Vetores Forças Cap. 2
|
|
|
- Cláudia Quintão de Paiva
- 8 Há anos
- Visualizações:
Transcrição
1 Objetios MECÂNICA - ESTÁTICA Vetores Forças Cap. 2 Mostrar como somar forças e decompô-las em componentes sando a lei do paralelogramo. Expressar a força e a sa localização na forma etorial cartesiana e explicar como determinar a intensidade e a direção dos etores. Introdzir o conceito de prodto escalar para determinar o ânglo entre dois etores o a projeção de m etor sobre o otro. Prof Dr. Cládio Crotto Adaptado por: Prof Dr. Ronaldo Medeiros-Jnior TC021 - Mecânica Geral I - Estática Escalares e Vetores Escalar é ma grandeza caracterizada por m número positio o negatio; exemplos: massa, olme e comprimento. Vetor é ma grandeza qe possi módlo, direção e sentido; exemplos: posição, força e momento. Mltiplicação e Diisão de m Vetor por m Escalar: Mltiplicação do etor A pelo escalar aaa Mesmo sentido de A se a > 0; contrário se a < 0 Diisão do etor A pelo escalar a(1/a)a ; a 0 ϴ = Direção TC021 - Mecânica Geral I - Estática 3 TC021 - Mecânica Geral I - Estática 4 Dois etores adicionados formam o etor resltante R A + B = B + A = R (comtatio) Lei do paralelogramo Lei do paralelogramo A partir da extremidade de B, desenhe ma linha paralela a A. Desenhe otra linha a partir da extremidade de A qe seja paralela a B. Essas das linhas se interceptam no ponto P para formar os lados adjacentes de m paralelogramo. A diagonal desse paralelogramo qe se estende até P forma R, qe então representa o etor resltante R = A + B Regra do triânglo TC021 - Mecânica Geral I - Estática 5 TC021 - Mecânica Geral I - Estática 6 1
2 Regra do triânglo (extremidade-para-origem) Conectar a extremidade de A à origem de B. O R resltante se estende da origem de A à extremidade de B. Vetores colineares TC021 - Mecânica Geral I - Estática 7 TC021 - Mecânica Geral I - Estática 8 Sbtração Vetorial (*caso especial da adição): A diferença entre dois etores prodz o etor resltante R A - B = A + (-B) = R Uma força é ma grandeza etorial pois tem módlo, direção e sentido e pode ser adicionada de acordo com a regra do paralelogramo. Das forças agindo sobre o gancho TC021 - Mecânica Geral I - Estática 9 TC021 - Mecânica Geral I - Estática 10 As das forças componentes, e, agindo sobre o pino podem ser somadas para formar a força resltante = +. A partir dessa constrção, o sando a regra do triânglo, pode-se aplicar a lei dos cossenos o a lei dos senos para o triânglo a fim de obter a intensidade da força resltante e sa direção. Procedimento de Análise A + B = C Para encontrar o módlo da resltante C se a Leis dos cosenos TC021 - Mecânica Geral I - Estática 11 TC021 - Mecânica Geral I - Estática 12 2
3 Decomposição Vetorial: Se ma força F precisa ser decomposta em componentes ao longo de dois eixos e, então, iniciando na extremidade da força F, dee-se contrir linhas paralelas aos eixos, formando, assim, o paralelogramo. Os lados do paralelogramo representam as componentes, F e F. R = A + B Se mais do qe das forças precisam ser adicionadas, scessias aplicações da regra do paralelogramo deem ser tilizadas para obter a resltante. + + F 3 = ( + ) + F 3 F F F F TC021 - Mecânica Geral I - Estática 13 TC021 - Mecânica Geral I - Estática 14 Pontos importantes Determine o módlo da força resltante se: (a) = + (b) = TC021 - Mecânica Geral I - Estática 15 TC021 - Mecânica Geral I - Estática 16 (a) Usando a regra do paralelogramo: 2 2 = (100)(80) cos 75 = 111N (b) Sbtração Vetorial: 90-45= 45 0 R = (2*105) + (2*ϴ)= 360 0?= ?=75 0?= N R 100N N TC021 - Mecânica Geral I - Estática 17 TC021 - Mecânica Geral I - Estática 18 3
