Método dos Mínimos Quadrados
|
|
|
- Rafael Martinho Valente
- 8 Há anos
- Visualizações:
Transcrição
1 Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 2004/2005 Método dos Mínimos Quadrados PROBLEMAS 1 Determine a aproximação dos mínimos quadrados aos pontos por: x y (a) Uma recta. (b) Uma parábola. (c) Uma cúbica. (d) Uma recta x = g(y) que minimize o erro em x. 2 Para medir a capacidade (C) de um condensador, usou-se um circuito RC com um interruptor. No instante t = 0 abriu-se o interruptor, tendo-se registado os seguinte valores da tensão (V) no condensador: t(s) V (volt) t=0 U R (1M Ω) C V Como se sabe, é aplicável a relação v(t) =v 0 e t RC,t 0. Usando o critério dos mínimos quadrados, estime um valor para C. Considere v(0) também sujeito a erro, de maneira que v 0 é desconhecido a priori. RESOLUÇÕES 1
2 Método dos Mínimos Quadrados: Dado um conjunto de pontos ( x i,y i ) i =1, 2,...,n e uma função F (x, c 1,c 2,...,c k ) do tipo F (x, c 1,c 2,...,c k )=c 1 Φ 1 (x)+c 2 Φ 2 (x) c k Φ 1 (x) determinar c 1,c 2,...,c k tal que se minimize N (y i F (x, c 1,c 2,...,c k )) 2. i=1 Calculando as k derivadas desta função em ordem a c 1,c 2,...,c k e igualando-as a zero obtemos um sistema de k equações a k incógnitas do tipo: c N 1 i=1 Φ2 1 (x)+c N 2 i=1 Φ 1(x)Φ 2 (x)+...+ c N k i=1 Φ 1(x)Φ k (x) = N i=1 Φ 1(x) y i c N 1 i=1 Φ 1(x)Φ 2 (x)+c N 2 i=1 Φ2 2 (x)+...+ c N k i=1 Φ 2(x)Φ k (x) = N i=1 Φ 2(x) y i. c N 1 i=1 Φ 1(x)Φ k (x)+c N 2 i=1 Φ 2(x)Φ k (x)+...+ c N k i=1 Φ2 k (x) = N i=1 Φ k(x) y i A resolução do sistema permite-nos obter os valores de c 1,c 2,...,c k. 1 (a) Aproximação por uma recta: F (x) =c 1 + c 2 x,com Φ 1 (x) =1 Φ 2 (x) =x Φ i (x) =0, i =3, 4,...,k O que nos permite escrever o seguinte sistema ( N =8 ): 1 i=1 1+c 8 2 i=1 x i = 8 i=1 y i 1 i=1 x i + 2 i=1 x2 i = 8 i=1 x i y i Os vários somatórios podem ser facilmente calculados pela seguinte tabela, x i y i x 2 i x i y i
3 Substituindo no sistema os somatórios pelos respectivos valores, 8 c 1 +56c 2 =40 56 c c 2 = 364 Donde se retira que, c 1 = c 2 = = = O que nos permite escrever a equação da recta que aproxima os pontos dados pelo método dos mínimos quadrados: y = c 1 + c 2 x = x (b) Aproximação por uma parábola: F (x) =c 1 + c 2 x + c 3 x 2,com Φ 1 (x) =1 Φ 2 (x) =x Φ 3 (x) =x 2 Φ i (x) =0, i =4, 5,...,k O que nos permite escrever o seguinte sistema ( N =8 ): 1 i=1 1+c 8 2 i=1 x i + 3 i=1 x2 i = 8 i=1 y i 1 i=1 x i + 2 i=1 x2 i + c 8 3 i=1 x3 i = 8 i=1 x i y i 1 i=1 x2 i + c 8 2 i=1 x3 i + c 8 3 i=1 x4 i = 8 i=1 x2 i y i Os vários somatórios podem ser facilmente calculados pela seguinte tabela, x i y i x 2 i x 3 i x 4 i x i y i x 2 i y i
4 Substituindo no sistema os somatórios pelos respectivos valores, Donde se retira que, c 1 = c 2 = c 3 = 8 c 1 +56c c 3 =40 56 c c c 3 = c c c 3 = = = = O que nos permite escrever a equação da parábola que aproxima os pontos dados pelo método dos mínimos quadrados: y = c 1 + c 2 x + c 3 x 2 = x x 2 (c) Aproximação por uma cúbica: F (x) =c 1 + c 2 x + c 3 x 2 + c 4 x 3,com Φ 1 (x) =1 Φ 2 (x) =x Φ 3 (x) =x 2 Φ 4 (x) =x 3 Φ i (x) =0, i =5, 6,...,k O que nos permite escrever o seguinte sistema ( N =8 ): 4
