que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t).

Tamanho: px
Começar a partir da página:

Download "que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t)."

Transcrição

1 8. REPRESENÇÃO NO ESPÇO DE ESDOS 8. Coco so ( prsção srá f o omío o mpo coío; s frçs com o cso scro são pqs srão prss posrorm). rprsção r/sí m ssm lr só é ál qo, o mpo cl, o ssm sá o so scoáro. ssm é ál sg rlção: y = H q c q, rés o opror H, po-s rmr y() pr qlqr (). Qo o ssm ão sá clm m so scoáro é cssáro cohcr s coçõs cs pr por rmr o compormo fr m r : O coo coçõs cs q é cssáro cohcr pr por rmr y() ocm m [, ) cos o so cl o ssm. o plcr m forç r (r (), [, )) m prícl (ssm) o mpo, o s momo (sí y()) pr, ão srá ocm rmo qo ão form cohcs, mbém, posção loc ss prícl o mpo. Ess s formçõs cosm o so o ssm o mpo. O so m ssm o mpo é o coo formçõs m q, o com r (), [, ), rm ocm o compormo o ssm pr. scolh o so ão é úc. O so é m q lr q po ão sr fclm fcál m rmos físcos. O so po sr cosío por m coo fo o fo lors. Cosro só o cso sos scros por m úmro fo rás, ls srão rprsos por ors, chmos ors so. C lmo o or é m rál so. O spço msão m q po rr é o spço sos.

2 8. Eqçõs âmcs Eqçõs âmcs formm m coo qçõs q scrm ocm s rlçõs r s rás r, sí so. f,, qção so g, y, qção s sís No cso ssms lrs B y C D q, form grm blocos, fc: S o ssm for r o mpo: B y C D Solção qção âmc lr homogê com cofcs rás Pr smplfcr prsção fclr o mo, srmos o cso homogêo. Vmos cosrr q mrz qr ; o ssfz ; ; ; I

3 Nss cso, solção qção homogê é: ; scr rsção o so. ; : mrz rsção so solção po sr rfc por sbsção r: ; ; = ;, pos E coção cl: ; ; I. form mmác ; po sr ob gro scssm qção homogê: o I I I I... 3

4 pós fs grçõs chg-s : ; I Eão ; I sér q f mrz rsção chm-s mrz corg qo os lmos mrz são lmos o rlo,. Solção qção âmc lr homogê com cofcs coss Os cofcs coss cm ssm r o mpo. ssm áls po sr f pr qlqr, m prclr. Ns cso I 3 ;...! 3!! 3 fção mrz pocl é f s form o comprr o somóro ror com o solmo m sér ylor fção sclr pocl,, m oro o poo = :!! Eão solção é Pr m mpo cl rbráro ( ) ( ) 4

5 Cálclo mrz rsção m ssm r o mpo Há rss forms s clclr mrz rsção so m ssm r o mpo (rsform rs Lplc, composção mrcl, sér ylor, orm Cyly-Hmlo, c.). Um ls, ál pr lors crcríscos frs, é so o orm Sylsr q, pr qlqr fção poloml mrz qr, sblc f f. o I I : lors crcríscos, rízs I. Pr lors crcríscos gs plc-s rgr L Hopl pr rsolr rmção. Solção qção âmc lr hrogê com cofcs coss B Irozo m mç rás z z z z z ( ) z z Eão z z B B z z B Mlplco à sqr por o z B 5

6 Como ( ), ão ssm z B z Eão B B () é rspos à r l () é rspos o so lo. Emplo: Pr mplfcr os cocos é gor rozos mos cosrr o sg ssm mlrál: O molo fomológco s ssm é formo plo sg ssm qçõs frcs ão-lrs: h () F k h () h () k h () k h () 6

7 Lrzo m oro o so scoáro é obo o sg molo lr: com b h h h h k h k b h h k F F S rál m sí é o íl o sgo q: y h h Eão o molo po sr scro: y b com c b b c Escolhmos lors mércos pr os frs prâmros: k k F Rslo m: h 4 h b 7

8 8 Pr chr solção grl s ssm é cssáro cohcr mrz rsção sos. Ulzo o orm Sylsr, prmrm mos clclr os lors crcríscos mrz. 3 I Uso o orm: ssm, solção grl pr olção mporl o or so é pr olção mporl rál sí é y Obsr-s q o cohcmo o so cl,, prm rmr sí fr, y, pr qlqr r,, pr. 8.3 Rprsção so pr ssms scros Os ssms scros são crcrzos por ors so m fção o mpo scro k k k s qçõs âmcs êm, m grl, form: k f k k k,, yk gk k,