4 Problema 2.A Dadas as das forças mostradas pela figra. a. Calcle a resltante das das forças. b. Decomponha as das forças nas direções e 180N N Decomponha a força de 200-lb atando no tbo em componentes (a) direções x e y, e (b) direções x e y. 15 TC021 - Mecânica Geral I - Estática 19 TC021 - Mecânica Geral I - Estática 20 Usando a regra do paralelogramo para decompor F A adição etorial é dada por F = F x + F y Parte (a) Do triânglo abaixo: F x = 200 lb cos 40 = 153 lb e F y = 200 lb sin 40 = 129 lb TC021 - Mecânica Geral I - Estática 21 TC021 - Mecânica Geral I - Estática 22 Parte (b): A adição etorial é dada por F = F x + F y Aplicando a regra do paralelogramo: TC021 - Mecânica Geral I - Estática 23 TC021 - Mecânica Geral I - Estática 24 4
5 Aplicando a lei dos senos: F x' sin50 = 200lb sin60 F x' = 200lb sin50 =177lb sin60 F y sin 70 = 200lb sin 60 sin 70 F y = 200lb = 217lb sin60 TC021 - Mecânica Geral I - Estática 25 5
Vetores Forças Cap. 2
Objetivos MECÂNICA - ESTÁTICA Vetores Forças Cap. Mostrar como somar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e a sua localização na forma vetorial cartesiana
Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.
Objetivos da aula Vetores de força Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua posição na forma de um vetor cartesiano e explicar como
Vetores Forças Cap. 2
Eemplo.B MECÂNICA - ESTÁTICA Decomponha a força horizontal de 600 N da igura nas componentes que atuam ao londo dos eios u e v e determine as intensidades dessas componentes Vetores orças Cap. Prof Dr.
Aula 2 Vetores de força
Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:
Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática
Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares
RELAÇÕES TRIGONOMÈTRICAS
TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas
PROF. GILBERTO SANTOS JR VETORES
. Introdção Listas de números Sponha qe os pesos de oito estdantes estão listados abaio: 6,, 4, 4, 78, 4, 6, 9 Podemos denotar todos os alores dessa lista sando apenas m símbolo, por eemplo w, com diferentes
( AB ) é o segmento orientado com origem em A e extremidade em B.
FUNDÇÃO EDUIONL UNIFID MPOGRNDENSE (FEU) FULDDES INTEGRDS MPO-GRNDENSES (FI) OORDENÇÃO DE MTEMÁTI Estrada da aroba, 685, ampo-grande/rj - Tel: 3408-8450 Sites: www.fec.br, www.sites.google.com/site/feumat
Aula 2: Vetores tratamento algébrico
Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar
Resistência dos Materiais
Resistência dos Materiais Prof. ntonio Dias 1 Objetivos Mostrar como somar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua localização na forma vetorial cartesiana
Vetores. Prof. Marco Simões
Vetores Prof. Marco Simões Ao final dessa aula você deverá saber A diferença entre grandezas escalares e vetoriais Como representar uma grandeza vetorial O que são os componentes de um vetor Como efetuar
Estática. Prof. Willyan Machado Giufrida. Estática
Estática Professor: Willyan Machado Giufrida Site: www.prof-willyan.webnode.com Email: [email protected] Curriculo lattes: CV: http://lattes.cnpq.br/0565778602837400 Ementa: Morfologia das estruturas.
Vetores. Prof. Marco Simões
Vetores Prof. Marco Simões Tipos de grandezas Grandezas escalares São definidas por um único valor, ou módulo Exemplos: massa, temperatura, pressão, densidade, carga elétrica, etc Grandezas vetoriais Necessitam,
Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD
Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.