5 1 i=1 1+c 8 2 i=1 x i + 3 i=1 x2 i + c 8 4 i=1 x3 i = 8 i=1 y i 1 i=1 x i + 2 i=1 x2 i + c 8 3 i=1 x3 i + c 8 4 i=1 x4 i = 8 i=1 x i y i 1 i=1 x2 i + c 8 2 i=1 x3 i + c 8 3 i=1 x4 i + c 8 4 i=1 x5 i = 8 i=1 x2 i y i 1 i=1 x3 i + c 8 2 i=1 x4 i + c 8 3 i=1 x5 i + c 8 4 i=1 x6 i = 8 i=1 x3 i y i Os novos somatórios podem ser facilmente calculados pela seguinte tabela, x 5 i x 6 i x 3 i y i Substituindo no sistema os somatórios pelos respectivos valores, 8 c 1 +56c c c 4 =40 56 c c c c 4 = c c c c 4 = c c c c 4 = Donde se retira que, c 1 = c 2 = c 3 = c 4 = O que nos permite escrever a equação da cúbica que aproxima os pontos dados pelo método dos mínimos quadrados: y = c 1 + c 2 x + c 3 x 2 + c 4 x 3 = x x x 3 (d) Aproximação por uma recta x = g(y) : F (y) =c 1 + c 2 y,com Φ 1 (y) =1 Φ 2 (y) =y Φ i (y) =0, i =3, 4,...,k O que nos permite escrever o seguinte sistema ( N =8 ): 5
6 1 i=1 1+c 8 2 i=1 y i = 8 i=1 x i 1 i=1 y i + 2 i=1 y2 i = 8 i=1 y i x i Os vários somatórios podem ser facilmente calculados pela seguinte tabela, y i x i yi 2 y i x i Substituindo no sistema os somatórios pelos respectivos valores, 8 c 1 +40c 2 =56 40 c c 2 = 364 c 1 =7 5 c 2 c 2 = =1.5 c 1 = 0.5 c 2 =1.5 O que nos permite escrever a equação da recta que, aproximando os pontos dados pelo método dos mínimos quadrados, minimiza o erro em x: x = c 1 + c 2 y = y 2 Neste problema, a função que queremos aproximar é do tipo exponencial v(t) =v 0 e t RC,t 0. No entanto se aplicarmos logaritmos aos dois membros da equação que queremos aproximar, ficámos com um função linear: ( v = v 0 e t RC ln v =lnv ) t. RC Então o que vamos fazer é aproximar os pontos ( x i,y i )=(t i, ln v i ) por uma recta; y = c 1 + c 2 x,com y + =lnv c 1 =lnv 0 c 2 = 1 RC x = t Função aproximante: recta 6
7 F (t) =c 1 + c 2 t,com O que nos permite escrever o seguinte sistema ( N =11 ): Φ 1 (t) =1 Φ 2 (t) =t Φ i (t) =0, i =3, 4,...,k c 11 1 i=1 1+c 11 2 i=1 t i = 11 i=1 (ln v i) c 11 1 i=1 t i + c 11 2 i=1 t2 i = 11 i=1 (ln v i) t i Os vários somatórios podem ser facilmente calculados pela seguinte tabela, t i ln v i t 2 i (ln v i ) t i 0 ln 10 0 ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln Nota: ln( ab)=lna +lnb ln a b = b ln a Substituindo no sistema os somatórios pelos respectivos valores, 11 c c 2 = ln c c 2 =ln c 2 = = c 1 = A partir de c 1 e c 2 podemos então calcular v 0 e C : ln v 0 = c 1 v 0 = e c 1 = v 1 RC = c 2 C = 1 Rc 2 = µf 7
8 PROBLEMAS PROPOSTOS 1 Determine a melhor aproximação da forma y = a sin(x) + b cos(x), no sentido dos mínimos quadrados, dos pontos da tabela. π 3π x 0 2 π 2 y Pretende-se determinar uma aproximação da forma y = 1 ax+b x y aos pontos da tabela. Utilizando uma mudança de variável em y determine a aproximação por aplicação do método dos mínimos quadrados. AMG, IMF, JFO, JPF 8
Método dos Mínimos Quadrados
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Método dos Mínimos Quadrados Objectivos: Estimação de valores pelo método dos mínimos quadrados. PROBLEMAS 1 Determine
EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO
Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50
Método de Quadrados Mínimos: Caso discreto
Método de Quadrados Mínimos: Caso discreto Marina Andretta ICMC-USP 23 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo numérico
PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)
PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos
Licenciatura em Engenharia Electrotécnica e de Computadores. 1 a chamada Ou seja,