9 Pr ssms lrs k k k Bk k yk Ck k Dk k No cso ssms rs o mpo k k B k yk Ck D k solção o cso homogêo, lr ôomo é ob por m procsso ro: k k k k k é mrz rsção so. mbém po sr clcl so o orm Sylsr k k I sbl s ssm sá gr s oos os lors crcríscos são ro o círclo ro áro, pos pr o ssm sál lm k k lm k P k P, poro, lm k k q ocorr qo <. solção o cso hrogêo é ob sgo: B B B B B B k k k-- k B 9

10 8.4 Ssms os mosros B y C D Cosro k k k o k sr lo como k, so o mpo mosrgm k + é (k+), m k k B k Dfo k B Rsl k k k k k k k k Pr = k+ k k k o k k B Fzo k k obém-s B qção sos fco form scr, com cofcs q pm o mpo mosrgm,. solção é

11 k k k-- k Ero k k k k Eão solção é form k k-- k k 8.5 Dgolzção s qçõs so B são olm copls rés form ch mrz. solção slzção s rsposs fcrm ms smpls clrs s mrz foss gol. Ds form s qçõs fcrm olm scopls. O or sos prc m spço orl, o spço sos, o ql, rés m rsformção lr pomos mr bs, cosqüm, s rprsção. Vmos cosrr, só por smplc prsção, o ssm s form homogê. rés m rsformção lr, fmos os rás so: P ssm, P P com gol. P P P

12 Ds form Iso é () Volo às rás orgs po-s mosrr or form clclr mrz rsção so. P P P * () P P ( ) ( ) Iso é, mrz rsção so po sr clcl mbém sgo: P P Vmos r como é cosí mrz P o q são os. P PP P P P Escro P m rmos ors col

13 3 P (so qr zr q prção mrz, s lhs polhs ão fcr mplícs) mos, pr o prmro cso: Iglo s cols ss mrzs, rlção grl é:,..., o I Es ssm qçõs lgébrcs homogêo m solção ão rl pr I omo polômo (qção) crcrísco() mrz. Iso é, os são os lors crcríscos mrz. Os são os ors crcríscos à r mrz. Escro P - m rmos ss ors lh mos, pr o sgo cso: o

14 4 Iglo s lhs ss mrzs =,..., o I - Os são os ors crcríscos à sqr mrz. No cso lors crcríscos rpos golzção ão é compl. O rslo é m mrz bloco-gol, o c bloco m s msõs mlplc o lor crcrísco corrspo. gol prcpl sss blocos é form plo lor crcrísco rpo. prmr sb-gol spror é form por s: 8.6 Solção Grl o Domío o mpo B B Sbso mrz rsção so B P P P P Uso form f pr s mrzs P P, brmos prssão ror...

15 o... B... Eão o... B Obsrmos q os os rmos rspos grl êm msm form: m somóro rmos pocs poros. Pr fclr áls mos cosrr.... C rmo sá ssoco m pocl q é cohco como moo rspos lso o rmo corrspo c moo :... o o... o... o... B B 5

16 Obsrmos q o moo clo corb form fr pr c rál so. Pr corbção é: o... : é composção o moo c q form l corb pr rspos mporl c rál so. Como co cm, o compo, o or por corbção o moo à rál so. : é ção o moo. ção é úc pr c moo, so msm pr os s rás so. Pr o ssm golzo o c moo corb, com pso áro () pr m úc rál so. ção o moo corrspo m rm pl coção cl ss rál so. Comprr s áls o compormo âmco com áls o compormo sáco bs os lors sglrs mrz ghos sácos. No: oo o solmo bso-s m lors crcríscos frs. Como á fo co, qo há mlplc ão é possíl obr golzção compl; só cosg-s m golzção prom form chm Jor. Ms mos rr o problm grl obção frs rprsçõs so rés rsformçõs lrs. 8.7 Corolbl obsrbl Ess cocos, plcás o ssms lrs como ão-lrs, são smlhs pr os csos coío scro o mpo. Vmos sr o cso coío. 6

17 Pr lsr qs s possbls corolr m ssm lr mplo rás (), obsrmos form grl rspos mporl B É clro q () só f o sgo rmo, l mos cocrr oss áls. B Escro B b b b m b b b m b b b m S b b b B m s rás r ão flcm o moo : s moo ão é corolál. S qs form os ss r há m crcrísc srrl o ssm, rfl o fo q B, q rm ão corolbl o moo (, cosqüm, o ssm). N form côc gol, o c rál so sá ssoc m úco moo, rál ão é cssíl (). - P B B Um form prác s rmr corolbl m ssm lr é rfco o poso s mrz corolbl K B B B B O ssm é corolál s poso K 7

