Ondas Electromagnéticas
|
|
|
- Jessica Carreira Flores
- 7 Há anos
- Visualizações:
Transcrição
1 Facldad d ghaa Odas lcomagécas Op - MI 78 Pogama d Ópca lcomagsmo Facldad d ghaa áls coal vsão alas lcosáca Magosáca 8 alas Odas lcomagécas 6 alas Ópca Goméca 3 alas Fbas Ópcas 3 alas Lass 3 alas Op 78 Ol
2 Op 78 Ol 3 Facldad d ghaa Odas lcomagécas 6 alas qaçõs d Mawll qação d oda m mos LI sm pdas sm fos Campos hamócos Odas lcomagécas m mos fos sm pdas Poêca d ma oda lcomagéca Icdêca Ls d ll Icdêca omal Icdêca oblíqa Ifêca Dfacção ª ala ª ala 3ª ala 6ª ala 5ª ala 4ª ala Op 78 Ol 4 Facldad d ghaa ga aspoada po ma oda J J σ galdad vcoal J dv dv ds σ J σ dv ds Noa: pssõs saâas Wm
3 Toma d Pog Facldad d ghaa ds dv σ dv cosvação d ga poêca q aavssa dmção da ga amaada o campo M po dad d mpo poêca dsspada po codção Noa: pssõs saâas Op 78 Ol 5 co d Pog Facldad d ghaa vco d Pog Wm ds dv σ dv psa a dsdad d poêca saâa aspoada pla oda lcomagéca ds w m w dv p dv σ w m w pσ σ Noa: pssõs saâas Op 78 Ol 6
4 Op 78 Ol 7 Facldad d ghaa co d Pog campos hamócos ω R ω R ω ω R R R X X X R R 4 R ω R valo saâo fasos Op 78 Ol 8 Facldad d ghaa co d Pog médo ω R T d T md dsdad d poêca méda md Wm R vco d Pog médo
5 co d Pog médo odas TM Facldad d ghaa odas TM a a a C C C md R { } { a } a a md R { } R a vco d Pog médo apoa a dcção sdo d popagação da oda Noa mos sm pdas é al md a Op 78 Ol 9 Icdêca d ma oda TM ma fac plaa Facldad d ghaa flcda â âglo d cdêca θ θ θ asmda â θ plao d cdêca plao plao fomado pla omal à fac pla dcção d popagação da oda cd â cd mo σ mo σ dcçõs d popagação: a sθ cosθ a sθ cosθ a sθ cosθ Op 78 Ol
6 Ls d ll l da flão Facldad d ghaa f d oda msma fas â O odas plaas fs d oda são plaos omas a â â poos O êm msma fas poos O êm msma fas θ θ O θ fas k ds. O ko k â mo σ mo σ OO sθ OO sθ θ θ Op 78 Ol Ls d ll l da facção odas plaas fs d oda são plaos omas a â Facldad d ghaa â O poos O êm msma fas poos O êm msma fas θ θ O θ â fas k O ko k ds. k OO sθ k OO sθ â mo σ mo σ sθ sθ k k v v f f ω k v f Op 78 Ol
7 Ídc d facção Facldad d ghaa Ídc d facção qoc vlocdads d popagação o vao o mo lvado vlocdad baa c v f : mo sm pdas v f sθ v f sθ v f sθ sθ l d ll da facção Op 78 Ol 3 Codçõs foa Facldad d ghaa a a û mo σ J D D ρ dsdad spfcal d co dsdad spfcal d caga mo σ om om a coío a coío s J Dom coío s ρ om coío Noa J ρ apas m codos pfos Op 78 Ol 4
8 Codçõs foa codos pfos Facldad d ghaa codos pfos σ û mo σ D cod cod cod cod mo σ J ρ mplo σ J ρ D D a D D om Op 78 Ol 5 Icdêca omal Facldad d ghaa cdêca omal θ θ θ sθ sθ θ θ mo mo â â cd flcda mo â asmda mo Op 78 Ol 6
9 Op 78 Ol 7 Facldad d ghaa Icdêca omal cofcs d flão asmssão codçõs foa mo mo â â â coío a coío a s J mo mo m Op 78 Ol 8 Facldad d ghaa Icdêca omal cofcs d flão asmssão mo mo â â â mo mo Γ τ cofc d asmssão cofc d flão Γ τ Noas.. Γ 3. τ 4. Γ τ
