Resumo do 5º e 6º testes de Matemática A 12º ano
|
|
|
- Sérgio Alcântara Sintra
- 8 Há anos
- Visualizações:
Transcrição
1 wwwebsaascom Testes de Matemática do º ano: enunciados e resoluções (008/009) Escola ásica e Secundária Dr Ângelo ugusto da Silva (008/009) Resumo do 5º e 6º testes de Matemática º ano Quanto ao valor de Testes de Matemática do º ano: enunciados e resoluções (008/009) lim + sen : + () Ele é igual a 0 () Ele é igual a + (C) Ele é igual a (D) Ele não eiste Nas últimas duas semanas quintuplicaram a emissão de cheques sem cobertura e a falta de pagamento de letras S DIS D FIM, Ricardo de Saavedra No referencial da figura ao lado está o triângulo [ CD ] e parte do gráfico da função f f ( ) = ; os pontos e pertencem ao gráfico de f ; as abcissas dos pontos e D são iguais; a ordenada do ponto é igual a ; as abcissas dos pontos e C são iguais a Qual é o valor da área do triângulo [ CD ]? 5log 5+ 0,5 log + 0, ln ( + 0,5) () () (C) (D) ( ln5+ 0,5 ) 5 Seja g uma função derivável em e considere a tabela do sinal da função g '', segunda derivada de g : No que se refere à função g e segundo esta tabela, é possível concluir que: () Há um máimo relativo em = () Há um mínimo relativo em = (C) Há um ponto de infleão no seu gráfico, de abcissa igual a (D) Há dois pontos de infleão no seu gráfico, de abcissas e f D y C 4 Para escrever a palavra-passe num portal da internet, são necessários cinco dígitos: os primeiros três são letras (de entre ) e os dois restantes são algarismos () 645 () 67 (C) (D) De um número compleo, sabe-se que rg() = 9 Qual dos quatro pontos representados na figura junta (,,C ou D ) pode ser a imagem geométrica do compleo cujo argumento é igual a rg( ) + rg( )? () ponto (C) ponto C Como sabe, a Lua descreve uma órbita elíptica em torno da Terra Na elipse da figura está representado um esquema dessa órbita, estando também assinalados dois pontos: o apogeu, que é o ponto da órbita mais afastado da Terra e o perigeu, que é o ponto da órbita mais próimo da Terra lém disso, na figura está também () ponto (D) ponto D Perigeu assinalado um ângulo de amplitude radianos ( [0, ] ) Este ângulo tem o seu vértice no centro da Terra, o seu lado origem passa no apogeu e o seu lado etremidade passa na Lua dmita que, para cada valor de, t representa um dia do mês de Novembro ou de Deembro de 008, sendo t aproimadamente dado por L d T pogeu
2 Testes de Matemática do º ano: enunciados e resoluções (008/009) (Neste modelo matemático, t [,7] e sabe-se que t = 0 corresponde um valor de no dia 0 de Novembro de 008, t = corresponde um valor de no dia de Deembro de 008, e assim sucessivamente) dmita também que a distância, em milhares de quilómetros, da Terra à Lua, é (aproimadamente) dada, em função de t, por Testes de Matemática do º ano: enunciados e resoluções (008/009) arredondado às centésimas Sempre que proceder a arredondamentos, use, pelo menos, duas casas decimais No final de 008, foi noticiado que a Lua passou no perigeu Indique o dia e o mês e também a distância que a Lua esteve da Terra (em milhares de quilómetros) Nos primeiros dias de Deembro de 008, a Lua encontrou-se a 85 milhares de quilómetros de distância da Terra Determine o valor de nessas circunstâncias presente-o em radianos, arredondado às centésimas Considerando a janela de visualiação [,7] [0,500], visualie os gráficos necessários (inclusive o de d ) e determine, com quatro casas decimais, o valor de t ;, visualie os gráficos necessários (inclusive o de t ) e determine, com duas casas decimais, Considerando a janela de visualiação [0, ] [,7] o valor de Considere a função g, de domínio [0, ], definida por Sem recorrer à calculadora, estude a função g quanto à monotonia e à eistência de etremos relativos Na figura ao lado está representado o gráfico de h, de domínio ;, 5, definida