do plano da parede, o custo é de R$ 500,00. Nesse tipo de isolamento, a espessura do material que reveste a parede é inversamente proporcional ao quadrado da distância até a fonte sonora, e o custo é diretamente proporcional ao volume do material do revestimento. Uma expressão que fornece o custo para revestir uma parede de área A (em metro quadrado), situada a D metros da fonte sonora, é a) A D b) 500 A D c) 500 D A d) 500 A D 81 e) D A 16. (Enem 016) Cinco marcas de pão integral apresentam as seguintes concentrações de fibras (massa de fibra por massa de pão): - Marca A: g de fibras a cada 50 g de pão; - Marca B: 5g de fibras a cada 40 g de pão; - Marca C: 5g de fibras a cada 100 g de pão;
6 - Marca D: 6g de fibras a cada 90 g de pão; - Marca E: 7g de fibras a cada 70 g de pão. Recomenda-se a ingestão do pão que possui a maior concentração de fibras. A marca a ser escolhida é a) A. b) B. c) C. d) D. e) E. Disponível em: Acesso em: 5 fev (Enem 016) Densidade absoluta (d) é a razão entre a massa de um corpo e o volume por ele ocupado. Um professor propôs à sua turma que os alunos analisassem a densidade de três corpos: d A, d B, d C. Os alunos verificaram que o corpo A possuía 1,5 vez a massa do corpo B e esse, por sua vez, tinha 3 4 da massa do corpo C. Observaram, ainda, que o volume do corpo A era o mesmo do corpo B e 0% maior do que o volume do corpo C. Após a análise, os alunos ordenaram corretamente as densidades desses corpos da seguinte maneira a) db da dc b) db da dc c) dc db da d) db dc da e) dc db da 18. (Enem 016) Diante da hipótese do comprometimento da qualidade da água retirada do volume morto de alguns sistemas hídricos, os técnicos de um laboratório decidiram testar cinco tipos de filtros de água. Dentre esses, os quatro com melhor desempenho serão escolhidos para futura comercialização. Nos testes, foram medidas as massas de agentes contaminantes, em miligrama, que não são capturados por cada filtro em diferentes períodos, em dia, como segue: - Filtro 1 (F1) : 18 mg em 6 dias; - Filtro (F) : 15 mg em 3 dias; - Filtro 3 (F3) : 18 mg em 4 dias; - Filtro 4 (F4) : 6 mg em 3 dias; - Filtro 5 (F5) : 3 mg em dias. Ao final, descarta-se o filtro com a maior razão entre a medida da massa de contaminantes não capturados e o número de dias, o que corresponde ao de pior desempenho. Disponível em: Acesso em: 1 jul. 015 (adaptado). O filtro descartado é o a) F1. b) F. c) F3. d) F4. e) F (Enem 016) Para garantir a segurança de um grande evento público que terá início às 4h da tarde, um organizador precisa monitorar a quantidade de pessoas presentes em cada instante. Para cada.000 pessoas se faz necessária a presença de um policial. Além disso, estima-se uma densidade de quatro pessoas por metro quadrado de área de terreno ocupado. Às 10 h da manhã, o organizador verifica que a área de terreno já ocupada equivale a um quadrado com lados medindo 500 m. Porém, nas horas seguintes, espera-se que o público aumente a uma taxa de pessoas por hora até o início do evento, quando não será mais permitida a entrada de público. Quantos policiais serão necessários no início do evento para garantir a segurança? a) 360 b) 485 c) 560 d) 740 e) (Enem 016) De forma geral, os pneus radiais trazem em sua lateral uma marcação do tipo abc derfg, como R15. Essa marcação identifica as medidas do pneu da seguinte forma: - abc é a medida da largura do pneu, em milímetro; - de é igual ao produto de 100 pela razão entre a medida da altura (em milímetro) e a medida da largura do pneu (em milímetro); - R significa radial;
7 - fg é a medida do diâmetro interno do pneu, em polegada. A figura ilustra as variáveis relacionadas com esses dados. O proprietário de um veículo precisa trocar os pneus de seu carro e, ao chegar a uma loja, é informado por um vendedor que há somente pneus com os seguintes códigos: R15, R15, R15, R15 e 05 55R15. Analisando, juntamente com o vendedor, as opções de pneus disponíveis, concluem que o pneu mais adequado para seu veículo é o que tem a menor altura. Desta forma, o proprietário do veículo deverá comprar o pneu com a marcação a) 05 55R15. b) R15. c) R15. d) R15. e) R (Enem 015) A insulina é utilizada no tratamento de pacientes com diabetes para o controle glicêmico. Para facilitar sua aplicação, foi desenvolvida uma caneta na qual pode ser inserido um refil contendo 3mL de insulina, como mostra a imagem. Para controle das aplicações, definiu-se a unidade de insulina como 0,01mL. Antes de cada aplicação, é necessário descartar unidades de insulina, de forma a retirar possíveis bolhas de ar. A um paciente foram prescritas duas aplicações diárias: 10 unidades de insulina pela manhã e 10 à noite. Qual o número máximo de aplicações por refil que o paciente poderá utilizar com a dosagem prescrita? a) 5 b) 15 c) 13 d) 1 e) 8. (Enem 015) Um pesquisador, ao explorar uma floresta, fotografou uma caneta de 16,8 cm de comprimento ao lado de uma pegada. O comprimento da caneta (c), a largura (L) e o comprimento (C) da pegada, na fotografia, estão indicados no esquema.