18 É rss mosrr m sfc gomérc pr s rslo. Cosro m ssm sg orm, clm o poo com m úc r mpl. b Dr m rlo mpo mo pqo,, plc-s o corol I, q rm m slocmo I o or sos. I b I Dr o prómo, plc-s II, q rm, prr o posção, o slocmo II. b = b b II I II I II Pr por lcçr qlqr poo o plo, é cssáro q os ors hm msm rção; so é, q sm lrm ps. Pr sso, mrz b b I ão m q r s ss s cols ps o, o q é msm cos, s poso m q sr. II Em rmos possbl obsrr m ssm lr rés y(), lmbrmos q, cosro () = : y C C C P C C C S mrz C P m -ésm col l, C =, o moo ão flêc sí y(), cosqüm, ão po sr obsro. O ssm ão é obsrál. Um form prác s rmr obsrbl m ssm lr é rfco o poso s mrz obsrbl. 8

19 C C L C C O ssm é obsrál s poso L fção corolbl é: Um ssm é corolál s só s, pr oo so cl, ( ), s m r coí por prs, (, ] l q ( ) = pr lgm fo. fção obsrbl é: Um ssm é obsrál s só s, pr oo, obsrção y(, ], pr qlqr (, ] cohco, prm clclr ( ). Qo o ssm sá rprso form gol, c rál so sá cl m úco moo. Eão, com sss rás pom cocr 4 sçõs frs. ) O moo é corolál é obsrál B y C ) O moo é corolál ão obsrál B y 3) O moo é ão corolál obsrál y C 9

20 4) O moo ão é m corolál m obsrál y S fzrmos prção o or sos s qro cgors possís obmos: P P c o c o c o c o c o c o c o c o c o c o c o c o c o c o B y C P c o c o c o c o c o c o P rsformo por Lplc I P B I P B I B I B s s s s c o c o c o c o c o c o c o c o c o c o Ess rlçõs pom sr colocs form grm blocos

21 O úco cmho r r sí forc ys CP s I P B s co co co Iso é: rprsção r/sí só l m co pr corolál obsrál o ssm. Esm oros cocos smlhs com os corolbl obsrbl, q ormlm são mos gs: lcçbl (rchbly): o ssm é lcçál s m so rbráro po sr lcço, rés m ção corol co, prr qlqr so cl. sblzbl(sblzbly): o ssm é sblzál s s m ção corol cpz sblzr oos os moos sás. cbl(cbly): o ssm é cál s pom sr obsros oos os moos sás. 8.8 Rlzçõs Do o molo m ssm form m rprsção r/sí é possíl grr m úmro mo gr (orcm fo) rprsçõs so (rlzçõs). or s rlzçõs procr s rprsçõs so q prsm crcríscs forás m lgm so. prcpl crcrísc sál é q msão o so s mím: rlzção mím. Não s m rlzção mím úc. Ors crcríscs pom sr ssocs, como, por mplo, form gol mrz. Ors forms côcs rss lém form gol (o mol) são, por mplo, s forms corolál obsrál. Vmos cosrr m ssm moorál (só pr smplfcr prsção) ys s - b s b s b s+b - s s s+

22 Form côc corolál y b b ; b b ; ; b b b Form côc obsrál y b b b b b b b 8.9 rsformçõs o spço sos éccs pr pssr m po rprsção sos oro. S o ssm b y c S o ssm é corolál, s mrz corolbl K m poso. S é obsrál s mrz obsrbl L m poso. qção crcrísc s ssm é: - si = s s s+ prr os cofcs s qção po-s cosrr sg mrz:

23 3 W Pro-s q form côc corolál é ob rés sg rsformção rás: o K W form côc obsrál é ob com sg rsformção rás: Q o Q W L. 3

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) :

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) : Epço Eo Eqo or corolo covcol - rlção r í-r, o fção rfrêc, o corolo moro - crção qçõ o m m rmo qçõ frc ªorm q pom r com m qção frcl ª orm form mrcl. O o oção mrcl mplfc m mo rprção mmác m qçõ. O mo úmro

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

8 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS

8 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS 8 REPRESENÇÃO NO ESPÇO DE ESDOS 8. Cocio d sdo ( prsção srá fi o domíio do mpo coíuo; s difrçs com o cso discro são pqus srão prsds posriorm. rprsção rd/síd d um sism só é álid qudo, o mpo iicil, o sism

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio.

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio. Ala 6 Ssmas mcâcos scros coíos. Osclaor lar m ra lbra OLGL rcípo Almbr. Eqação qlíbro. m lvr amorco. NL FCT EC Ehara Sísmca / sposávl: João. Blé Srra Acao 3 r r r r f m ; rcípo Almbr Força aca f f f f

Leia mais

0, não há reação!), sendo. =, a concentração de A em um tempo t [A] t é:

0, não há reação!), sendo. =, a concentração de A em um tempo t [A] t é: - Rção orm zro: Es ipo rção ão po sr lmr (., ão há rção!), so poro ipo ν, logo, mos qu, i Igrção, pr 4 ) (, cocrção m um mpo é: 5 6 7 Eq. () 8 (Nos mplos i supori qu ). 9 - Rçõs orm : S loci rção é rmi

Leia mais

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita.