por tg( ) se < < 0 h ( ) = g ( ) se 0,5 Na figura estão também o ponto (cuja abcissa é um ero de h ) e o ponto (de abcissa 0 ) y h Seja f uma função de domínio + definida por Recorrendo eclusivamente a processos analíticos, mostre que justifique que o gráfico de f tem apenas um ponto de infleão 4 No conjunto dos números compleos C, considere 4 f ''( ) = e = e = Sem usar a calculadora (ecepto para cálculos numéricos), resolva as três alíneas seguintes 7 4 Calcule a e b de modo que ai + b bi seja igual a 4 Escreva na forma trigonométrica o compleo 4 Seja = 40cis( ) Mostre que é um imaginário puro Usando processos analíticos, mostre que, tal como a figura sugere, h é contínua no ponto 0 Recorrendo à calculadora, determine o comprimento do segmento [ ] Eplique como procedeu, apresentando o resultado 4
3 Testes de Matemática do º ano: enunciados e resoluções (008/009) Sobrecarregados com sacrifícios e dificuldades, os povos coloniais efectuaram a pulso a escalada da emancipação mordaçados, jamais dispuseram de condições para transpor a barreira das probabilidades S DIS D FIM, Ricardo de Saavedra tabela de distribuição de probabilidades de uma variável aleatória X é Testes de Matemática do º ano: enunciados e resoluções (008/009) Considere a função g, de domínio [0, ], definida por Mostre que g''( ) = 4 cos( ) e, sem recorrer à calculadora, indique as abcissas dos pontos de infleão do gráfico de g 0 i ( ) = i log a ( ) PX (a representa um número positivo inferior a ) Qual é o valor de a? Seja f uma função de domínio definida por Indique o valor de lim 0 + ln( ) Recorrendo eclusivamente a processos analíticos, estude a função f quanto à monotonia e à eistência de etremos relativos () + () (C) 0 (D) Na figura junta está representada uma circunferência inscrita num quadrado lado desse quadrado é igual à altura de um triângulo de base igual a uma unidade Qual das epressões seguintes dá a área da região sombreada em função de? 4 No conjunto dos números compleos C, considere = e = Sem usar a calculadora (ecepto para cálculos numéricos), resolva as três alíneas seguintes 4 Escreva na forma algébrica o compleo e mostre que ele é solução da 5 De um número compleo, sabe-se que a sua imagem geométrica pertence à bissectri dos quadrantes ímpares Qual dos quatro pontos representados na figura junta (,,C ou D ) pode ser a imagem geométrica do compleo? () ponto (C) ponto C () ponto (D) ponto D equação = i 4 Sejam e as imagens algébricas, respectivamente, de e do seu conjugado, Esboce, no plano compleo, o triângulo [ ] e determine o seu perímetro ( é a origem do referencial)
4 Testes de Matemática do º ano: enunciados e resoluções (008/009) Testes de Matemática do º ano: enunciados e resoluções (008/009) s luvas estão na posição clássica, prontas ( ) e a circunferência de cada uma delas é maior do que a do seu rosto MNCH HUMN, Philip Roth No plano compleo da figura junta, está representada uma circunferência centrada na origem Mostre que w = cis 6 Calcule, na forma trigonométrica, as raíes quartas de w, simplificando o mais possível as epressões obtidas Defina, por meio de uma condição em, a região sombreada, incluindo a fronteira Em, conjunto dos números compleos, seja w = 4 w + ( cis Determine 8 ) apresentando o resultado final na forma algébrica + i Represente a região do plano compleo definida pela condição, em, por: P Q Calcule a área do triângulo [ ] Determine o comprimento do segmento [ ] (base do triângulo); Considere um ponto no semieio real positivo e escreva a epressão da altura do triângulo em função de α ; Mostre que a área do triângulo [ ] é dada, em função de α, por senα ; Determine o valor de α ; Calcule a área pedida 4 São dados os seguintes números compleos: = cis 4 e 7 9 = cis 9 Sabendo que e são raíes consecutivas de índice n de um número compleo : 4 Justifique que n = 6 ; 4 Determine, na forma algébrica, este número + w = Im( ) Considere, no plano compleo, o triângulo [ ]: α