10 Icdêca omal oda sacoáa Facldad d ghaa Γ Γ τ τ [ ] Γ Γ â â τ Γ â s mo Γ mo τ τ Γ s k oda m popagação oda sacoáa Op 78 Ol 9 Icdêca omal cdêca m codo dal Facldad d ghaa mo sm pdas σ Γ mo codo dal σ τ Γ â â â mo mo ão há oda móvl apas oda sacoáa s k Γ τ σ ω Op 78 Ol
11 cícos Facldad d ghaa. Uma oda lcomagéca plaa popagado-s o a é caacada po 6 mm Dm a o faso do campo magéco; b o valo médo do vco d Pog.. Uma oda lcomagéca plaa d M m polaação la sgdo ma sdad do campo lécco d m. oda popaga-s o a cd ppdclam m mo dlécco d cosa dlécca 4 q ocpa a gão dfda po >. a Dm o faso do campo lécco da oda cd sabdo q o campo m m mámo posvo m qado. b Calcl os cofcs d flão d asmssão. c Dm os fasos do campo lécco das odas flcda asmda do campo oal m <. d Calcl a pcagm da poêca cd q é flcda pla fac a q é asmda paa o sgdo mo. Op 78 Ol
Ondas Electromagnéticas
Faculdad d ghaa Odas lcomagécas Op - MIB 007/008 Pogama d Ópca lcomagsmo Faculdad d ghaa Aáls Vcoal (vsão) aulas lcosáca Magosáca 8 aulas Odas lcomagécas 6 aulas Ópca Goméca 3 aulas Fbas Ópcas 3 aulas
ELECTROMAGNETISMO. Ondas Planas - 1 o Introdução
LCTROMAGNTISMO Ondas Planas - o Inodução Já vmos qu paa um mo smpls não conduo as quaçõs d Mawll podm s combnadas d modo a foncm quaçõs d onda vcoas homogénas: c ond c µ 8 ε 3 ( m s) s a onda s popaga
Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci
leomagesmo II o Semese de 7 Nouo - Pof. Alvao Vaucc 3 a aula /ab/7 Vmos: Odas sfécas (vácuo: = Ψ (modo T e B = ( ψ ω c ' = ω B ' = ψ c ( ψ (modo TM ; ω Ψ + Ψ = sedo que ψ sasfaz: c (equação scala de Helmholz
Ondas Electromagnéticas
Faculdad d ngnhaia Ondas lctomagnéticas Op - MIB 7/8 Pogama d Óptica lctomagntismo Faculdad d ngnhaia Anális Vctoial (visão) aulas lctostática Magntostática 8 aulas Ondas lctomagnéticas 6 aulas Óptica
Eletromagnetismo Licenciatura. 18 a aula. Professor Alvaro Vannucci
leomagesmo Lcecaua 8 a aula Pofesso Alvao Vaucc Na úlma aula vmos... Poêca adada po um Dpolo léco que Oscla: P dpolo p 0 4 c quao que a Poêca adada po uma aea mea-oda: P aea q 0 4 c Agoa, em emos do valo
Propagação e Radiação de Ondas Electromagnéticas (PROE)
MC A Lcv 5/6, º Sms Ppagaçã Radaçã d Odas lcmagécas (PRO) Ccs Fudamas ucads d Pblmas (cm Sluçõs) Rsluçõs d Pblmas Slccads ucads d Pvas d Avalaçã As dçã d Cusód Px Fv 6 ucads d Pblmas (cm Sluçõs) /37 Pblma
( ) Novo Espaço Matemática A 11.º ano Proposta de Teste [abril 2018] V x =, 3. CADERNO 1 (É permitido o uso de calculadora gráfica) π x 0, 2 0, 2
Novo Espaço Matmática A 11.º ao Proposta d Tst [abril 018] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs
Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [outubro 2018]
Novo Espaço Matmática A.º ao Proposta d tst d avaliação [otbro 08] Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário.