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita. DICIPINA: CÁCUO A CONTEÚDO: EQUÊNCIA PROFEORA: NEYVA ROMEIRO PERÍODO: BIMETRE EQUÊNCIA Um squêc um fução f cujo domío o cojuo dos ros posvos su gráfco o plo y do po, ou d, squêc um cojuo d prs orddos do

Leia mais

Soluções E-Procurement

Soluções E-Procurement Soluçõs -Procurm Móulos Vgs Aprsção Dspss Tomé A. Gl Jro/2003 Sumáro: Soluçõs - Procurm 2 Soluçõs - Procurm m xrp 3 Prcps Vgs 4 Solução 5 Móulo vgs 7 Móulo Rlóros Aprsção spss 8 Cls 9 Cocos Ús 10 www.scrgl.com

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico Hs S Lz r J L r Lz r s 9, Jr. sr Lrr rslr, l -J, s sr lr lr sss, é rss rs lrárs, rr, rr, só Lr slr rl r fs rçã rçã lrár. rl r rrs sórs qrs ár l rk. s íls ls vrss rês ss lvrs, lsv J lr íl f- l Jvl, 99,

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012 Po Substtut Mcâc B PME 3/7/ po po: utos (ão é pto o uso spostos ltôcos) º Qustão (3,5 potos) O sco o R, ss cto, g too hst O u s o o plo fgu o à ção o po o poto O. Et hst o cl O, st u ol tocol costt u otco

Leia mais

CONTROLADOR ADAPTATIVO POR MODELO DE REFERÊNCIA E ESTRUTURA VARIÁVEL APLICADO AO CONTROLE DE UM GERADOR SÍNCRONO

CONTROLADOR ADAPTATIVO POR MODELO DE REFERÊNCIA E ESTRUTURA VARIÁVEL APLICADO AO CONTROLE DE UM GERADOR SÍNCRONO OROLAOR AAAIVO OR MOELO E REFERÊIA E ESRUURA VARIÁVEL ALIAO AO OROLE E UM GERAOR SÍROO MARUS V A FERAES ARE LIMA E ALAYR ARAÚJO Lboóo Acoo ool Ição o Eh Eléc Uv Fl o Ro G o o 9-9 - l R Bl E-l: cv@lco @yhooco

Leia mais

CONTROLE. Referência bibliográfica. Controle. Tipos de controle 23/09/2014

CONTROLE. Referência bibliográfica. Controle. Tipos de controle 23/09/2014 // ONOLE ONOLDOE ELEÔNO PÓLO E EO DE ª ODEM PÓLO E EO DE ª ODEM EQUÇÃO EMPOL 6 ELDDE ONOLE DEO // // frê lográf // // orol o orol omrr o vlor rl í om o vlor o O vlor o é o vlor rfrê E vlor mém é hmo o

Leia mais

6. Características de Funcionamento Análise Dimensional e Semelhança

6. Características de Funcionamento Análise Dimensional e Semelhança 6. Crctrístcs Fucomto Aáls msol Smlhç 6.. Grzs Crctrístcs o Fucomto O ucomto um áqu Hráulc stá rtmt ssoco grzs qu mtém um crt pêc tr s. Ests grzs são oms grzs crctrístcs o ucomto. Etr ls pomos ctr: ) Grzs

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F -

Leia mais

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02.

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02. Trss rso Loro Tr R rl âmr R sso o Nsmto R Sqr mpos 1:250 STUÇÃO TUL 20m PLNTÇÃO prk lot m Porto lr LOLZÇÃO 1 LUS POL WNNN Urs rl o Ro r o Sl Trlho olsão rso 2014.1 Ortor rt Pxoto Púlo pês Sls rm Lojs r

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Dprmo d Mmá ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Aluo: Pul Muro Nus Ordor: Hr Nols Aux Irodução Nos ds us mmá fz-s prs m odos os lugrs. Ao olor um mod pr lfor ou osgur ls guém pr pr psr m

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO.

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO. Uvrdd Tcológc drl do Prá DAMAT Dprmo Acdêmco d Mmác Dcpl: álculo Drcl grl 4 Proor: Rudmr u Nó ORMUÁRO ETE ORMUÁRO É OMENTE PARA ONUTA. NÃO O UTZE OMO RAUNHO.. ér d ourr/oc d ourr b co d b d co d. A orm

Leia mais

7º E ESCOLA SECUNDÁRIA C/ 3º CICLO DE CARVALHOS RELAÇÃO DE TURMA. Terceiro Ciclo do Ensino Básico. Nome

7º E ESCOLA SECUNDÁRIA C/ 3º CICLO DE CARVALHOS RELAÇÃO DE TURMA. Terceiro Ciclo do Ensino Básico. Nome SO SUÁ / 3º O OS n v 0/03 ÇÃO U 7º c cl d nn Bác º m / O J S º c 0000 SOUS X X X X X X X - X X X X X 07660 0000 S X X X X X X X - X - X X X 0765 00003 S X X X X X X X - X X X X X 0905 00004 BO O X X X

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo problm d P.L. pod sr sbsttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Problm Prml j n j n c j j j j j j b {... n} {...m} Problm Dl Mn W m m b j c {... m} j

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

TÓPICOS. 4. Método de primitivação por partes.