5 Testes de Matemática do º ano: enunciados e resoluções (008/009) Testes de Matemática do º ano: enunciados e resoluções (008/009) Em, conjunto dos números compleos, seja w = 5 w ( cis ) Determine 0 apresentando o resultado final na forma algébrica + i Represente a região do plano compleo definida pela condição, em, por: + w = Re( ) 4 símbolo arquitectónico da universidade, o relógio da torre heagonal de North Hall ( ) MNCH HUMN, Philip Roth São dados os seguintes números compleos: = cis 4 e 7 9 = cis 9 Sabe-se que e são raíes consecutivas de índice n de um certo número compleo que representam, geometricamente, todas as imagens geométricas das raíes desse número compleo? Justifique Considere, no plano compleo, o triângulo [ ]: α Mostre que a área do triângulo [ ] é dada, em função de α, pela função definida por f ( α ) = sen( α ) Determine o comprimento do segmento [ ] (base do triângulo); Considere um ponto no segmento [ ] e escreva a epressão da altura do triângulo em função de α ; Determine a área pedida Suponha que a área do triângulo [ ] é igual a Determine 0 na forma algébrica
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº 14 (entregar até à aula do dia /05/009) 1. Seja g uma função de domínio IR
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática EXERCÍCIOS DE PROVAS DE EXAME NACIONAIS 000-00 COMPLEXOS 1º ANO Parte 1 Escolha múltipla 1 Seja w um número complexo diferente de zero, cuja imagem geométrica
EXAME A NÍVEL DE ESCOLA EQUIVALENTE A EXAME NACIONAL VERSÃO 1
PRVA 55/8 Págs. EXAME A NÍVEL DE ESCLA EQUIVALENTE A EXAME NACINAL 1.º Ano de Escolaridade (Decreto-Lei n.º 86/89, de 9 de Agosto) Cursos Gerais e Cursos Tecnológicos Duração da prova: 150 minutos 008
Exercícios de exames e provas oficiais
mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 12º ano Exames
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 1º ano Exames 006-010 sin x ln x g( Recorrendo às x capacidades gráficas da calculadora, visualize o gráfico da função g e reproduza-o
Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20
Eames Nacionais eame nacional do ensino secundário Decreto Lei n. 7/00, de 6 de março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)
Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto
(Teste intermédio e exames Nacionais 2012)
Mais eercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm (Teste intermédio e eames Nacionais 01) 79. Relativamente à Figura Resolva os itens seguintes, recorrendo a métodos, sabe-se que: eclusivamente
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 12.º ANO DE ESCOLARIDADE
EXME NINL ENSIN SEUNÁRI MTEMÁTI PRV MEL N.º.º N E ESLRIE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica GRUP I ITENS E ESLH MÚLTIPL. onsidere
GRUPO I. controlo antidoping. De quantas maneiras pode ter sido feita essa escolha sendo o Cristiano Ronaldo e o Rúben Micael dois dos escolhidos?
PREPRR EXME O NCIONL NCIONL PROV-MODELO GRUPO I Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Escreva, na folha de respostas: o número do item; a letra que identifica a
(Exames Nacionais 2005)
(Eames Nacionais 005) 47. Considere a função f, de domínio, definida por f() = cos. Qual das epressões seguintes dá a derivada de f, no ponto? (A) lim cos 1 (B) lim cos (C) lim cos (D) 0 lim cos 0 (1ªfase)
TEMA 3 TRIGONOMETRIA E NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 TRIGONOMETRIA E NÚMEROS COMPLEXOS
FICHS DE TRLH.º N CMPILÇÃ TEM 3 TRIGNMETRI E NÚMERS CMPLEXS Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM 3 TRIGNMETRI E NÚMERS CMPLEXS 06 07 Matemática.º no Fichas
cuja secção é um círculo com raio R, e uma sua ramificação, mais estreita, cuja secção é um círculo com raio r.