8 A largura e o comprimento reais da pegada, em centímetros, são, respectivamente, iguais a a) 4,9 e 7,6. b) 8,6 e 9,8. c) 14, e 15,4. d) 6,4 e 40,8. e) 7,5 e 4,5. 3. (Enem 015) A expressão Fórmula de Young é utilizada para calcular a dose infantil de um medicamento, dada a dose do adulto: idade da criança (em anos) dose de criança dose de adulto idade criança (em anos) 1 Uma enfermeira deve administrar um medicamento X a uma criança inconsciente, cuja dosagem de adulto e de 60 mg. A enfermeira não consegue descobrir onde está registrada a idade da criança no prontuário, mas identifica que, algumas horas antes, foi administrada a ela uma dose de 14 mg de um medicamento Y, cuja dosagem de adulto é 4 mg. Sabe-se que a dose da medicação Y administrada à criança estava correta. Então, a enfermeira deverá ministrar uma dosagem do medicamento X, em miligramas, igual a a) 15. b) 0. c) 30. d) 36. e) (Enem 015) Alguns medicamentos para felinos são administrados com base na superfície corporal do animal. Foi receitado a um felino pesando 3,0 kg um medicamento na dosagem diária de 50 mg por metro quadrado de superfície corporal. O quadro apresenta a relação entre a massa do felino, em quilogramas, e a área de sua superfície corporal, em metros quadrados. Relação entre a massa de um felino e a área de sua superfície corporal Massa (kg) Área (m ) 1,0 0,100,0 0,159 3,0 0,08 4,0 0,5 5,0 0,9 NORSWORTHY, G. D. O paciente felino. São Paulo: Roca, 009. A dose diária, em miligramas, que esse felino deverá receber é de a) 0,64. b) 5,0. c) 156,0. d) 750,0. e) 1.01,9. 5. (Enem 014) Um carpinteiro fabrica portas retangulares maciças, feitas de um mesmo material. Por ter recebido de seus clientes pedidos de portas mais altas, aumentou sua altura em 1, preservando suas 8 espessuras. A fim de manter o custo com o material de cada porta, precisou reduzir a largura. A razão entre a largura da nova porta e a largura da porta anterior é a) 1 8 b) 7 8 c) 8 7 d) 8 9 e) 9 8
9 6. (Enem 014) O condomínio de um edifício permite que cada proprietário de apartamento construa um armário em sua vaga de garagem. O projeto da garagem, na escala 1: 100, foi disponibilizado aos interessados já com as especificações das dimensões do armário, que deveria ter o formato de um paralelepípedo retângulo reto, com dimensões, no projeto, iguais a 3cm, 1cm e cm. O volume real do armário, em centímetros cúbicos, será a) 6. b) 600. c) d) e) (Enem 014) Diariamente, uma residência consome 0.160Wh. Essa residência possui 100 células solares retangulares (dispositivos capazes de converter a luz solar em energia elétrica) de dimensões 6cm 8cm. Cada uma das tais células produz, ao longo do dia, 4Wh por centímetro de diagonal. O proprietário dessa residência quer produzir, por dia, exatamente a mesma quantidade de energia que sua casa consome. Qual deve ser a ação desse proprietário para que ele atinja o seu objetivo? a) Retirar 16 células. b) Retirar 40 células. c) Acrescentar 5 células. d) Acrescentar 0 células. e) Acrescentar 40 células. 8. (Enem 014) A Figura 1 representa uma gravura retangular com 8m de comprimento e 6m de altura. Deseja-se reproduzi-la numa folha de papel retangular com 4cm de comprimento e 30cm de altura, deixando livres 3cm em cada margem, conforme a Figura. A reprodução da gravura deve ocupar o máximo possível da região disponível, mantendo-se as proporções da Figura 1.