TÓPICOS. 4. Método de primitivação por partes. No bm, a lira dss apoamos ão dispsa d modo alm a lira aa da bibliorafia pricipal da cadira. Nomadam, o rfr ao Módlo 0, Apoamos d Aális Mamáica, Mamáica - E. Mal Mssias páias: 0 a 9 hama-s à ação para a

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

Universidade Federal de Santa Catarina UFSC. Centro de Ciências Físicas e Matemáticas CFM. Departamento de Matemática.

Universidade Federal de Santa Catarina UFSC. Centro de Ciências Físicas e Matemáticas CFM. Departamento de Matemática. Uivrsidd Fdrl d S Cri UFSC. Cro d Ciêcis Físics Mmáics CFM. Dprmo d Mmáic. rlho d Coclsão II CC II. Um Irodção pr Corolilidd m Eqçõs Difrciis Ordiáris E.D.O. s. Floriópolis, jlho d 8. Um Irodção pr Corolilidd

Leia mais

SOLUÇÃO NUMÉRICA DA EQUAÇÃO DE BURGERS PELO MÉTODO DAS DIFERENÇAS CENTRAIS DE SEXTA-ORDEM

SOLUÇÃO NUMÉRICA DA EQUAÇÃO DE BURGERS PELO MÉTODO DAS DIFERENÇAS CENTRAIS DE SEXTA-ORDEM Rvs Iromr d Irí Má. Vol. 7, N.º, pp. 7-, SLUÇÃ NUMÉRICA DA EQUAÇÃ DE BURGERS PEL MÉTD DAS DIERENÇAS CENTRAIS DE SEXTA-RDEM ESTANER CLAR RMÃ, JAIR APARECID MARTINS, LUIZ ELIPE MENDES DE MURA Uvrsdd drl

Leia mais

Dualidade. Fernando Nogueira Dualidade 1

Dualidade. Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}

Leia mais

Situação Atual e Perspectivas das Culturas do Cará (Dioscorea sp.) e do Taiá (Colocasia esculenta) no Sul do Brasil

Situação Atual e Perspectivas das Culturas do Cará (Dioscorea sp.) e do Taiá (Colocasia esculenta) no Sul do Brasil Sção Al Prspcvs s Clrs o Crá (Doscor sp.) o Tá (Colocs scl) o Sl o Brsl Jrz José V Müllr 1 Iroção A proção crá á o á-jpão é rlz promm m pqs proprs, como m v complmr o ssm provo. O cosmo é rlzo prcplm por

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

Análise de Sistemas Discretos por Transformada-z

Análise de Sistemas Discretos por Transformada-z ES Siis Sists Aális d Sists Discrtos por Trsford- Prof. Aliio Fsto Ribiro Arúo Dpto. of Sists d Coptção Ctro d Iforátic - UFPE Cpítlo Siis Sists Eg. d Coptção Itrodção A Trsford- Cotúdo A Trsford Ivrs

Leia mais

TRANSFORMAÇÕES CONTÍNUAS

TRANSFORMAÇÕES CONTÍNUAS TRANSFORMAÇÕES CONTÍNUAS Tscçõs o mo U, 0 0 odo scção o mo odo voução U, 0 HU, 0 Hmoo, H, dd do mo U fução d H U, H 0 0 H gdo do guo ds scçõs o mo [ H, U, ] 0 0 H 0 H 0, 0 H cos do movmo: E, g, cosv-s

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

Agrupamento de Escolas Drª Laura Ayres

Agrupamento de Escolas Drª Laura Ayres cár rª r yrs, Qrtr, lé tífc-místc êcs clgs 11º 1 r fs Vz 15 X X X X X X X 9405 2 r s más 16 X X X X X X X 11481 3 r chz rt 16 X X X X X X X 11596 4 árbr f mrl rrã 15 X X X X X X X 11597 5 c f ckhm rrs

Leia mais

Jornal O DIA SP. Demonstração do fluxo de caixa - Exercício findo. em 31 de dezembro de (Em milhares de reais)

Jornal O DIA SP. Demonstração do fluxo de caixa - Exercício findo. em 31 de dezembro de (Em milhares de reais) A A Sã l ç l SS Alçã s SA º Blç l ls s sçã l í l As l sss ô lí l ls s ls s l s s s í s s çã çõs s s ss ss s ís ls lí s s s s l s s ss As l Açõs às s ss l l s sss ô lí lí l s s s sçã s çõs ô lí í ls s l

Leia mais

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos.

