Modelos: Verificação, Validação e Experimentação
|
|
|
- Edison Amarante César
- 8 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Modelos: Verificação, Validação e Experimentação Prof. Luís César da Silva (UFES/CCA) ESA 01 Engenharia de Sistemas
2 Modelos Validados e Confiáveis Fundamentos: (Naylor e Finger, 1967)! Desenvolver modelos interativos com o usuário Constatar a terminologia utilizada Coletar dados relevantes Utilizar teorias existentes sobre o sistema Analisar modelos desenvolvidos anteriormente Empregar a experiência e intuição na formulação do modelo
3 Modelos Validados e Confiáveis Fundamentos: (Naylor e Finger, 1967)! Testar as considerações empíricas utilizadas Ferramenta: Análise de sensibilidade! Determinar o quanto os dados gerados pelo modelo são confiáveis Verificação Validação
4 Erros na Formulação de Modelos de Simulação! Erro Tipo 1: os resultados gerados pelo modelo são confiáveis, mas mesmo assim o modelo é rejeitado! Erro Tipo II: os resultados gerados pelo modelo não são confiáveis, mas mesmo assim o modelo é aceito! Erro Tipo III: o modelo foi mal formulado, conseqüentemente apresenta resultados inapropriados.
5 Erros na Formulação de Modelos de Simulação Problema Formulado O problema formulado engloba todos os aspectos desejados? Não Ocorre o Erro do Tipo III Sim O modelo implementado representa confiávelmente o sistema? Não A solução apresentada tem cedibilidade A solução apresentada não tem cedibilidade Sim Sim Na validação o modelo demonstrou credibilidade? Não Não Na validação o modelo demonstrou credibilidade? Sim Sim Os resultados da simulação são aceitos? Não Não Os resultados das simulações são aceitos? Sim Sim Ocorre o Erro do Tipo I Ocorre o Erro do Tipo II Término com sucesso Término com Erro do Tipo I Término sem sucesso Término com Erro do Tipo II
6 Verificação e Validação! Verificação: conjunto de ações cuja meta é certificar se o modelo conceitual foi transcrito de forma adequada quando do uso da linguagem de simulação ou programação.! Validação: são procedimentos empregados para certificar se os valores gerados pelo modelo apresenta coerência com os gerados pelo sistema real.
7 Condução da Verificação Ações 1. Envolver mais de uma pessoa além do idealizador do modelo. 2. Rodar o modelo e proceder comparação de resultados com o modelo real. 3. Rastrear o modelo e executar cada rotina computacional 4. Observar a animação 5. Analisar estatisticamente os valores gerados por variáveis aleatórias.
8 Condução da Validação Ações 1. Rodar o modelo para as mesmas condições impostas ao sistema. 2. Comparar os resultados gerados pelo modelo com os obtidos do sistema! Validação subjetiva! Validação estatística
9 Validação Subjetiva Exemplos:! Teste de Turing " consiste em: Obter os dados gerados pelo sistema e o modelo; Formatar os dados no mesmo padrão Submeter os dois conjuntos de dados aos especialistas Nota: Caso eles não percebam diferenças o modelo está validado.! Uso de Especialista expert " consiste em submeter os dados gerados a especialistas notórios da área. Estes baseados em suas experiências emitirão pareceres sobre a confiabilidade do modelo. Nota: Este tipo de validação é aplicado quando da inexistência do sistema real, ou quando este é não palpável.
10 Procedimentos Estatísticos (Menner, 1995) Categoria Estatística Descritiva Procedimento estatístico Medidas de posição (amostral) Medidas de dispersão (amostral) Coeficiente de correlação amostral Hipótese de Nulidade Hipótese alternativa Teste de Z (populacional) Teste de Z (para duas médias) Média Mediana Moda Variância Desvio padrão Coeficiente de variação Erro padrão da média Amplitude total Teste de Aderência Hipóteses Estatísticas Teste do Qui-Quadrado Teste de Independência Teste de F Teste de t para médias Teste de t para duas médias Teste de hipótese para dados emparelhados Teste de homogeneidade
11 Equações Estatística X Média = 1 n n i= 1 X i s 2 = Variância 1 n 1 n i= 1 ( X i X ) 2 Intervalo de confiança X ± t α / 2, n 1 s 2 n t α / 2, n 1 - representa um valor da distribuição t para n-1 graus de liberdade ao nível de probabilidade de.