10 A escala da gravura reproduzida na folha de papel é a) 1: 3. b) 1: 4. c) 1: 0. d) 1: 5. e) 1: 3. PRADO, A. C. Superinteressante, ed. 301, fev. 01 (adaptado). 9. (Enem 014) Um show especial de Natal teve ingressos vendidos. Esse evento ocorrerá em um estádio de futebol que disponibilizará 5 portões de entrada, com 4 catracas eletrônicas por portão. Em cada uma dessas catracas, passará uma única pessoa a cada segundos. O público foi igualmente dividido pela quantidade de portões e catracas, indicados no ingresso para o show, para a efetiva entrada no estádio. Suponha que todos aqueles que compraram ingressos irão ao show e que todos passarão pelos portões e catracas eletrônicas indicados. Qual é o tempo mínimo para que todos passem pelas catracas? a) 1 hora. b) 1 hora e 15 minutos. c) 5 horas. d) 6 horas. e) 6 horas e 15 minutos. 30. (Enem 014) A Companhia de Engenharia de Tráfego (CET) de São Paulo testou em 013 novos radares que permitem o cálculo da velocidade média desenvolvida por um veículo em um trecho da via. As medições de velocidade deixariam de ocorrer de maneira instantânea, ao se passar pelo radar, e seriam feitas a partir da velocidade média no trecho, considerando o tempo gasto no percurso entre um radar e outro. Sabe-se que a velocidade média é calculada como sendo a razão entre a distância percorrida e o tempo gasto para percorrê-la. O teste realizado mostrou que o tempo que permite uma condução segura de deslocamento no percurso entre os dois radares deveria ser de, no mínimo, 1minuto e 4 segundos. Com isso, a CET precisa instalar uma placa antes do primeiro radar informando a velocidade média máxima permitida nesse trecho da via. O valor a ser exibido na placa deve ser o maior possível, entre os que atendem às condições de condução segura observadas. Disponível em: www1.folha.uol.com.br. Acesso em: 11 jan. 014 (adaptado). A placa de sinalização que informa a velocidade que atende a essas condições é a) b) c) d) e) Gabarito: Resposta da questão 1: [D] Tem-se que a resposta é dada por % 700%
11 Resposta da questão : 14 Como 0,035; ,05; , e 15 0,030, segue que ações de controle iniciarão pelo 500 bairro I. Resposta da questão 3: Tomando a curva p50, sabemos que aos 4 anos e 4 meses a altura da menina chegou a 105 cm. Por conseguinte, a resposta é dada por % 3,5%. 85 Resposta da questão 4: [C] 40 Sendo R$ 10,00 o lucro obtido com a venda de cada caixa, segue que o lucro percentual foi de % 6,5%. Logo, para que o lucro seja 0% maior no segundo dia, a pessoa deverá ter um lucro igual a , 6,5% 75%. Em consequência, o preço de venda de cada picolé deve ser igual a 1,75 R$ 1,40. 0 Resposta da questão 5: Considere a figura, em que se tem a reprodução do padrão de preenchimento da malha num quadrado de lado d. O quadrado de lado 75%, deve-se ter (d 1) 1 d 1 1 d 4 d d mm. Resposta da questão 6: [E] O resultado pedido é dado por d 1 corresponde à área transparente do padrão. Logo, para que a taxa de cobertura seja de 6 6 0, , , , R$ 5.16, , ,8 10 Resposta da questão 7: [D]
12 3 Se H é a altura da lata atual, então seu volume é igual a 4 Hcm. Agora, sabendo que as dimensões da nova lata são 5% maiores que as da lata atual, e sendo h a altura da nova lata, temos h 4 H h H h 64% H, isto é, a altura da lata atual deve ser reduzida em % 64% 36%. Resposta da questão 8: Tem-se que 0,5 70% 35% e 0,7 90% 63%. Por conseguinte, concluímos que P [35, 63]. Resposta da questão 9: Seja V o volume de esgoto gerado, em bilhões de litros. Como 100% 36% 64% de V são lançados todos os dias nas águas, sem tratamento, temos 0,64 V 8 V 1,5. Portanto, a taxa percentual pedida é dada por 1, % 68%. 1,5 Resposta da questão 10: [D] Considere a tabela abaixo, em que a coluna Tipo B apresenta o custo efetivo de 1kg dos produtos listados. Produto Tipo A Tipo B Arroz,00 1,7 1,89 0,9 Feijão 4,50 Soja 3,80 Milho 6,00 4,1 4,56 0,9 3,5 3,89 0,9 5,3 5,89 0,9 Portanto, a escolha que o comerciante deve fazer é B, A, A, B. Resposta da questão 11: A intensidade da força de atração gravitacional é inversamente proporcional ao quadrado da distância entre a Terra e o satélite. Como as órbitas são circulares, a distância para cada satélite é constante, sendo também constante a intensidade da força gravitacional sobre cada um. Como as massas são iguais, o satélite mais distante sofre força de menor intensidade. Assim: FA < FB < FC < FD < FE. Resposta da questão 1: [C] Após as quatro primeiras horas o paciente deverá receber uma quantidade de mililitros dada por 0, Portanto, segue que a resposta é Resposta da questão 13: No momento da saída, o tanque continha ,5 litros de combustível. Daí, como a distância que o veículo 4 pode percorrer com esse combustível é 15 37,5 56,5 km, segue que a resposta é 500 km.