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos. C, O Mkz Vlá é m j sl Mkz, sm fs lvs (D º 8668 3/11/1981), q m sl bsl há 141 s. Iml m 24, m m l fl ssblz, mblz g s s ss gs, gss, lbs, fsss, ls, gs ls, fs, s, mgs fmls m mvm xmçã s ms q bgm s ss m, lém

Leia mais

Hymnarium von Mestre Irineu. O Cruzeirinho

Hymnarium von Mestre Irineu. O Cruzeirinho Hymnrium von O ruzeirinho Prtituren RINH O MR - 2009 iretion: Mrco rcie Imperil Prtituren: isele rcie Imperil irigenten: Mestro nés Romno e isele rcie Imperil www.ceflupedrmr.org 117. ou Viv À eus Ns lturs

Leia mais

CMC INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE. Aulas: 3 e 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED)

CMC INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE. Aulas: 3 e 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED) CMC-- - INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE Auls: 3 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED). Iroução Sisms, sisms físico sisms ghri Excição & rspos um sism Diâmic - Aális iâmic sus ságios:

Leia mais

FOI DEUS QUEM FEZ VOCÊ

FOI DEUS QUEM FEZ VOCÊ FOI DEUS QUEM FEZ OCÊ AMELINHA Arr Neton W Mcedo Crmo Gregory c c c Deus que fez vo - Deus quem fez vo - Deus quem fez vo- c Deus quem fez vo - J De-us 4 Deus quem fez vo - Deus quem fez vo - J Deus quem

Leia mais

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é

Leia mais

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO Cpítlo Técnics d Inrção - TÉCNICAS DE INTEGRAÇÃO. INTEGRAÇÃO POR PARTES Um técnic d inrção mito útil é inrção por prts, q dpnd d fórml pr difrncil d m prodto. Sjm f g fnçõs difrnciávis d. Então, pl rgr

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

Módulo 14. Exercícios. 1. Determine a região de convergência da série. Sendo. , a série tem coeficientes. a n. Pelo que o seu raio de convergência é

Módulo 14. Exercícios. 1. Determine a região de convergência da série. Sendo. , a série tem coeficientes. a n. Pelo que o seu raio de convergência é Not bm a litra sts apotamtos ão ispsa moo algm a litra atta a bibliograia pricipal a caira hama-s à atção para a importâcia o trabalho pssoal a raliar plo alo rsolo os problmas aprstaos a bibliograia sm

Leia mais

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos Fórls de qdrr do po Gss ssocds os polôos slres: propreddes e exeplos Algcoe Sr Rg Depo de Cêcs de Copção e Esísc IILCE UNESP 554- São José do Ro Preo SP E-l: rg@lceespr Del Olver Veroe Uversdde Federl

Leia mais

1 Sm ª 13. Então, se dispôs Davi com os seus homens, uns seiscentos, saíram de Queila e se foram sem rumo certo. Ziclague

1 Sm ª 13. Então, se dispôs Davi com os seus homens, uns seiscentos, saíram de Queila e se foram sem rumo certo. Ziclague 1 Sm. 23.13ª 13 Então, s dspôs Dv om os ss homns, ns ssntos, sírm d Q s form sm rmo rto. Z 1 Sm 27.1-3 1 Dss, porém, Dv onso msmo: Pod sr q m d vnh prr ns mãos d S; nd há, pos, mhor pr mm do q fr pr trr

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares nál Sma Lnar Dnvolvo plo Prof. Dr. Emlon Rocha Olvra, EEE-UFG, 6. Propra a ranformaa Laplac Propra a convolção. propra a convolção no omíno o mpo m ma vaa aplcação na anál o ma lnar. Dao o na () h(), cja

Leia mais

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM:

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM: EQUÇÕES DIFERENCIIS DE ª ORDEM: Cofom dfção v m EDO d odm é m qção d fom F E fom é mo gl o o m ávl D modo q o gmo EDO om d odm f Com ê obd EDO d odm odmo q d odm m bm m dfí d olv Eo m d bl d EDO om d odm

Leia mais

Correção da fuvest ª fase - Matemática feita pelo Intergraus

Correção da fuvest ª fase - Matemática feita pelo Intergraus da fuvest 009 ª fase - Matemática 08.0.009 MATEMÁTIA Q.0 Na figura ao lado, a reta r tem equação y x no plano cartesiano Oxy. Além dis so, os pontos 0,,, estão na reta r, sendo 0 = (0,). Os pontos A 0,

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

14º LEILÃO RR AGROPECUARIA

14º LEILÃO RR AGROPECUARIA 14º LLÃO GOPCU 1 Z 3068 780 14/10/2014 32 20,35 2 38,5 MNDN M. VO D FO.V 2 Z 3792 652 15/12/2014 30 35,5 DONO D NV GKUS.DN N D V D U S 3 Z 3292 667 28/12/2014 30 18,02 4 35 DO S.MN LO D SS 4 Z 3302 699

Leia mais

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2).