12 Equações Estatística Intervalo de Confiança Limite superior LS = M s + t. Dp / n Limite inferior LS = M s t. Dp/ n Planilha
13 Corn - First Crop Accumulated Received Amount - tonnes Average Real System Data 99% Confidence Interval Days
14 Monthly eletric energy consumption kwh Months Average System 99% Confidence Interval
15 Experimentação Com Modelos 1. Análise de sensibilidade 2. Comparação de Cenários 3. Otimização 4. Simulação de Monte Carlo
16 Experimentação Com Modelos Análise de Sensibilidade 1. Selecionar o conjunto de varáveis de entrada e parâmetros do sistema que maior impacto causam as variáveis de saída 2. Selecionar as variáveis de saída de maior importância 3. Rodar o modelo para as combinações dos valores das varáveis de entrada e parâmetros do sistema 4. Quantificar o impacto causado nas variáveis de saída.
17 Experimentação Com Modelos Comparação de Cenários 1. Escolher os cenários a comparar 2. Configurar modelos para cada um dos cenários 3. Rodar o modelo o número de vezes necessária 4. Proceder a comparação dos resultados para cada cenário 5. Proceder a conclusão
18 Experimentação Com Modelos Otimização 1. Escolher quais variáveis de saída que se deseja otimizar 2. Promover análise de sensibilidade e detectar as variáveis de entrada e parâmetros do sistema que mais impactam as variáveis selecionadas. 3. Proceder várias rodas até ser encontrada a situação ótima
19 Experimentação Com Modelos Simulação de Monte Carlo 1. Aplica-se a modelos estocásticos 2. Passos 1. Selecionar as variáveis de entrada, parâmetros do sistema e variáveis de saída. 2. Proceder o número de rodas necessárias 3. Analisar estatisticamente os valores aleatórios gerados para variáveis de entrada, parâmetros do sistema e variáveis de saída. 4. Apresentar relatórios demonstrando os níveis de probabilidade para ocorrência dos valores acima.
20 Grato pela atenção. Perguntas??? Contatos:
ANÁLISE DE RESULTADOS
ANÁLISE DE RESULTADOS Conteúdo 2 1. Planejamento de Experimentos 2. Introdução Medidas de Desempenho Análise Estatística dos Resultados Comparação de Resultados Procedimento para análise de resultados
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
SSC546 Avaliação de Sistemas Computacionais Parte 1 -Aula 4 Sarita Mazzini Bruschi
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação SSC546 Avaliação de Sistemas Computacionais Parte 1 -Aula 4 Sarita Mazzini Bruschi Material
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
Modelagem e Simulação
1 Modelagem e Simulação Prof. Luís César da Silva Email: [email protected] - Website: www.agais.com Segundo LAW e KELTON (1991), os estudos de sistemas podem ser realizados sob as diferentes formas de
Estatística Aplicada a Negócios
Prof. Dr. Gilberto de Andrade Martins aula 02 1 Estatística Descritiva Aula 2 Ao final desta aula você : - Conhecerá a Estatística Descritiva. - Saberá quais são as principais medidas de dispersão. 2 Medidas
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
RESOLUÇÃO Nº 01/2016
Legislações Complementares: Resolução Nº 02/2016 Colegiado DEst Resolução Nº 03/2016 Colegiado DEst Resolução Nº 01/2017 Colegiado DEst RESOLUÇÃO Nº 01/2016 O Departamento de Estatística, tendo em vista
VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS. Capítulo 1 VARIÁVEIS E AMOSTRAS 1
PREFÁCIO VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS xiii DO EXCEL... xv Capítulo 1 VARIÁVEIS E AMOSTRAS 1 VARIÁ VEIS 4 NÚMERO DE VARIÁVEIS 5 CLASSIFICAÇÃO DAS VARIÁVEIS 6 ESCALA DE MEDIÇÃO DAS VARIÁVEIS 7 POPULAÇÃO
Filho, não é um bicho: chama-se Estatística!
Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos. 6 a aula Testes de Hipóteses
PHD 5742 Estatística Aplicada ao Gerenciamento dos Recursos Hídricos 6 a aula Testes de Hipóteses Mario Thadeu Leme de Barros Luís Antonio Villaça de Garcia Abril / 2007 Estatística Aplicada ao Gerenciamento
SIMULAÇÃO. Professor: Adriano Benigno Moreira
SIMULAÇÃO Professor: Adriano Benigno Moreira Modelagem e Simulação de Sistemas Etapa de Planejamento Formulação e análise do problema Etapa de Modelagem Coleta de dados Etapa de Experimentação Projeto
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 1. Introdução 1 1.1. Enquadramento e objectivos 2 1.2. Organização 5 1.3. Noções base da Estatística 7 1.3.1. Distinção entre população e amostra 8 1.3.2. Amostragem 10 1.3.3. Unidade estatística
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS
POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
Unidade III Medidas Descritivas
Unidade III Medidas Descritivas Autor: Anderson Garcia Silveira Anderson Garcia Silveira Na aula anterior... Medidas de Tendência Central 2 Na aula anterior... Medidas de Tendência Central Moda Mediana
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
Metodologia de simulação
Metodologia de simulação OBJETIVOS E DEFINIÇÃO DO SISTEMA FORMULAÇÃO DO MODELO ANÁLISE E REDEFINIÇÃO MODELO ABSTRATO RESULTADOS EXPERIMENTAIS (Capítulo 6) MODELO CONCEITUAL (Capítulo 3) REPRESENTAÇÃO DO
Simulação e Modelagem
Simulação e Modelagem Prof. Afonso C Medina Prof. Leonardo Chwif Versão. 6//6 Introdução Definição A Simulação como ferramenta de suporte à decisão Quando utilizar a Teoria das Filas ou a Simulação? O
Coleta e Modelagem dos Dados de Entrada
Slide 1 Módulo 02 Coleta e Modelagem dos Dados de Entrada Prof. Afonso C. Medina Prof. Leonardo Chwif Três Etapas Coleta Tratamento Inferência Coleta dos Dados 1. Escolha adequada da variável de estudo
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21
OS SABERES INDISPENSÁVEIS 7 Índice Prefácio 13 Capítulo 1 Os Saberes Indispensáveis 1. Conceitos básicos de estatística 17 1.1. Níveis de medição 18 1.2. Medidas características de distribuições univariadas
DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM
Morgana Pizzolato, Dr a. Aula 20 Introdução à otimização experimental e experimentos de um fator DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Projetos de Experimentos
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO
CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis
Coleta e Modelagem dos Dados de Entrada
Coleta e Modelagem dos Dados de Entrada Capítulo 2 Páginas 24-52 Este material é disponibilizado para uso exclusivo de docentes que adotam o livro Modelagem e Simulação de Eventos Discretos em suas disciplinas.