MECÂNICA GERAL VETORES POSIÇÃO E FORÇA
MECÂNICA GERAL VETORES POSIÇÃO E FORÇA Prof. Dr. Daniel Caetano 2019-1 Objetivos Recordar o conceito de vetor posição Recordar o conceito de vetor força Recordar as operações vetoriais no plano Atividade
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força
Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: [email protected] 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência
Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada
Aula 3 VETORES. Introdução
Aula 3 VETORES Introdução Na Física usamos dois grupos de grandezas: as grandezas escalares e as grandezas vetoriais. São escalares as grandezas que ficam caracterizadas com os seus valores numéricos e
ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.
ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde
Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.
1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um
Resultantes de um sistema de forças
Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de
14 de março de Dep. de Mecânica Aplicada e Computacional MECÂNICA - MAC Prof a Michèle Farage. Princípios Gerais.
MECÂNICA - 14 de março de 2011 1 2 1 2 Vetor posição Uma outra forma de representar as forças é através do vetor posição. Vetor posição r: é um vetor fixo que localiza um ponto do espaço em relação a outro
Programa Princípios Gerais Forças, vetores e operações vetoriais
Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Mateus Barros 3º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2018.1 Vetores Mateus Barros 3º Período Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza
Grandezas Escalares e Vetoriais
VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:
Representação Gráfica
Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:
Expressão cartesiana de um vetor
Expressão cartesiana de um vetor Seja o vetor : Todo vetor em três dimensões pode ser escrito como uma combinação linear dos vetores de base Multiplicação de vetores Expressões analíticas para multiplicação
AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.
AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) +.
Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas
Vetores e Geometria Analítica
Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três
PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z
1: Grandezas vetoriais e grandezas escalares
1 1: Grandezas vetoriais e grandezas escalares A Física lida com um amplo conjunto de grandezas Dentro dessa gama enorme de grandezas existem algumas cuja caracterização completa requer tão somente um
Aula 09 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 09 - Momento (formulação vetorial) slide 1 Lembrete: 29/08 Revisão e esclarecimento de dúvidas. 31/08/17 - Prova 01 slide 2 Momento de uma força sobre um eixo especificado slide 3 Momento de uma força
MECÂNICA GERAL 1. Marcel Merlin dos Santos
MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Princípio da transmissibilidade Produto Vetorial Componentes cartesianas Momento de uma força em relação a um ponto Projeção de um vetor sobre
Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que?
Variantes... O que isso significa? Qual a importância disso? Isso está relacionado a que? GRANDEZA ESCALAR: São grandezas físicas em que apenas o seu valor numérico, com uma unidade correspondente, é
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Vetores. Claudenise Alves de Lima - Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2017.1 Vetores Claudenise Alves de Lima - Engenharia Civil Definição O que é um vetor? Um vetor é um segmento de reta orientado, que representa uma grandeza
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que
Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz
Bacharelado Engenharia Civil Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Cálculo Vetorial Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para
ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller
ÁLGEBRA LINEAR Espaços Vetoriais Eclidianos, Prodto Interno Prof. Ssie C. Keller Prodto Interno Prodto interno no espaço etorial V é ma fnção de V V em IR qe a todo par de etores (, ) V V associa m número
{ } F = 9,9286 6, , 286 N. i j k. 1, 5i 1j 15k 15,108 { 9, , } Resultantes de Sistemas de Forças Cap. 4
Problema 4.D ECÂNIC - ESTÁTIC Resultantes de Sistemas de Forças Cap. 4 O cabo C eerce uma força F = 100 N no ponto do mastro. Calcule o momento desta força em relação à base do mastro. Utilize dois diferentes
Aula do cap. 03 Vetores. Halliday
ula do cap. 03 Vetores. Conteúdo: Grandezas Escalares e Vetoriais dição de Vetores Método do Paralelogramo Decomposição de Vetores Vetores Unitários e dição Vetorial. Produto Escalar Referência: Halliday,
EME 311 Mecânica dos Sólidos
1 INTRODUÇÃO EME 311 Mecânica dos Sólidos - CPÍTULO 01 - Prof a. Patricia Email: [email protected] IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 1.1 Visão Global da
MÓDULO 5 aula 41 (vetores) FERA, o segmento de reta orientado utilizado para caracterizar uma grandeza vetorial é chamado de vetor:
MÓDULO 5 aula 41 (vetores) FERA, o segmento de reta orientado utilizado para caracterizar uma grandeza vetorial é chamado de vetor: Simbologia: B AB a vetor a AB a módulo do vetor a A O segmento orientado
Equilíbrio de um Corpo Rígido Cap. 5
Objetivos (3D) MECÂNICA - ESTÁTICA Equilíbrio de um Corpo Rígido Cap. 5 Introduzir o conceito de diagrama de corpo livre para um corpo rígido. Desenvolver as equações de equilíbrio para um corpo rígido.