13 Resposta da questão 14: Sejam a, e p, respectivamente, a altura, a largura e a profundidade no desenho. Tem-se que a 7,5 cm; 15 cm e p 6,5 cm. Por conseguinte, após a redução de 0%, tais medidas passaram a ser 0,8 7,5 cm; 0, cm e 0,8 6,5 5 cm. Resposta da questão 15: Seja D0 temos 3 m e e, 0 respectivamente, a distância inicial da fonte até a parede e a espessura da mesma. Logo, 1 e k k 9 e, D0 com k 0 sendo a constante de proporcionalidade. Ademais, sendo A0 9 m e V, 0 respectivamente, a área e o volume da parede inicial, temos V0 9 e 0. Sabendo ainda que C0 R$ 500,00 é o custo dessa parede, vem 500 C0 k V0 500 k 9 e0 k, 9 e 0 com k sendo a constante de proporcionalidade. 9 e0 Portanto, se e é a espessura da parede de área A, então e e, assim, temos D C k A e e A 9 e D A. D 0 Resposta da questão 16: Calculando as concentrações de fibras em cada uma das marcas, temos ,040; 0,15; 0,050; 0,067 e Por conseguinte, deverá ser escolhida a marca B. Resposta da questão 17: 7 0, Tem-se que ma mb e mb m C, implicam em m A m C. Ademais, sabemos que VA VB e VA V C m m C A Em consequência, vem 8 15 m m C B 15 da dc e db 4 d C. VA 6 16 V V B 6 4 C VC 5 5
14 Portanto, é imediato que db da d C. Resposta da questão 18: Tem-se que 5; 4,5; e 3 1, Portanto, é fácil ver que o filtro descartado é o F. Resposta da questão 19: [E] A área do terreno quadrado de lado 500 m é igual a m. Logo, segue que inicialmente estão presentes de pessoas. Ademais, em horas, chegarão mais pessoas. Portanto, a resposta é Resposta da questão 0: [E] Tem-se que a altura de cada pneu é dada por abc de. Assim, é fácil ver que o pneu de menor altura é o que 100 possui menor produto abc de. Portanto, como , e , segue que o proprietário do veículo deverá comprar o pneu com a marcação R15. Resposta da questão 1: Em cada aplicação de 10 unidades são consumidas 1 unidades. Assim, o resultado pedido é dado por ,01 Resposta da questão : [D] Sejam L' e C', respectivamente, a largura e o comprimento reais da pegada. Tem-se que, 3,4 1,4 1 L' 6,4cm. L' C' 16,8 1 C' 40,8cm Resposta da questão 3: Sejam c e a, respectivamente, a dose de criança e a dose de adulto do medicamento Y. Logo, se c' e a' são a dose de criança e a dose de adulto do medicamento X, temos c ' c c ' 14 a' a 60 4 c ' 0mg. Resposta da questão 4: A dose diária, em miligramas, que esse felino devera receber é de 50 0,08 5. Resposta da questão 5:
15 [D] Sejam x, y e z, respectivamente, a altura, a espessura e a largura da porta original. Logo, segue que o volume da porta original é igual a x y z. Aumentando-se em 1 8 a altura da porta e preservando a espessura, deve-se ter, a fim de manter o custo com o material, 9x 8z y z1 x y z z 1, 8 9 com z 1 sendo a largura da nova porta. Portanto, a razão pedida é z 1 8 z 9. Resposta da questão 6: [E] Seja V o volume real do armário. O volume do armário, no projeto, é Resposta da questão 7: cm. Logo, temos V cm. V 100 Aplicando o Teorema de Pitágoras, concluímos facilmente que a diagonal de uma célula solar mede 10cm. Em consequência, as 100 células produzem Wh. Assim, estão sendo produzidos, diariamente, Wh além do consumo. Portanto, o proprietário deverá retirar células. Resposta da questão 8: [D] A região disponível para reproduzir a gravura corresponde a um retângulo de dimensões cm e cm. Daí, como e, segue-se que a escala pedida é 1: Resposta da questão 9: Em 1h 3600 s passam pessoas por cada catraca. Além disso, em 1 hora passam pessoas pelas 0 catracas. Portanto, o tempo mínimo para que todos passem pelas catracas é igual a h 15min Resposta da questão 30: [C] 84 7 Como 1min 4 s 84 s h h, segue-se que a velocidade média máxima permitida é ,1 90km h
A quantidade de gasolina utilizada, em litro, no reabastecimento, foi 20 a)
1. (Enem 017) A mensagem digitada no celular, enquanto você dirige, tira a sua atenção e, por isso, deve ser evitada. Pesquisas mostram que um motorista que dirige um carro a uma velocidade constante percorre
As distâncias X, Y e Z, em ordem crescente, estão dadas em. a) X, Y, Z. b) Y, X, Z. c) Y, Z, X. d) Z, X, Y. e) Z, Y, X.