Trigonometria 6. Na circunferência trigonométrica da figura ao lado, considere o heptágono regular de lado 1 tal que: um dos lados do heptágono coincide com o raio da circunferência e encontra -se no semieio
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 3 12.º ANO DE ESCOLARIDADE
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 3 12.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:
Prova Escrita de Matemática A
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A 1.º Ano de Escolaridade Decreto-Lei n.º 139/01, de 5 de julho Prova 635/Época Especial 15 Páginas Duração da Prova: 150 minutos.
MATEMÁTICA A - 12o Ano
MATEMÁTICA A - 1o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. Considere a função f, de domínio ]0, π[ definida por f() = ln + cos 1 Sabe-se que: A
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo de 00/04 Trigonometria 1 (Revisões) 1º no Nome: Nº: Turma: 1 Um cone, cuja base tem raio r e cuja geratriz tem comprimento l, roda
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere: z 1 = 1 i ] π [, com θ 2e iθ 12,π 4 w = z 1
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 12 (entregar em ) GRUPO I
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em -0-0) GRUPO I As cinco questões deste grupo são de escolha múltipla. Para cada
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão B.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para
EXAME NACIONAL DO ENSINO SECUNDÁRIO. 12. Ano de Escolaridade (Decreto-Lei n. 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos
Eames Nacionais Duração da prova: 0 minutos EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto) Cursos Gerais e Cursos Tecnológicos.ª FASE 007 VERSÃO PROVA ESCRITA
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições
MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em )
Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em 8-05-0). O Dinis dispõe de dez cartas todas diferentes: quatro do naipe de espadas,
MATEMÁTICA A - 11o Ano Geometria - Produto escalar
MMÁI - 11o no Geometria - roduto escalar ercícios de eames e testes intermédios 1. onsidere, num referencial o.n., dois pontos distintos, e eja o conjunto dos pontos desse plano que verificam a condição.
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes
MTMÁTI - 12o no N o s omplexos - Potências e raízes xercícios de exames e testes intermédios 1. m, conjunto dos números complexos, seja z = 2i 1 i + 2i23 etermine, sem recorrer à calculadora, os números
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48
Grupo I. Cotações 1. A Maria gravou nove CD, sete com música rock e dois com música popular, mas esqueceu-se 5 de identificar cada um deles.
Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 74/004, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada
Mais exercícios de 12.º ano:
Mais eercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm Escola Secundária de Francisco Franco Matemática A (metas curriculares) 1.º ano Eercícios saídos em testes intermédios e em eames nacionais
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE
EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 1.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica
Itens para resolver (CONTINUAÇÃO)
PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº5 - Funções - 12º ano Exames 2006 a 2010
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº5 - Funções - 1º ano Eames 006 a 010 sin ln 1 Considere a função g, definida no intervalo 1,7 por g( ) Recorrendo às capacidades gráficas da calculadora,
Exercícios de exames e provas oficiais
mata1 Eercícios de eames e provas oficiais 1. Seja a um número real. Considere a função f, de domínio, definida por sin f a. Seja r a reta tangente ao gráfico de f no ponto de abcissa. 3 Sabe-se que a
MATEMÁTICA A - 12o Ano
MTEMÁTI - 1o no Funções - Funções trigonométricas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio 1 π, + [, definida por sen ( 1) se 1 π < < 1 f() = se = 1 e +4 + ln( 1) se > 1 Resolva
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
MATEMÁTICA A - 12o Ano
MATEMÁTICA A - 1o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. O planeta Mercúrio descreve uma órbita elíptica em torno do Sol. Na figura ao lado,
MATEMÁTICA A - 12o Ano
MTEMÁTI - 1o no Funções - Funções trigonométricas Eercícios de eames e testes intermédios 1. onsidere, para um certo número real k, a função f, contínua em Qual é o valor de k? cos π f() = se π 4 < π k
MATEMÁTICA A - 11o Ano Geometria -Trigonometria
MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com
Escola Secundária Poeta António Aleixo
Escola Secundária Poeta António Aleixo 6.º Teste de Matemática A.º Ano 0-06-00.ª Parte Para cada uma das sete questões desta primeira parte, seleccione a resposta correcta de entre as quatro alternativas
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número
PROVA MODELO N.º 8 JULHO DE 2016 EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A 12.º ANO DE ESCOLARIDADE
EXME NINL ENSIN SEUNÁRI MTEMÁTI.º N E ESLRIE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica PRV MEL N.º 8 JULH E 06 Matemática.º no Exame
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
Nome: Nº. Página 1 de 9
Nome: Nº Página 1 de 9 Página 2 de 9 1. Uma urna contém 5 bolas, numeradas de 1 a 5 e indistinguíveis ao tato. Retiram-se sucessivamente 3 bolas com reposição e em cada extração anota-se o número obtido.
TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES 06 07 Matemática A.º Ano Fichas de Trabalho Compilação Tema
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
PROVA 435/11 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado Duração da prova: 120 minutos
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. 3º Teste de avaliação versão B.
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para
MATEMÁTICA A - 12o Ano Funções - Assintotas
MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,
Matemática A. Previsão 3. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013
revisão Eame Nacional de Matemática A 01 revisão 1ª ase Matemática A revisão Duração do teste: 180 minutos 7.0.01 1.º Ano de Escolaridade Resoluções em vídeo em www.eplicamat.pt revisão de Eame página1/9
7. Na figura 3, está representado, no plano complexo, a sombreado, um setor circular. Sabe se que:
Exames Nacionais exame nacional do ensino secundário Decreto Lei n. 74/004, de 6 de março Prova Escrita de Matemática A 1. Ano de Escolaridade Prova 63/.ª Fase Duração da Prova: 10 minutos. Tolerância:
Proposta de Resolução
Novo Espaço Matemática A.º ano Proposta de Teste de Avaliação [maio 05] Proposta de Resolução GRUPO I. O número máimo de códigos é dado por: A 0 = 0 = 6000 Resposta: (C. ( ( ( Resposta: (C ( sin( sin lim
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, a expressão i + i 1 + i 2 +...i 218 é
MATEMÁTICA A - 11o Ano Geometria - Produto escalar
MTMÁTI - o no Geometria - roduto escalar ercícios de eames e testes intermédios. s segmentos de reta [] e [] são lados consecutivos de um heágono regular de perímetro 2 ual é o valor do produto escalar.?
ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I
ESCOLA SECUNDÁRIA DA RAMADA Teste de Matemática A 30 de maio de 2017 12º A Versão 1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas, são indicadas quatro alternativas,
Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora.
Eame Final Nacional de Matemática A Prova 635.ª Fase Ensino Secundário 018 1.º Ano de Escolaridade Decreto-Lei n.º 139/01, de 5 de julho Duração da Prova (Caderno 1 + Caderno ): 150 minutos. Tolerância:
Proposta de Exame Final Nacional do Ensino Secundário
Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,
) a sucessão de termo geral
43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma
DVD do professor. banco De questões
coneões com Capítulo 8 números compleos capítulo 8. Escreva na forma algébrica os números compleos abaio. a) i i b) i i i c) e o i. (UEL-PR) Qual é a parte real do número compleo 5 a bi, com a e b reais
Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos.
Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.
EXAME NACIONAL DO ENSINO SECUNDÁRIO
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos Data Especial
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;
TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHS DE TRLHO 1º NO COMPILÇÃO TEM FUNÇÕES Site: http://wwwmathsuccesspt Facebook: https://wwwfacebookcom/mathsuccess TEM FUNÇÕES Matemática 1º no Fichas de Trabalho Compilação Tema Funções 1 1 (Eercício