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A 1º Ao Dração: 9 mitos Março/ 9 Nom Nº T: Classificação O Prof. (Lís Abr) 1ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio
Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio.
Ala 6 Ssmas mcâcos scros coíos. Osclaor lar m ra lbra OLGL rcípo Almbr. Eqação qlíbro. m lvr amorco. NL FCT EC Ehara Sísmca / sposávl: João. Blé Srra Acao 3 r r r r f m ; rcípo Almbr Força aca f f f f
A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).
4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo
Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [maio 2019]
Novo Espaço Matmática A º ao Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado
Os fundamentos da física Volume 2 1. Resumo do capítulo
Os fudametos da físca Volume 2 1 Capítulo 13 Refação lumosa A efação é o feômeo o qual a luz muda de meo de popagação, com mudaça em sua velocdade. ÍDICE DE REFRAÇÃO ABSOLUTO O ídce de efação absoluto
Novo Espaço Matemática A 11.º ano Proposta de Teste [março ]
Novo Espaço Matmática A.º ao Proposta d Tst [março - 08] Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs
ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho
LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS
s t r r t r tr és r t t t
s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs
PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós
PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:
PROPAGAÇÃO E RADIAÇÃO DE ONDAS ELECTROMAGNÉTICAS (PROE) CONCEITOS FUNDAMENTAIS
MC Ao Lectvo 6/7 º Semeste PROPAGAÇÃO RADIAÇÃO D ONDAS LCTROMAGNÉTICAS (PRO) CONCITOS FUNDAMNTAIS Custódo Pexeo Setembo 6 ste documeto fo cocebdo paa sev de gua as aulas teócas e apeas como tal deveá se
Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]
Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado da prova CADERNO (É prmitido
E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.
lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga
M a n u e l C e l e s t i n o V i l e l a T e i x e i r a d e A l m e i d a
M a n u e l C e l e s t i n o V i l e l a T e i x e i r a d e A l m e i d a AV A L I A Ç Ã O D O E F E I T O D E F O G O S F L O R E S T A I S N O R E G I M E D E E S C O A M E N T O E N A Q U A L I D
Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [janeiro 2019]
Novo Espaço Matmática A 11.º ao Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial
Faculdade de Engenharia. Antenas e Radiação OE - MIEEC 2014/2015
Faculdad d ngnhaia Annas adiação O - MIC /5 Annas adiaçao Faculdad d ngnhaia dipolos lnas dipolo lécico dipolo agnéico diagaas d adiação paâos caacísi d annas annas linas finas aggados d annas Annas Faculdad
Á Ç ó á ç
Á Ç ó á ç É í é çã ô ã â ã á ç õ é á õ é ê ã ê çã õ ê ú õ ê ó ó ó ó ã é à çã ê é ê í é ã ó ã á ç í á é ã ó é á ó ó á ó á ã ó ã ã çã ó ê ó ê á ô ô ã ã çã ô çã ô í ê ó á ó ê çõ ê é á ê á á ç ó í çã ó ã é
TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x
(Tóp. Tto Complmta) TEOREMA DE TAYLOR TEOREMA DE TAYLOR S uma ução suas pimias divadas istm um itvalo abto I cotdo, sgu-s do toma do valo médio galizado (dado o tópico dsta aula), substituido a ou b po,
Novo Espaço Matemática A 11.º ano Proposta de Teste [janeiro ]
Nom: Ao / Trma: N.º: Data: / / Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial do ciado da prova. CADERNO (É
Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E [email protected] Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a
Índice alfabético. página: 565 a b c d e f g h i j k l m n o p q r s t u v w x y z. procura índice imprimir última página vista anterior seguinte
Í é á: 565 á é í ú á í é á: 566 A A é, 376 A, 378 379 A á, 146 147 A, 309 310 A á, 305 A ( ), 311 A, 305 308 A á B, 470 A á, 384 385 A,, ç Bç, 338 340 A é, 337 Aé, 333 A, 410 419 A K, 466 A, 123 A, 32
Acesso de Maiores de 23 anos Prova escrita de Matemática 17 de Junho de 2013 Duração da prova: 150 minutos. Tolerância: 30 minutos.