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL ESTUDO DE VARIABILIDADE DOS DADOS EXPERIMENTAIS Prof. Miguel Toledo del Pino, Eng. Agrícola (Dr.) INTRODUÇÃO Realizamos experimentos para compararmos os efeitos de tratamentos
PERFIL DOS AUTORES... XVII PREFÁCIO... XIX INTRODUÇÃO... XXI
Sumário PERFIL DOS AUTORES... XVII PREFÁCIO... XIX INTRODUÇÃO... XXI CAPÍTULO 1 O processo de pesquisa e os enfoques quantitativo e qualitativo rumo a um modelo integral... 2 Que enfoques foram apresentados
Medidas de Dispersão. Prof.: Joni Fusinato
Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal MEDIDAS DE DISPERSÃO As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual,
5 Avaliação de desempenho do divisor
5 Avaliação de desempenho do divisor Para avaliar o desempenho do divisor foram realizados ensaios de tipo e de rotina no divisor completo e em partes deste, com o objetivo de avaliar sua suportabilidade
Bioestatística UNESP. Prof. Dr. Carlos Roberto Padovani Prof. Titular de Bioestatística IB-UNESP/Botucatu-SP
Bioestatística UNESP Prof. Dr. Carlos Roberto Padovani Prof. Titular de Bioestatística IB-UNESP/Botucatu-SP Perguntas iniciais para reflexão I - O que é Estatística? II - Com que tipo de informação (dados)
MÉTODOS QUANTITATIVOS APLICADOS. Prof. Danilo Monte-Mor
MÉTODOS QUANTITATIVOS APLICADOS Prof. Danilo Monte-Mor Métodos Quantitativos Aulas 1 e 2 Análise Exploratória de Dados 2 Danilo Soares Monte Mor Currículum Vitae Prof. Dr. e especialista em Métodos Quantitativos
ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS
1 Ano Letivo de 2013/2014 PLANIFICAÇÃO ANUAL Disciplina de MATEMÁTICA - 11º Ano Turma K Curso Profissional de Técnico de Multimédia Professora: Paula Gomes 2 OBJETIVOS GERAIS São finalidades da disciplina
Súmario APRESENTAÇÃO DA COLEÇÃO...13
Súmario APRESENTAÇÃO DA COLEÇÃO...13 CAPÍTULO I LÓGICA PROPOSICIONAL...15 1. Lógica Proposicional...15 2. Proposição...15 2.1. Negação da Proposição...18 2.2. Dupla Negação...19 2.3. Proposição Simples
Casos. Índice. Parte I. Caso 1 Vendas da empresa Platox. Caso 2 Importação de matéria-prima. Caso 3 Carteira de acções. Caso 4 Lançamento de produto
Índice PREFÁCIO 15 NOTA INTRODUTÓRIA 17 CONVENÇÕES UTILIZADAS 19 Parte I Casos Caso 1 Vendas da empresa Platox 1. Enquadramento e objectivos 25 2. Aspectos metodológicos 26 3. Resultados e comentários
Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística
Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística José Edson Rodrigues Guedes Gondim 1 Joab de Oliveira Lima 2 1 Introdução
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS Em uma grande escola, 10% dos alunos são comprovadamente fracos. Um teste educacional conseguiu identificar corretamente 80% entre aqueles que são fracos e 85% entre aqueles que
Estatística Inferencial
statística Inferencial A ou inferencial compreende a stimação e o Teste de hipótese. Na verdade, a estatística inferencial forma a base das atividades de controle da qualidade e também pode auxiliar na
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível
Introdução. Amostragem, amostra aleatória simples, tabela de números aleatórios, erros
Estatística Aplicada 2007/2008 Programa Introdução às probabilidades. Distribuições. Amostragem. Testes de hipóteses. Análise da variância. Estatística não-paramétrica. Testes de ajuste do qui-quadrado.
Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima. Autores:
Apostila de estatística básica Minitab Organizador: Daniel Magalhães Lima Autores: Sumário Importando dados... 3 Explorando dados Tendência central, dispersão e gráficos... 3 Teste de normalidade... 3
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
1 Introdução, 1 2 Polo Epistemológico, 9 3 Polo Teórico, 25
1 Introdução, 1 1.1 Tipos de Conhecimentos, 1 1.2 Classificação das Ciências, 2 1.3 Pesquisa nas Ciências Naturais e do Homem, 2 1.4 Epistemologia, 3 1.5 Um Modelo Paradigmático, 4 1.6 A Escolha de um
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões
Probabilidade e Estatística
Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:
Sumário. Parte I O papel e o valor das informações da pesquisa de marketing 1
Parte I O papel e o valor das informações da pesquisa de marketing 1 1 Pesquisa de marketing para a tomada de decisão gerencial 2 A complexidade crescente da pesquisa de marketing 3 Painel Conduzindo pesquisas
Teste Anova. Prof. David Prata Novembro de 2016
Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar
P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)
Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
Estatística aplicada a ensaios clínicos
Estatística aplicada a ensaios clínicos RAL - 5838 Luís Vicente Garcia [email protected] Faculdade de Medicina de Ribeirão Preto Estatística aplicada a ensaios clínicos aula 8 amostragem amostragem
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO
ANEXO 1 - Plano de Ensino MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2017 01 1. Identificação Código 1.1 Disciplina: Métodos Estatísticos
Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia
Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
Estatística 1. Resumo Teórico
Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas
Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47
CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 4 a Aula Prática Medidas de Dispersão
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 4 a Aula Prática Medidas de Dispersão 1) Os dados apresentados a seguir referem-se ao levantamento dos intervalos
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior
INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve
Estatística: Objetivos e fundamentos
AULA/TEMA Estatística Básica Estatística: Objetivos e fundamentos Profa. Vanessa Ziotti Conteúdo Programático Estatística. O que é? Inferência estatística Estatística descritiva e experimental Termos estatísticos
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
ESTATÍSTICA ECONÔMICA A 6EMA
6EMA020-2000 Lucas Santana da Cunha email: [email protected] Universidade Estadual de Londrina 13 de abril de 2016 CRONOGRAMA 1 o BIMESTRE: MÓDULO I - Estatística Descritiva Noções Básicas em estatística:
Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:
Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a
Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos
Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido
Excel INTERMEDIÁRIO Estatística. Prof. Cassiano Isler Turma 3
Excel INTERMEDIÁRIO Prof. Cassiano Isler 2017.1 - Turma 3 s s Prof. Cassiano Isler Excel INTERMEDIÁRIO - Aula 4 2 / 29 s COSTA NETO, P. L. O.. 2. ed. São Paulo: Edgard Blücher (2002). GÓMEZ, Luis Alberto.
I VOLUME. O. INTRODUÇÃO Destinatários desta obra. Objectivos. Concepção Agradecimentos. Exemplos gerais. Advertência.. I.
índice GERAL I VOLUME Prefácio do Autor à Edição Portuguesa. Introdução à Edição Portuguesa. IX XI O. INTRODUÇÃO Destinatários desta obra. Objectivos. Concepção Agradecimentos. Exemplos gerais. Advertência..
VERIFICAÇÃO DA ADEQUAÇÃO DO MODELO DE ANÁLISE DE VARIÂNCIA ANÁLISE DE RESÍDUOS
VERIFICAÇÃO DA ADEQUAÇÃO DO MODELO DE ANÁLISE DE VARIÂNCIA ANÁLISE DE RESÍDUOS Conforme foi apresentado anteriormente, o modelo de análise de variância assume que as observações são independentes e normalmente
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
NOÇÕES SOBRE EXPERIMENTOS FATORIAIS
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planejamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO. Professora Rosana da Paz Ferreira CCB1052 (2018.2)
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO Curso(s): Ciência da Computação Período: 2018.2 Professora: Rosana da Paz Ferreira Disciplina(s): INF5325 Probabilidade e Estatística
Estatística para Cursos de Engenharia e Informática
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 3 Análise exploratória de dados APOIO: Fundação de Apoio
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO. Professora Rosana da Paz Ferreira CCB1052 (2018.2)
PLANO DE CONTEÚDO MÍNIMO (PCM) - UNIDADE UNIVERSITÁRIA DE COMPUTAÇÃO Curso(s): Ciência da Computação Período: 2018.2 Professora: Rosana da Paz Ferreira Disciplina(s): CCB1052 Probabilidade e Estatística
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 09/2014 Estatística Descritiva Medidas de Variação Probabilidade e Estatística 3/42 Medidas de Variação Vamos