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES DURANTE AS AULAS DE VETORES VOCÊ APRENDERÁ: Diferença entre grandezas escalares e vetoriais
Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente
EME 311 Mecânica dos Sólidos
2 ESTÁTICA DOS CORPOS RÍGIDOS EME 311 Mecânica dos Sólidos - CAPÍTULO 2 - Profa. Patricia Email: [email protected] IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 2.1
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força
Unidade: Equilíbrio do Ponto material e Momento de uma Unidade I: força 0 3 EQUILÍBRIO DO PONTO MATERIAL 3.1 Introdução Quando algo está em equilíbrio significa que está parado (equilíbrio estático) ou
CONCEITOS BÁSICOS PARA COMPREENSÃO DA FÍSICA
CONCEITOS BÁSICOS PARA COMPREENSÃO DA FÍSICA Números decimais Números decimais são todos aqueles números que possuem uma vírgula. Cada número escrito após a virgula é considerado como casa decimal, ou
Lista de exercícios 3 Mecânica
Lista de exercícios 3 Mecânica Geral I 4.5 Se o homem em B exerce uma força P =150N sobre sua corda, determine a intensidade da força F que o homem em C precisa exercer para impedir que o poste gire; ou
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito
Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro
Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.
3 Vetores
https://assets.wired.com/photos/w_1720/wp-content/uploads/2017/01/vector-495300389-2-1.jpg 3 Vetores 3-1 Vetores e suas componentes Qual é a física? Várias grandezas possuem amplitude e orientação no espaço
Física 1 - Aula 4. 1 Grandezas Físicas Escalares e Vetoriais. 2 Vetores. Prof. Afonso Henriques Silva Leite. 23 de março de 2016
Física 1 - Aula 4 Prof. Afonso Henriques Silva Leite 23 de março de 2016 1 Grandezas Físicas Escalares e Vetoriais Algumas Grandezas Físicas são determinadas (ou conhecidas) por completo por apenas um
Vetores. Capítulo DEFINIÇÕES 1.2 ADIÇÃO DE DOIS VETORES
Capítulo 1 Vetores 1.1 DEFINIÇÕES uantidades escalares possuem somente intensidade; o tempo, o volume, a energia, a massa, a densidade e o trabalho são alguns exemplos. Escalares somam-se por meio dos
Mecânica Geral 17/02/2016. Resultante de Duas Forças
Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque
Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores
Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição
Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 07 - Momento (formulação vetorial) slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Lembrete: 24/08 Momento sobre um eixo específico. Momento de um binário 29/08 Revisão e esclarecimento
Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I
Instituto de Física Universidade Federal do Rio de Janeiro Cap. 1 - Vetores Prof. Elvis Soares - Física I 2014.1 Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e sentido.