Acesso de Maiores de 3 aos Prova escrita de Matemática 17 de Jho de 013 Dração da prova: 150 mitos. Tolerâcia: 30 mitos. Primeira Parte As oito qestões desta primeira parte são de escolha múltipla. Para
1 i n o 3 Outubro de Em celebração aos 73 anos da Aperam, empregados compartilham suas histórias na Empresa
LG A 1 3 O 2017 Pçã â T ê â ó. C? C ê z? A? A ê! á.6 R... é! E çã 73 A, ó E á.5 F: E N N Sá O ê á Fçã á.2 CCQ Cç 2017 Sá G Tó á.4 Á Cç, z á.8 L é V çã. U ç ã ê á ê í. - Mí S á.8 E I A 1 I P.2 I A 1 I P.3
Resoluções dos exercícios propostos
os fudametos da físa Udade E Capítulo efação lumosa esoluções dos eeíos popostos P.85 Como, temos: 8 0 0 8,5 P.86 De, em: 0 8,5 0 8 m/s P.87 elodade da luz a plaa de do oespode a 75% da elodade da luz
ONDAS APONTAMENTOS TEÓRICOS. Filipe Santos Moreira 2004/05
ONDAS APONTAMNTOS TÓRICOS Flp Sanos Moa 4/5 Ondas Índc ÍNDIC... ANÁLIS VCTORIAL... 5. Dvadas pacas... 5.. Dvada d uma função... 5.. Dvadas pacas... 5..3 Dvadas d funçõs composas... 6. Ingas múlplos...
Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]
Novo Espaço Matemática A.º ao Proposta de Teste [março - 08] Nome: Ao / Trma: N.º: Data: / / Não é permitido o so de corretor. Deves riscar aqilo qe pretedes qe ão seja classificado. A prova icli m formlário.
ESCOLA SECUNDÁRIA FERREIRA DIAS AGUALVA - SINTRA QUÍMICA (12º ANO) MÓDULO 3 MATRIZ DA PROVA
Cursos Científico - Humanísticos de Ciências e Tecnologias ESCOLA SECUNDÁRIA FERREIRA DIAS AGUALVA - SINTRA Ensino Recorrente de Nível Secundário QUÍMICA (12º ANO) MÓDULO 3 TIPO DE PROVA: ESCRITA DURAÇÃO:
ESCOLA SECUNDÁRIA FERREIRA DIAS AGUALVA - SINTRA QUÍMICA (12º ANO) MÓDULO 2 MATRIZ DA PROVA
Cursos Científico - Humanísticos de Ciências e Tecnologias ESCOLA SECUNDÁRIA FERREIRA DIAS AGUALVA - SINTRA Ensino Recorrente de Nível Secundário QUÍMICA (12º ANO) MÓDULO 2 TIPO DE PROVA: ESCRITA DURAÇÃO:
Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E [email protected] Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal
EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2
N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds
Equações de Conservação
Eqaçõs d Consação Toma d Tanspo d Rnolds Eqação d Consação d Massa (conndad) Eqação d Consação d Qandad d Momno Lna ( a L d Non) Eqação d Na-Soks Eqação d Enga Mcânca Eqação d Consação d Qandad d Momno
Propagação e Radiação de Ondas Electromagnéticas (PROE)
MC Ano Lcvo 6/7, º Sms Popagação Radação d Ondas lcomagnécas (PRO) Concos Fundamnas nuncados d Poblmas (com Soluçõs) Rsoluçõs d Poblmas Slcconados nuncados d Povas d Avalação Anos dção d Cusódo Pxo Fvo
Pressão e manometria
Pressão e manometria J. L. Baliño Departamento de Engenharia Mecânica Escola Politécnica - Universidade de São Paulo Apostila de aula Pressão e manometria 1 / 14 Sumário 1 Hidrostática 2 Pressão e manometria
Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM
Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 2 PUSERRUSLIITIN EM 35 MM
Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2017]
Novo Espaço Matemática.º ao Proposta de Teste [maio 07] Nome: o / Trma: N.º: Data: / / Não é permitido o so de corretor. Deves riscar aqilo qe pretedes qe ão seja classificado. Para cada resposta, idetifica
(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u
SISEMAS DE GRA DE IBERDADE êc ccl: π (/s, oe é êc cíclc e Hz/s, peíoo: Vções lves ão-oecs Eqção o oveo (lío âco: + k Solção: As( + Bcos(, A e B s coções cs: esloceo cl, v veloce cl v s( + cos( o ecee:
MOSFET: A Dedução da equação da corrente Aula 2
MOSFET: A edução da equação da corree Aula 31 Aula Maéra Cap./pága 1ª 03/08 Elerôca PS33 Programação para a Prmera Prova Esruura e operação dos rassores de efeo de campo caal, caraceríscas esão-corree.
Acesso de Maiores de 23 anos Prova escrita de Matemática 28 de Junho de 2012 Duração da prova: 150 minutos. Tolerância: 30 minutos.
Versão A Acesso de Maiores de 3 aos Prova escrita de Matemática 8 de Jho de 0 Dração da prova: 50 mitos. Tolerâcia: 30 mitos. Primeira Parte As oito qestões desta primeira parte são de escolha múltipla.
M a n h ã... p r e s e n t e! L u g a r... p r e s e n t e! Q u e m... p r e s e n t e! N e n h u m... p r e s e n t e! C u í c a... p r e s e n t e!
C a r o l i n a M a n h ã......................................................................... p r e s e n t e! L u g a r.......................................................................... p
Catálogo2012 PRODUTOSEXCLUSIVOS ÍNDICEDEPRODUTOS ACRIL ACRÍLICO AGLO WEB MERADO SHAMMALUZ SHAMMALUZ. Pressione ESC parasair
Cáogo2012 PRODUTOSEXCLUSIVOS ÍNDICEDEPRODUTOS ACRIL WEB SHAMMALUZ ACRÍLICO AGLO MERADO SHAMMALUZ Pon ESC p ACRÍ LI CO A G L O MERADO SHAMMALUZ ASh mm uz p f ç oou é n n d x u ã oàqu n dops C, um n mop
A C T A N. º I V /
1 A C T A N. º I V / 2 0 0 9 - - - - - - A o s d e z a s s e t e d i a s d o m ê s d e F e v e r e i r o d o a n o d e d o i s m i l e n o v e, n e s t a V i l a d e M o n c h i q u e, n o e d i f í c
Universidade Federal do Espírito Santo Centro de Ciências Exatas Programa de Pós-Graduação em Física
Uvdad Fdal do pío Sao Co d Cêa aa Pogaa d Pó-Gaduação Fía Lado Slva o fo Ca plaa d plaa a ga d odação do upoduo do po ( Hg Pb) a S CaCu3O8 δ. Vóa 1 Lado Slva o fo Ca plaa d plaa a ga d odação do upoduo
NOTA: ESCREVA AS RESPOSTAS COMO FRAÇÕES OU COM 4 CASAS DECIMAIS NOTA 2: O FORMULÁRIO ESTÁ NO FINAL DA PROVA
IND 5 Ifrêca statístca Smstr 7. Tst 3//7 Nom: NOTA: SCRVA AS RSPOSTAS COMO FRAÇÕS OU COM 4 CASAS DCIMAIS NOTA : O FORMULÁRIO STÁ NO FINAL DA PROVA Problma (5 potos A quatdad d rfrgrat uma garrafa PT d