Ensino Médio Aluno (a): Nº: Turma: ª série Bimestre: 1º Disciplina: Matemática I Gandezas Proporcionais Funções Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / Questão 1 Um anel contém 15
Módulo Unidades de Medidas de Comprimentos e Áreas. Conversão de Unidades de Medida de Área e Exercícios Avançados. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Conversão de Unidades de Medida de Área e Exercícios Avançados. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Conversão de Unidades de Medida
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) Prof. Arthur Lima
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) PROPORCIONALIDADE ENEM 2016) Num mapa com escala 1 : 250 000, a distância entre as cidades A e B é de 13 cm. Num outro mapa, com escala
1. (Enem 2014) Uma lata de tinta, com a forma de um paralelepípedo retangular reto, tem as dimensões, em centímetros, mostradas na figura.
1. (Enem 2014) Uma lata de tinta, com a forma de um paralelepípedo retangular reto, tem as dimensões, em centímetros, mostradas na figura. Será produzida uma nova lata, com os mesmos formato e volume,
Mat.Semana 3. PC Sampaio Alex Amaral Gabriel Ritter (Allan Pinho)
Semana 3 PC Sampaio Alex Amaral Gabriel Ritter (Allan Pinho) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
Ensino Médio. Aluno(a): Série: 1ª Turma: No. Data: / /2019
Ensino Médio Professor(a): Kátia Lima Lista de Exercícios - Matemática-II Aluno(a): Série: ª Turma: No. Data: / /209 0 - (ENEM/207) Um andarilho subiu uma montanha por uma trilha sinuosa. Essa trilha possui
Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π.
Gabarito: Resposta da questão 1: [B] Calculando as áreas de cada uma das pizzas, tem-se: Pizza broto inteira π15 5π Pizza gigante inteira π0 400π Utilizando a regra de três, pode-se escrever: 5π 7 400π
Vamos a algumas aplicações da porcentagem com operações:
AULA-00 Fala pessoal, tudo bem? Vamos dar início ao estudo de PORCENTAGEM, assunto bastante cobrado na prova do ENEM e outros vestibulares, portanto, preste bastante atenção! Vamos nessa, firmeza no propósito!
Módulo Divisibilidade. Exercícios Diversos de Frações como Porcentagens. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Exercícios Diversos de Frações como Porcentagens 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Exercícios Diversos de Frações como Porcentagens 1 Exercícios Introdutórios
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de
ENEM 2015 (Questões 171 a 180)
(Questões 171 a 180) Provas de Vestibular 1. (Questão 171) O índice pluviométrico é utilizado para mensurar a precipitação da água da chuva, em milímetros, em determinado período de tempo. Seu cálculo
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
e) Z, Y, X b) 3.
1. (Unifesp) A heparina é um medicamento de ação anticoagulante prescrito em diversas patologias. De acordo com indicação médica, um paciente de 7 kg deverá receber 100 unidades de heparina por quilograma
ACLÉSIO MOREIRA MATEMÁTICA
ACLÉSIO MOREIRA MATEMÁTICA 1. (VUNESP-2017) Em um terreno retangular ABCD, que tem 15 m de frente para a Avenida Sumaré e uma medida x, em metros, da frente até o fundo, a diagonal AC mede 25 m, conforme
Aluno(a): Código: b) Determine após quanto tempo a pulga atinge a altura máxima.
Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A altura acima do chão (em metros) de uma bola lançada verticalmente ao ar é dado por: H = 11t 16t onde t é o tempo em segundos. a) Determine o instante
Capítulo 01. Unidades de medidas. Medidas de comprimento. exercitando. exercitando. Medidas agrárias. Medidas de superfície.
Capítulo 01 Medidas de comprimento A unidade fundamental para medir comprimento é o metro; logo abaixo teremos seus múltiplos e submúltiplos. km hm dam m dm cm mm Observe o quadro. Sempre completamos a
Lista de exercícios. Razão, proporção e escala.
Lista de exercícios Razão, proporção e escala. Questão 1 ENEM 2017 - Segundo dia Caderno Azul - Questão 158 Em uma de suas viagens, um turista comprou uma lembrança de um dos monumentos que visitou. Na
SEGUNDA SEMANA DA MATEMÁTICA. Grandezas Proporcionais e Regras de Três Nível Fácil
SEGUNDA SEMANA DA MATEMÁTICA Grandezas Proporcionais e Regras de Três Nível Fácil 01 - (ENEM/2012) Um biólogo mediu a altura de cinco árvores distintas e representou-as em uma mesma malha quadriculada,
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 3º Trimestre Matemática Dia: 07/1 - sexta-feira Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 3º TRI 1. A prova terá
Lista 19 GEOMETRIA ESPACIAL (Prismas)
Lista 19 GEOMETRIA ESPACIAL (Prismas) 1) A diagonal da base de um prisma quadrangular regular mede 6 dm e a altura do sólido, volume do sólido, em dm, vale a) c) 6 dm. O ) O volume de um prisma reto, cuja
COLÉGIO LUCIANO FEIJÃO TD 1 MATEMÁTICA 6 PROFS. ALFREDO CASTELO E ROGERINHO
Texto para as duas próximas questões. COLÉGIO LUCIANO FEIJÃO TD MATEMÁTICA 6 PROFS. ALFREDO CASTELO E ROGERINHO Carlos fabricou uma bicicleta, tendo rodas de tamanhos distintos, com o raio da roda maior
Aula 2 - Pré-Vestibular Cidadão 2016
2. (ENEM) Doenças relacionadas ao saneamento ambiental inadequado (DRSAI) podem estar associadas ao abastecimento deficiente da água, tratamento inadequado de esgoto sanitário, contaminação por resíduos
LISTA PORCENTAGEM. Prof: Paulo Vinícius
LISTA PORCENTAGEM 1. (Enem 2017) Num dia de tempestade, a alteração na profundidade de um rio, num determinado local, foi registrada durante um período de 4 horas. Os resultados estão indicados no gráfico
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica.