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1 a chamada 00-01-08 Resolução da Parte Prática 1 (a) O valor aproximado de w é obtido a partir dos valores aproximados de x,
UNIVERSIDADE FEDERAL DO ABC
UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Capítulo 9. Teoria da Aproximação. 9.2 Mínimos Quadrados
Capítulo 9 Teoria da Aproximação 9.1 Introdução O estudo da teoria da aproximação envolve dois tipos de problemas genéricos: 1) Um problema ocorre quando uma função é dada de forma explícita, mas queremos
UNESP - Faculdade de Engenharia de Guaratinguetá 1
ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão
APROXIMAÇÃO DE FUNÇÕES MÉTODO DOS MÍNIMOS QUADRADOS
MÉTODO DOS MÍNIMOS QUADRADOS INTRODUÇÃO Frequentemente é possível estabelecer uma relação linear entre duas grandezas medidas experimentalmente. O método dos mínimos quadrados é uma maneira de se obter
UNIVERSIDADE FEDERAL DO ABC
UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra
Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente
MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x
Ajuste de dados pelo Métodos dos Mínimos Quadrados
Ajuste de dados pelo Métodos dos Mínimos Quadrados Prof. Santos Alberto Enriquez Remigio Famat-Ufu Problema Após serem efetuadas medições num gerador de corrente contínua, foram obtidos os valores indicados
Exercícios de Mínimos Quadrados
INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA Exercícios de Mínimos Quadrados 1 Provar que a matriz de mínimos quadrados é denida positiva, isto é,
Exercícios sobre zeros de funções Aula 7
Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni
x exp( t 2 )dt f(x) =
INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação
Sistemas de Equações Lineares
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 998/99 Sistemas de Equações Lineares PROBLEMAS Considere o seguinte sistema de equações da forma Ax = b : 3 2 3 2 2 2 2 x x
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
Resposta natural de circuitos RLC paralelo
Exemplo 1 i R 6 Ω 7 H 1/42 F i C v v() = V () = 1 A α = 3. 5 rad/s s = 1 rad/s ω = 6 rad/s s = 6 rad/s 2 1 v(t) = 84 (e t e 6t ) V Regime sobreamortecido ou aperiódico Teoria dos Circuitos Circuitos RLC
1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)
1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes
Módulo 4 Ajuste de Curvas
Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma
Testes Formativos de Computação Numérica e Simbólica
Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução A interpolação é outra técnicas bem conhecida e básica do cálculo numérico. Muitas funções são conhecidas apenas em um
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
Teoria de Eletricidade Aplicada
1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde
Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),
Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)
APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS
APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS Neste capítulo, o objetivo é o estudo das aplicações com os Amplificadores Operacionais realizando funções matemáticas. Como integração, diferenciação, logaritmo
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
Introdução aos Métodos Numéricos
Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.
Problema Circuito RL excitado por um escalão de tensão
PRTE III -Circuitos Dinâmicos Lineares Problema 3. - Circuito LC em regime estacionário (dc) Considere o circuito da figura 3., que representa uma rede RLC alimentada por um gerador de tensão contínua.
Ajuste de mínimos quadrados
Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}
Circuitos de Primeira Ordem
Circuitos de Primeira Ordem Magno T. M. Silva e Flávio R. M. Pavan, 5 Introdução Em geral, um circuito de primeira ordem tem um único elemento armazenador de energia (um capacitor ou um indutor) e é descrito
SME0300 Cálculo Numérico Aula 6
SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz
Métodos Numéricos. Professor Tenani - 9 de Agosto de 2015
Métodos Numéricos Professor Tenani - www.professortenani.com.br 9 de Agosto de 2015 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 51 Índice Métodos Numéricos Professor Tenani - www.professortenani.com.br
Lucia Catabriga e Andréa Maria Pedrosa Valli
1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35
O circuito RLC. 1. Introdução
O circuito RLC Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periódicamente (ou seja, de repetindo o seu movimento ao fim de um
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Numérico 3/55 Introdução Em geral, experimentos geram uma gama de dados que devem
6 Ajuste de mínimos quadrados
6 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }} n Tipicamente quando m < n esse polinômio
Lista de exercícios de MAT / I
1 Lista de exercícios de MAT 271-29 / I 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial
Exercícios de Matemática Computacional -Cap. 6 Interpolação e aproximação polinomial.. Departamento de Matemática Universidade da Beira Interior Matemática Computacional - Capítulo 6 Questão 6.1 Questão
Lista de exercícios de MAT / II
1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,
Regras de Kirchoff dos circuitos eléctricos. Descarga de um condensador. Verificar experimentalmente as regras de Kirchoff para circuitos eléctricos.
Guião de Laboratório Física MEC FEUP DEF egras de Kirchoff dos circuitos eléctricos. Descarga de um condensador Objectivos: Uso de instrumentos de medida eléctricos. Verificar experimentalmente as regras
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem
6 MÉTODO DE ELEMENTOS FINITOS - MEF
6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios
MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).
MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos
MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES
UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não
UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição
UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
Métodos de Runge-Kutta
Solução numérica de Equações Diferenciais Ordinárias: Métodos de Runge-Kutta Marina Andretta/Franklina Toledo ICMC-USP 31 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D.
Capítulo 4 - Interpolação Polinomial
Capítulo 4 - Interpolação Polinomial Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng Civil e Electrotécnica Carlos Balsa Métodos Numéricos
Notas de Aula de Cálculo Numérico
IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números
Método dos Mínimos Quadrados
Método dos Mínimos Quadrados Laura Goulart UESB 4 de Abril de 2019 Laura Goulart (UESB) Método dos Mínimos Quadrados 4 de Abril de 2019 1 / 22 Objetivos O Método dos Mínimos Quadrados (MMQ) é uma técnica
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +
Resolução de circuitos usando lei de Kirchhoff
Resolução de circuitos usando lei de Kirchhoff 1º) Para o circuito abaixo, calcular todas as correntes. a) Definimos as correntes nas malhas e no ramo central e damos nomes a elas. A definição do sentido
Circuitos Trifásicos Aula 11 Cálculo de RMS, Potência e Distorção de uma Onda
Circuitos Trifásicos Aula 11 Cálculo de RMS, Potência e Distorção de uma Onda Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL062 tinyurl.com/profvariz 1 / 30 Valor
y (n) (x) = dn y dx n(x) y (0) (x) = y(x).
Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.
Interpolação polinomial
Cálculo Numérico Prof. Daniel G. Alfaro Vigo [email protected] Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343 1970 94, 508583 1980
Equações Diferenciais Noções Básicas
Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
Linearização de Modelos Matemáticos Não-Lineares. Carlos Alexandre Mello. Carlos Alexandre Mello 1
de Modelos Matemáticos Não-Lineares Carlos Alexandre Mello 1 Embora muitos sistemas sejam vistos como lineares eles são, de fato, lineares em intervalos Se o sistema operar em torno de um ponto de equilíbrio
Experimento 7 Circuitos RC em corrente alternada
1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções
MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
Teorema da Máxima Transferência de Potência em Corrente Alternada (AC)
Teorema da Máxima Transferência de Potência em Corrente Alternada (AC) by www.eletricatotal.net 1 Introdução No capítulo 7 estudamos este teorema quando tínhamos somente resistências no circuito. Agora
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
RESOLUÇÃO DA LISTA II P3
RESOLUÇÃO DA LISTA II P3 9.25) Determine a expressão em regime permanente i o (t) no circuito abaixo se v s = 750cos (5000t)mV Z L = jωl = 40 0 3 5000 Z L = 200j Z C = jωc = j 5000 0,4 0 6 Z C = 500j Sabemos
Capítulo 6 - Equações Não-Lineares
Sistemas de Capítulo 6 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/
ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA
ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA CIRCUITO ELÉTRICOS (Revisão 00) ENGENHARIA ELÉTRICA Prof. Jether Fernandes
Andréa Maria Pedrosa Valli
Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar
f(x) = 1 + 2x + 3x 2.
Interpolação e ajuste não-segmentados 1 Introdução O problema geral da interpolação pode ser denido da seguinte forma: Seja F uma família de funções f : D E e {(x i, y i )} N i1 um conjunto de pares ordenados
Capítulo 4 - Derivadas
Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação
GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018
GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente
2004/2005 PROBLEMAS. (c) Se ainda restarem raízes complexas, reduza o polinómio e calcule essas raízes pela fórmula resolvente.
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 2004/2005 Raízes de Polinómios PROBLEMAS 1 Considere o polinómio P (x) =x x +1. (a) Quantas raízes reais (positivas e negativas)
Guia de Laboratório de Electrónica II. Amplificadores Operacionais
Instituto Superior Técnico Departamento de Engenharia electrotécnica e de Computadores Secção de Electrónica Guia de Laboratório de Electrónica II Amplificadores Operacionais (º trabalho) Grupo Nº Número
Capítulo A tensão v(t) é aplicada no circuito. Considerando que V C (0) =0, calcular:
Capítulo 5 5.1 - A tensão v(t) é aplicada no circuito. Considerando que V C (0) =0, calcular: a) A constante de tempo do circuito será τ =R.C =10 3.10-9 = 1µs período: T = 10µs f = 1/T = 100KHz b) No intervalo
Resolução de sistemas de equações não-lineares: Método Iterativo Linear
Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.
Equações Diferenciais
Capítulo 6 Equações Diferenciais 6.1 Definições Básicas Equação diferencial é uma equação onde aparecem uma função e suas derivadas. Por exemplo, f (x) + f (x) = cos(x) e y 4y + 5y + 3 = x 3 + 3x são exemplos
O problema da velocidade instantânea
Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no
Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos
Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x
( 5,2 ). Quantas soluções existem?
Escola Secundária com º ciclo D Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades Funções polinomiais Função módulo Considere as funções da família y = a(x b) Tarefa nº De que tipo de funções
Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.
Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Capítulo 5 - Interpolação Polinomial
Capítulo 5 - Interpolação Polinomial Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa