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2). GGE RESOE - VESTIBULAR IME MATEMÁTICA) MATEMÁTICA Sj o ojuo S S qu S ) S ) S S ) ) or qu S S ) ) : Sj S S Coo S S ão ou l r o rol oo uor r grl) qu oo S ão logo oo qurío orr F F F F F ) Crufrê ro -) ro

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Facldad d ghaa Odas lcomagécas Op - MI 78 Pogama d Ópca lcomagsmo Facldad d ghaa áls coal vsão alas lcosáca Magosáca 8 alas Odas lcomagécas 6 alas Ópca Goméca 3 alas Fbas Ópcas 3 alas Lass 3 alas Op 78

Leia mais

Apontamentos da disciplina de Complementos de Análise Matemática

Apontamentos da disciplina de Complementos de Análise Matemática ECOLA UPERIOR DE TECNOLOGIA DE VIEU DEPARTAMENTO DE MATEMÁTICA Engnhr d Ambn Aponmnos d dspln d Complmnos d Análs Mmá Isbl Dr Ano lvo 6/7 . Elmnos d Análs Vorl.. Cmpos vors Vmos sdr fnçõs q d pono P do

Leia mais

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais,

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais, UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA/SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ENGENHARIA CIVIL/ DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MÉTODOS NUMÉRICOS EM ENGENHARIA TÓPICOS

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

ROUPEIRO KRATOS 06 PORTAS

ROUPEIRO KRATOS 06 PORTAS X () 59-5050 v. Jesus Candian, 8 -. Mangueira Rural - C 500-000 - bá - MG -mail: qualidade@moveisnovohorizonte.com.br RORO KRO 0 OR L.: 50mm LRG.: 88mm ROF.: 500mm CR O ÁG O FCOOK LK O LDO (QR COD) FC

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

PLANEAMENTO E PROGRAMAÇÃO DO TREINO DE ATLETAS DE ½ FUNDO E FUNDO

PLANEAMENTO E PROGRAMAÇÃO DO TREINO DE ATLETAS DE ½ FUNDO E FUNDO PLM PGMÇÃ LS ½ F F SPÊS BLÓGS S SÂS ½ F F 800M 1500M 3000M SÂS 5000M 10000M ½ M. M. L L FQÊ.Í L Z ÍVL B B LÁ SV B XSV 22 LÁ SV 14 B XSV FQ.. MX. 8 MS SV 6 B XSV FQ.. MX. -15 4 3 B B ÓB GLL. B B LPLÍ 2

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Sobre a obra: Sobre nós:

Sobre a obra: Sobre nós: Sobre a obra: A presente obra é disponibilizada pela equipe do ebook espírita com o objetivo de oferecer conteúdo para uso parcial em pesquisas e estudos, bem como o simples teste da qualidade da obra,

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES 0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

Formulação de Problemas 2D e 3D

Formulação de Problemas 2D e 3D Formlção d Problms D D Mcâc Estrtrl (07/09/4) 0 Pdro V. Gmbo Dprtmto d Cêcs Arospcs . Itrodção A áls d lmtos ftos d problms bdmsos volv os msmos pssos báscos dos problms dmsos. A áls é m poco ms complcd

Leia mais

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u SISEMAS DE GRA DE IBERDADE êc ccl: π (/s, oe é êc cíclc e Hz/s, peíoo: Vções lves ão-oecs Eqção o oveo (lío âco: + k Solção: As( + Bcos(, A e B s coções cs: esloceo cl, v veloce cl v s( + cos( o ecee:

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7.

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7. PRVA DE QUÍMICA º 2º 3º 4º 5º 6º 7º TABELA PERIÓDICA DS ELEMENTS (IA),0 3 Li 6,9 Na 23,0 9 K 39, 2 (IIA) 4 Be 9,0 2 Mg 24,3 3 (III B) 4 5 6 7 8 9 0 2 20 2 22 23 24 25 26 27 28 29 30 Ca Sc Ti V Cr Mn Fe

Leia mais

GUARITA / FACHADA GUARITA / PLANTA COBERTURA

GUARITA / FACHADA GUARITA / PLANTA COBERTURA MP i:% MP i:% MP i:.0% ÚLMO ÁO LZ O VO: OMO FÊ L00 PLJMO LVMO O PL00 PLJMO PLJMO XÇÃO O OOL O POJO FLVOPP_Levantamento_ev0..0.0.0.0.0.0.0.00.0.0.0.0.0.0.0 MOLOG FÇÃO X V. OL FO.. PO LHO V G GÇ..0... L

Leia mais

onde a notação "x 3" indica x tende a 3 e "lim" significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação

onde a notação x 3 indica x tende a 3 e lim significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação CAPÍTULO - LIMITE E CONTINUIDADE.- Noção Iiiv A idéi de ie é ácil de ser cpd iiivmee. Por eemplo, imgie m plc meálic qdrd qe se epde iormemee porqe esá sedo qecid. Se é o comprimeo do ldo, áre d plc é

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

Preciso De Ti (Diante do Trono)

Preciso De Ti (Diante do Trono) Pres e (inte d Trn) rrnj r MRCLO MINL úvids, sugestões, cntt: mrcelminl@yh.cm.br Srn ndnte /F# /F# lt Tenr Bss rárárá rá rárá 6 1.Pre 4/6 s Pre s d Teu 2.Nã ss_esque cer que i zes Teu 1.Pre s Pre s d 2.Nã

Leia mais

bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E ", e, o B o ' r F o 0 P. t r P

bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E , e, o B o ' r F o 0 P. t r P bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E ", e, o B o ' r F o 0 P. t r P. p o 5 ' - r P r d b F F l < O c+ c+ Gr p,..t'd C

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

Procedimento do U.S.HCM2010

Procedimento do U.S.HCM2010 Eh Táo Poo o U.S.HM1 ál oo o, l (oo l o HM/1). íl ço o ção o ool zão /. íl ço /l ção o j (LoS So) V Tl 18-4,5 (HM1 ão l oo íl l ço o j é l ço lo áo) ál oção xl o oolo o EUA. o ção EMA, l à çõ áoo. oo o

Leia mais

PROVA NACIONAL ESCRITA DE MATEMÁTICA

PROVA NACIONAL ESCRITA DE MATEMÁTICA PROVA NACIONAL ESCRITA DE MATEMÁTICA Equip Rsposávl Pl Elorção Corrção d Prov: Prof. Douor Sérgio Brrir Prof.ª Douor Cri Lmos Durção d Prov: 0 miuos. Tolrâci: 30 miuos Coção: 00 PONTOS Escol d Proviêci

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS PROFESSOR: MARCOS AGUIAR CÁLCULO I. FUNÇÕES

Leia mais

Unidade 4 - Vibrações Forçadas sob Condições Gerais

Unidade 4 - Vibrações Forçadas sob Condições Gerais Ui 4 Vibrçõs Forçs sob Coiçõs Gris Ui 4 - Vibrçõs Forçs sob Coiçõs Gris 4. - Iroução Ui 3, foi su vibrção forç sisms um gru libr sob ção forçs hrmôics. s cpíulo, s suo srá sio pr forçs qulqur urz. Iicilm

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç Í I t ç ã C m f g S P A 9 3 2? I f m ç õ s R l s Itçã Est tg é m m m sé p xl stlçã, tblshtg mtçã pts Cs Smll Bsss (tg Lksys Bsss Ss). Q. Cm fg SPA932? R. O SPA932 é m sl tmt 32-btt p SPA962. C SPA932 f

Leia mais

Classificação Periódica dos Elementos

Classificação Periódica dos Elementos Classificação Periódica dos Elementos 1 2 3 1 Massa atômica relativa. A incerteza no último dígito é 1, exceto quando indicado entre parênteses. Os valores com * referemse Número Atômico 18 ao isótopo

Leia mais

Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea

Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea Trslção recilíe s... disâci percorrid v s... velocidde isâe dv v s v... celerção isâe dx Ciemáic, s s v d s, sds v v s v v d iorme, v cos, s s v iormemee celerdodescelerdo cos, v v, Trslção crvilíe r...

Leia mais

FÍSICA MODERNA I AULA 22 -

FÍSICA MODERNA I AULA 22 - Unvrsa São Paulo Insuo Físca FÍSIC MODRN I UL - Profa. Márca la Rzzuo Pllron sala 4 rzzuo@f.us.br o. Ssr 04 Monor: Gabrl M. Souza Sanos Págna o curso: ://sclnas.soa.us.br/cours/vw.?=905 30/05/04 Função

Leia mais

EM NOME DO PAI ====================== j ˆ«. ˆ««=======================

EM NOME DO PAI ====================== j ˆ«. ˆ««======================= œ» EM NOME O PI Trnscçã Isbel rc Ver Snts Pe. Jãzinh Bm & # #6 8 j. j... Œ. ll { l l l l n me d Pi e d Fi lh ed_es & #. 2. #. _. _ j.. Œ. Œ l l l j {.. l. pí t Sn t_ mém Sn t_ mém LÓRI O PI Trnscçã Isbel

Leia mais