13 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia CRONOGRAMA 04/05 Progressão Aritmética Exercícios
Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro
Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: No
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica.
1 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia Grandezas proporcionais e escala 18 mai 01. Resumo
Módulo Frações, o Primeiro Contato. 6 o ano/e.f.
Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a
Matemática. Exercícios sobre regra de três simples. Exercícios
Exercícios sobre regra de três simples Exercícios 1. Um show especial de Natal teve 45 000 ingressos vendidos. Esse evento ocorrerá em um estádio de futebol que disponibilizará 5 portões de entrada, com
Com a instalação da nova antena, a medida da área de cobertura, em quilômetros quadrados, foi ampliada em a) 8 π. b) 12 π. c) 16 π. d) 32 π. e) 64 π.
GEOMETRIA PLANA LISTA 08 1. (Enem 01) Uma empresa de telefonia celular possui duas antenas que serão substituídas por uma nova, mais potente. As áreas de cobertura das antenas que serão substituídas são
16 - EXERCÍCIOS SISTEMA MÉTRICO DECIMAL
1 Faça as conversões que se pedem: a)1,2 dm 2 = m 2 b)2,3 km 3 = m 3 c)3,3 a = m2 d)2800 m 2 = hm 2 e)2,3 dm 3 = L f)13 m 3 = dl f)1,2 ha= cm 2 Gabarito a) 1,2.10 2 m 2 b)2,3.10 9 m 3 c)330 m 2 d)2,8.10-1
Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano
Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano Os conteúdos estão abaixo selecionados e deverão ser estudados pelo caderno
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe
Sistema de unidades: comprimento, massa, área, volume e capacidade
Disciplina: Matemática Ano / Série: 7 ano Professor (a): Rafael Machado Data: 02/ 2016 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 8 Ọ ANO EM Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (ENEM) Uma editora pretende despachar um lote de livros, agrupados
Mat. Rafael Jesus. Monitor: Fernanda Aranzate
Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância
ESCALA EXERCÍCIOS DO ENEM
ESCALA EXERCÍCIOS DO ENEM E0619 (ENEM 2014 QUESTÃO 136) A Figura 1 representa usa gravura retangular com 8 m de comprimento e 6 m de altura. Deseja-se reproduzi-la numa folha de papel retangular com 42
Questão 1. O casal precisa escolher uma caixa na qual o objeto caiba, de modo que sobre o menor espaço livre em seu interior.
18REV - Revisão MAT 4B-4 - Geometria Espacial (Prismas e Pirâmides) Questão 1 (Enem 2017) Um casal realiza sua mudança de domicílio e necessita colocar numa caixa de papelão um objeto cúbico, de 80 cm
QUESTÃO 136 HABILIDADE 25 - Resposta: C [A] O candidato que marcou esse item calculou a porcentagem dos homens que = 45% = 55%
SIMULADO SCORE MATEMÁTICA QUESTÃO 16 HABILIDADE 25 - Resposta: C [A] O candidato que marcou esse item calculou a porcentagem dos homens que 100 tinham irmãos. = 41,6% 100+140 [B] O candidato que marcou
ALGUMAS RAZÕES ESPECIAIS
ALGUMAS RAZÕES ESPECIAIS VELOCIDADE MÉDIA Se uma viagem de 210 km é realizada em 3 horas por um automóvel, podemos imaginar a viagem da seguinte maneira: Daí, dizemos que a velocidade média desenvolvida
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.)
Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.) Professor: Thiago Alvarenga Ramos Nota: Valor da Atividade: 2,0 Nome do(a) aluno(a): Nº Turma: 1 C 1 3 Use caneta azul ou preta e escreva com letra legível.
Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )
Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior
Após a silagem, a quantidade máxima de forragem que cabe no silo, em toneladas, é
Matemática LISTA: 02 2ª série Ensino Médio Professor: Marcelo Honório Turma: A ( ) / B ( ) Aluno(a): Segmento temático: PRIMAS DIA: MÊS: 08 2017 Questão 01) Na alimentação de gado de corte, o processo
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES Nome Nº Turma 9º Data 04/12 Nota Disciplina Matemática Prof. Ariele Valor 70 1) Aplicando as relações métricas nos
Exercícios de Aprofundamento Matemática Funções Quadráticas
1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale
Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10
2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente
Atividade extra UNIDADE LOGARITMOS. Fascículo 7 Matemática Unidade 21 Logaritmos. Exercı cio 21.1 Dado log3 45
UNIDADE 21 Atividade extra LOGARITMOS Fascículo 7 Matemática Unidade 21 Logaritmos Exercı cio 21.1 Dado log3 45 = 3, 46. Qual o valor aproximado de log3 5? (a) 1, 46 (b) 5, 46 (c) 6, 92 (d) 8, 46 Exercı
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
fevereiro PC Sampaio Alex Amaral Gabriel Ritter (Allan Pinho)
10 fevereiro PC Sampaio Alex Amaral Gabriel Ritter 06 (Allan Pinho) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Atividade complementar: Razões Especiais e Proporção.
Aluno(a) Turma N o Série 7 0 Ensino Fundamental Data / / Matéria MATEMÁTICA Professores Razões: Atividade complementar: Razões Especiais e Proporção. 01) Escreva, na forma de fração irredutível, a razão
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos
Questão 2 Em um salão de festas, a razão entre os lugares ocupados e os vazios é de
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR NADER ALVES DOS SANTOS SÉRIE/ANO: º TURMA(S): A,
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: 1ª TURMA: UNIDADE: VV JC JP PC DATA: / /2018 Obs.: Esta lista deve ser entregue resolvida no dia da prova de Recuperação.
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE
Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.
RESOLUÇÃO Se V, em reais, for o preço de venda, então: 0,6V = V 300 0,4V = 300 V = 750 Resposta: A RESOLUÇÃO. Resposta: E
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 As quatro faces de um dado são triângulos
Matéria: Matemática Concurso: Auditor Tributário ISS São José dos Campos 2018 Professor: Alex Lira
Concurso: Professor: Alex Lira Prova comentada: Auditor Tributário ISS SÃO JOSÉ DOS CAMPOS 2018 Matemática SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL... 3 QUESTÕES COMENTADAS... 3 LISTA DE QUESTÕES...
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1
PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 9º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Na figura abaixo, temos um quadrado AEDF e AC=4 e AB=6. Qual é o valor do lado
MATEMÁTICA ANO: 2012 IFRN QUESTÃO 01
MATEMÁTICA ANO: 2012 IFRN QUESTÃO 01 Um professor de uma escola do ensino médio decidiu fazer uma pesquisa para saber o nível de escolaridade máxima dos pais dos seus alunos. Dos 300 pais entrevistados,
// QUESTÃO 01 PROENEM 27/02/2019. A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é
MATEMÁTICA PROF. THIAGO LAINETTI // QUESTÃO 01 A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é a) 2. b) 3. c) 4. d) 5. // QUESTÃO 02 Na bula de um analgésico,
Equipe de Matemática. Matemática
Aluno (a): Série: 3ª Turma: TUTORIAL 2B Ensino Médio Equipe de Matemática Data: Matemática Unidades de Medidas Medidas de Comprimento A unidade fundamental de comprimento é o metro. Designa-se abreviadamente
. a d iza r to u a ia p ó C II
II Matemática 5 o ano Unidade 6 5 Unidade 6 Nome: Data: 1. Observe a figura a seguir. Ela representa o percurso de uma corrida de rua. 800 m 1600 m 1500 m 400 m 500 m 1200 m 1000 m Agora, responda: a)
CONJUNTOS NUMÉRICOS. Disponível em: www1.folha.uol.com.br. Acesso em: 11 jan (adaptado).
1. (Enem 2014) Um show especial de Natal teve 45.000 ingressos vendidos. Esse evento ocorrerá em um estádio de futebol que disponibilizará 5 portões de entrada, com 4 catracas eletrônicas por portão. Em
DATA: 10/12/2018 ALUNO (a): Nº SÉRIE: 1 TURMA: DISCIPLINA: FÍSICA SETOR: A PROFESSOR(A): SILVANA ANTUNES EXAME
DATA: 10/12/2018 ALUNO (a): Nº SÉRIE: 1 TURMA: DISCIPLINA: FÍSICA SETOR: A PROFESSOR(A): SILVANA ANTUNES EXAME 1) A posição de um corpo só pode ser determinada em relação a outro tomado como referencial.
QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados
Mat.Semana 4. PC Sampaio Alex Amaral Gabriel Ritter (Gabriella Teles)
Semana 4 PC Sampaio Alex Amaral Gabriel Ritter (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2016 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
A imagem e os dados do gráfico acima foram obtidos em Baseado nos dados do gráfico é verdade afirmar que:
LISTA 06 DETERMINANTE 1) O gráfico abaixo informa a quantidade de calorias gastas por uma pessoa, no período de 1 hora, quando faz determinada atividade. A imagem e os dados do gráfico acima foram obtidos
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática 1. (Enem 2011) Uma pessoa aplicou certa quantia em ações. No primeiro mês, ela perdeu 30% do total do investimento e, no segundo mês,
Equipe de Matemática
Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de
Lista de Revisão do Enem 5ª Semana
1 Colégio J. R. Passalacqua Colégio Santo Antonio de Lisboa Colégio São Vicente de Paulo Penha Colégio Francisco Telles Colégio São Vicente de Paulo Jundiaí Lista de Revisão do Enem 5ª Semana GEOMETRIA
Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos
INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para
PRÉ-ENEM: curso comunitário em matemática e física EXERCÍCIOS DE RAZÃO E PROPORÇÃO
EXERCÍCIOS DE RAZÃO E PROPORÇÃO Questão 1. (ENEM 2014) O Ministério da Saúde e as unidades federais promovem frequentemente campanhas nacionais e locais de incentivo à doação voluntária de sangue, em regiões
PESQUISA. ATIVIDADE DE MATEMÁTICA Revisão de potências. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado.
OSASCO, DE DE 2011 NOME: PROF. 9º ANO Data da entrega: 29/02/12 PESQUISA Faça uma pesquisa, sobre algoritmos matemáticos utilizados em redes sociais, esta pesquisa deve ter: capa, introdução, conclusão
UNICAMP ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2006 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Um carro irá participar de uma corrida em que terá que percorrer 70 voltas, em uma pista com 4,4 km de extensão.
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1) (UFF) Considere p, q N* tais que p e q são números pares. Se p > q, podese afirmar que: O valor mais próximo, em kg, do conteúdo
Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:
Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado
Nesse caso, em 2020 a taxa de fecundidade no Brasil estará mais próxima de
Lista do enem 2014 01 - (ENEM/2014) A taxa de fecundidade é um indicador que expressa a condição reprodutiva média das mulheres de uma região, e é importante para uma análise da dinâmica demográfica dessa
Universidade Federal de Viçosa
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 4 a Lista - MAT46 - Cálculo I 6/II ) Um fabricante de caixas de papelão de base quadrada deseja fazer caixas abertas
Colégio XIX de Março
Colégio XIX de Março Educação do jeito que deve ser 2018 3ª PROVA PARCIAL DE MATEMÁTICA QUESTÕES ABERTAS Aluno(a): Nº Ano: 6º Turma: Data: 14/11/2018 Nota: Professor(a): Claudia Meazzini Valor da Prova:
θ, onde q é medido em radianos, sabendo que = arctg( 4 3)
QUESTÃO 1 Uma churrascaria oferece a seus clientes uma tabela de preços diferenciada por sexo e por dia da semana. De segunda-feira a sábado, o preço do almoço para mulher é R$ 9,9 e para homem R$ 12,9.
Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho
Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho
As figuras acima mostram as linhas de indução de um campo magnético uniforme B r
1) No sistema mostrado abaixo, as roldanas e os fios são ideais e o atrito é considerado desprezível. As roldanas A, B, e C são fixas e as demais são móveis sendo que o raio da roldana F é o dobro do raio
Caderno Didático para Revisar Conteúdos do Ensino Básico
CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA INSTITUCIONAL DE BOLSAS DE INIACIAÇÃO À DOCÊNCIA SUBPROJETO Caderno Didático para Revisar Conteúdos do Ensino Básico Campina Grande
5, então é correto afirmar que
As 21 questões a seguir formam um simulado com todas as matérias que caem em matemática na FUVEST. Para avaliar o seu conhecimento e condicionamento, simule o tempo de prova de 3 minutos por questão. Sugerimos
Matemática. Exercícios sobre grandezas proporcionais e escala. Exercícios
Exercícios sobre grandezas proporcionais e escala Exercícios 1. A resistência elétrica e as dimensões do condutor A relação da resistência elétrica com as dimensões do condutor foi estudada por um grupo
BIMESTRAL - FÍSICA - 1ºBIMESTRE
BIMESTRAL - FÍSICA - 1ºBIMESTRE Série: 3ªEM Gabarito 1- Uma pessoa percorreu, caminhando a pé, 6,0 km em 20,0 minutos. A sua velocidade escalar média, em unidades do Sistema Internacional, foi de: * 2,0
Matemática e suas Tecnologias
e suas Tecnologias.09.015 1. A resistência das vigas de dado comprimento é diretamente proporcional à largura (b) e ao quadrado da altura (d), conforme a figura. A constante de proporcionalidade k varia
De cara pro ENEM: Razão, Proporção e Porcentagem
De cara pro ENEM: Razão, Proporção e Porcentagem De cara pro ENEM: Razão, Proporção e Porcentagem 1. Estudo com funcionários que trabalham como caixas de supermercado revelou que metade deles apresentou
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +
Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2
CENTRO UNIVERSITÁRIO NOSSA SENHORA DO PATROCÍNIO CEUNSP LISTA DE EXERCÍCIO 1 Matemática e Geometria Aplicada à Arquitetura e Urbanismo. TURMA: 82211 Prof..: Rogério de Souza Lima Questão 1 Uma chapa de
1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo