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
Lista 02 (Estática) Capítulo 02
Lista 02 (Estática) Capítulo 02 1) Expresse o vetor r, na forma cartesiana; depois determine sua intensidade e os ângulos diretores coordenados. (a) (b) 2) Expresse a força F como um vetor cartesiano;
Resultantes de Sistemas de Forças Cap. 4
ECÂNIC - ESTÁTIC Simplificação para uma ÚNIC Ç ESULTNTE: plicado se o sistema de forças é concorrente, coplanar ou paralelo o o sistema pode ser reduzido a uma simples força resultante agindo em um único
Mecânica Un.1 Forças no Espaço
Mecânica Un.1 Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Forças no Espaço Método da decomposição de uma força em um sistema ortogonal Fx = F.cos q Fy = F.sen q F = F x.i + F y.j
FÍSICA - VETORES. Aula 1: Grandezas vetoriais x escalares.
FÍSICA - VETORES Conteúdo: Grandezas vetoriais x escalares; Soma de vetores: Método da poligonal, método do paralelogramo e método das projeções; subtração de vetores, multiplicação por número real e versores.
Estática. Prof. Willyan Machado Giufrida. Estática
Estática Considere a força F atuando na origem O do sistema de coordenadas retangulares x, y e z. Esse plano passa pelo eixo vertical y; sua orientação é definida pelo ângulo ϕ que se forma com o plano
Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.
Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo [email protected]
Universidade Federal do Rio de Janeiro Instituto de Física. Física I IGM1 2014/1. Cap. 1 - Vetores. Prof. Elvis Soares
Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 1 - Vetores Prof. Elvis Soares Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e
Equilíbrio de um Corpo Rígido Cap. 5
Objetivos MECÂNICA - ESTÁTICA Equilíbrio de um Corpo Rígido Cap. 5 Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito de diagrama de corpo livre para um corpo rígido. Mostrar
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.06 1 Análise Estrutural Antonio Dias 2017 Objetivos do capítulo Mostrar como determinar as forças nos membros
1 Vetores no Plano. O segmento de reta orientada P Q tem P como ponto inicial, Q como ponto nal e
Vetores no Plano Resumo 1 - Vetores no Plano 2. Componentes de um vetor; 3. Vetor nulo e vetores unitários; 4. Operações algébricas com vetores; 5. Exercícios; 6. Questões de Revisão 1 Vetores no Plano
Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1
Vetores Laura Goulart UESB 21 de Julho de 2018 Laura Goulart (UESB) Vetores 21 de Julho de 2018 1 / 1 Introdução Muitas grandezas físicas como força para serem completamente identicadas precisam de comprimento,
Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet
VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci
ROBÓTICA REPRESENTAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial
SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial REPRESENTAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com [email protected] [email protected]
1 Vetores no Plano e no Espaço
1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no
Física B - Aula 3 Grandezas Escalares e Vetoriais
Física B - Aula 3 Grandezas Escalares e Vetoriais Na Física tratamos de dois tipos principais de grandezas: as grandezas escalares e grandezas vetoriais. Grandezas Escalares A grandeza escalar é aquela
Aprimorando os Conhecimentos de Mecânica Lista 5 Vetores I
Aprimorando os Conhecimentos de Mecânica Lista 5 Vetores I 1. (UNIFOR) Um pitão (gancho) é puxado pela força F, conforme a figura ao lado: Dados: sen = 0,80 cos = 0,60 F F =50N x A componente de F na direção
Vetores e Geometria Analítica
Vetores e Geometria Analítica Prof. Wellington Lista 1 - E para final 4 ou 5 do RGA Instruções Assinale as alternativas corretas na folha de respostas que está no final da lista. É permitido deixar questões
Física Geral Grandezas
Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica
linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).
11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se
MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA
Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante
SEGUNDA PROVA. Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas. Capítulo 4: Vetores, produto escalar, produto vetorial.
SEGUNDA PROVA Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas Capítulo 4: Vetores, produto escalar, produto vetorial. Capítulo 5: Retas e Planos no espaço. Ângulos e distâncias. Plano cartesiano e
Definição. Geometria plana
Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto
