Simulado Matemática UNICAMP
|
|
|
- Juan Azenha Carvalhal
- 8 Há anos
- Visualizações:
Transcrição
1 Simulado Matemática UNICAMP (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 00, segundo o Plano Nacional de Energia. Segundo o plano, em 00, a oferta total de energia do país irá atingir 557 milhões de tep (toneladas equivalentes de petróleo). Nesse caso, podemos prever que a parcela oriunda de fontes renováveis, indicada em cinza na figura, equivalerá a a) 178,40 milhões de tep. b) 97,995 milhões de tep. c) 5,18 milhões de tep. d) 59,56 milhões de tep.. (Unicamp 014) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c). d) 1. Meta Vestibulares (11) Página 1 de 15
2 Simulado Matemática UNICAMP (Unicamp 014) O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) t q(t) a b. q(t) at bt. d) q(t) a logb t. 1 a 1 4. (Unicamp 014) Considere a matriz M b 1 a, 1 b 1 Podemos afirmar que a) a matriz M não é invertível. b) o determinante de M é positivo. c) o determinante de M é igual a a b. d) a matriz M é igual à sua transposta. onde a e b são números reais distintos. 5. (Unicamp 014) Um caixa eletrônico de certo banco dispõe apenas de cédulas de 0 e 50 reais. No caso de um saque de 400 reais, a probabilidade do número de cédulas entregues ser ímpar é igual a a) 1. 4 b). 5 c). d) (Unicamp 014) Considere um cilindro circular reto. Se o raio da base for reduzido pela metade e a altura for duplicada, o volume do cilindro a) é reduzido em 50%. b) aumenta em 50%. c) permanece o mesmo. d) é reduzido em 5%. Meta Vestibulares (11) Página de 15
3 Simulado Matemática UNICAMP (Unicamp 014) No plano cartesiano, a reta de equação x y 1 intercepta os eixos coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas 4 a) 4,. b) (, ) 4 c) 4,. d) (, ). 8. (Unicamp 014) O módulo do número complexo a). b) 0. c). d) z i i é igual a 9. (Unicamp 014) A razão entre a idade de Pedro e a de seu pai é igual a. 9 duas idades é igual a 55 anos, então Pedro tem a) 1 anos. b) 1 anos. c) 10 anos. d) 15 anos. Se a soma das 10. (Unicamp 014) Seja x real tal que cos x tg x. O valor de sen x é a) 1. b) 1. c) 5 1. d) (Unicamp 014) Um investidor dispõe de R$ 00,00 por mês para adquirir o maior número possível de ações de certa empresa. No primeiro mês, o preço de cada ação era R$ 9,00. No segundo mês houve uma desvalorização e esse preço caiu para R$ 7,00. No terceiro mês, com o preço unitário das ações a R$ 8,00, o investidor resolveu vender o total de ações que possuía. Sabendo que só é permitida a negociação de um número inteiro de ações, podemos concluir que com a compra e venda de ações o investidor teve a) lucro de R$ 6,00. b) nem lucro nem prejuízo. c) prejuízo de R$ 6,00. d) lucro de R$ 6, (Unicamp 01) A figura abaixo mostra a precipitação pluviométrica em milímetros por dia (mm/dia) durante o último verão em Campinas. Se a precipitação ultrapassar 0 mm/dia, há um determinado risco de alagamentos na região. De acordo com o gráfico, quantos dias Campinas teve este risco de alagamento? Meta Vestibulares (11) Página de 15
4 Simulado Matemática UNICAMP a) dias. b) 4 dias. c) 6 dias. d) 10 dias. 1. (Unicamp 01) Para acomodar a crescente quantidade de veículos, estuda-se mudar as placas, atualmente com três letras e quatro algarismos numéricos, para quatro letras e três algarismos numéricos, como está ilustrado abaixo. ABC 14 ABCD 1 Considere o alfabeto com 6 letras e os algarismos de 0 a 9. O aumento obtido com essa modificação em relação ao número máximo de placas em vigor seria a) inferior ao dobro. b) superior ao dobro e inferior ao triplo. c) superior ao triplo e inferior ao quádruplo. d) mais que o quádruplo. 14. (Unicamp 01) A embalagem de certo produto alimentício, em formato de cilindro circular, será alterada para acomodar um novo rótulo com informações nutricionais mais completas. Mantendo o mesmo volume da embalagem, a sua área lateral precisa ser aumentada. Porém, por restrições de custo do material utilizado, este aumento da área lateral não deve ultrapassar 5%. Sejam r e h o raio e a altura da embalagem original, e R e H o raio e a altura da embalagem alterada. Nessas condições podemos afirmar que: a) R e H 16. r 4 h 9 b) R 9 e H 4. r 16 h c) R 4 e H 5. r 5 h 16 d) R 16 e H 5. r 5 h (Unicamp 01) Uma barra cilíndrica é aquecida a uma temperatura de 740 C. Em seguida, é exposta a uma corrente de ar a 40 C. Sabe-se que a temperatura no centro do cilindro varia de acordo com a função t 1 T t T0 TAR 10 TAR sendo t o tempo em minutos, T 0 a temperatura inicial e T AR a temperatura do ar. Com essa função, concluímos que o tempo requerido para que a temperatura no centro atinja 140 C é dado pela seguinte expressão, com o log na base 10: a) 1 log 7 1 minutos. Meta Vestibulares (11) Página 4 de 15
5 Simulado Matemática UNICAMP b) 1 1 log7 c) 1log7 minutos. d) 1log 7 1 minutos. minutos. 16. (Unicamp 01) Em um aparelho experimental, um feixe laser emitido no ponto P reflete internamente três vezes e chega ao ponto Q, percorrendo o trajeto PFGHQ. Na figura abaixo, considere que o comprimento do segmento PB é de 6 cm, o do lado AB é de cm, o polígono ABPQ é um retângulo e os ângulos de incidência e reflexão são congruentes, como se indica em cada ponto da reflexão interna. Qual é a distância total percorrida pelo feixe luminoso no trajeto PFGHQ? a) 1 cm. b) 15 cm. c) 16 cm. d) 18 cm. 17. (Unicamp 01) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo. Denotando as áreas das regiões semicircular e triangular, respectivamente, por Sφ e φ podemos afirmar que a razão Sφ T φ, quando φ π radianos, é a) π. b) π. c) π. d) π 4. T, Meta Vestibulares (11) Página 5 de 15
6 Simulado Matemática UNICAMP (Unicamp 01) Chamamos de unidade imaginária e denotamos por i o número complexo tal que i 1. Então i 0 i 1 i i i 01 vale a) 0. b) 1. c) i. d) 1 i. 19. (Unicamp 01) Sejam r, s e t as raízes do polinômio px x ax bx, a a e b são constantes reais não nulas. Se s r t, então a soma de r t é igual a b em que a) b a. a b b) a. a b c) a. a d) b a. a 0. (Unicamp 01) Para repor o teor de sódio no corpo humano, o indivíduo deve ingerir aproximadamente 500 mg de sódio por dia. Considere que determinado refrigerante de 50 ml contém 5 mg de sódio. Ingerindo-se ml desse refrigerante em um dia, qual é a porcentagem de sódio consumida em relação às necessidades diárias? a) 45%. b) 60%. c) 15%. d) 0%. 1. (Unicamp 01) Um automóvel foi anunciado com um financiamento taxa zero por R$4.000,00 (vinte e quatro mil reais), que poderiam ser pagos em doze parcelas iguais e sem entrada. Para efetivar a compra parcelada, no entanto, o consumidor precisaria pagar R$70,00 (setecentos e vinte reais) para cobrir despesas do cadastro. Dessa forma, em relação ao valor anunciado, o comprador pagará um acréscimo a) inferior a,5%. b) entre,5% e,5%. c) entre,5% e 4,5%. d) superior a 4,5%.. (Unicamp 01) Ao decolar, um avião deixa o solo com um ângulo constante de 15. A,8 km da cabeceira da pista existe um morro íngreme. A figura abaixo ilustra a decolagem, fora de escala. Podemos concluir que o avião ultrapassa o morro a uma altura, a partir da sua base, de a),8 tan (15 ) km. b),8 sen (15 ) km. c),8 cos (15 ) km. d),8 sec (15 ) km. Meta Vestibulares (11) Página 6 de 15
7 Simulado Matemática UNICAMP (Unicamp 01) Na figura abaixo, ABC e BDE são triângulos isósceles semelhantes de bases a e a, respectivamente, e o ângulo CAB ˆ 0. Portanto, o comprimento do segmento CE é: a) b) c) 5 a 8 a 7 a d) a Meta Vestibulares (11) Página 7 de 15
8 Simulado Matemática UNICAMP Gabarito: Resposta da questão 1: [D] Somando os percentuais indicados em cinza: 9,1% + 1,5% + 18,5% + 5,5% = 46,6%. 557 milhões 100% ,6 x x milhões 46,6% 100 x 59,56 milhões. Resposta da questão : [D] Do gráfico, sabemos que g(1) 0 e f(1) 1. Logo, como f(0) 1 e g( 1) 0, obtemos f(g(1)) g(f(1)) f(0) g( 1) Resposta da questão : [B] A lei da função q não pode ser q(t) at b, pois o gráfico de q não é uma reta. Além disso, como o ponto (0,1000) pertence ao gráfico de q, segue-se que a lei de q não pode ser q(t) at bt nem q(t) a logb t, para quaisquer valores reais de a e b. Portanto, a única possibilidade é t q(t) a b. Resposta da questão 4: [B] Temos 1 a 1 detm b 1 a 1 b 1 1 a b 1 ab ab (a b). Logo, sabendo que a b (o que implica em M não ser simétrica), tem-se (a b) 0 para quaisquer a e b reais distintos, ou seja, o determinante de M é positivo. Em consequência, M é invertível. Resposta da questão 5: [B] Meta Vestibulares (11) Página 8 de 15
9 Simulado Matemática UNICAMP Sejam x, y e n, respectivamente, o número de cédulas de 0 reais, o número de cédulas de 50 reais e o número total de cédulas, isto é, n x y. Logo, para um saque de 400 reais, temos: 0x 50y 400 n x y 0 x 0 0 y 8 5n 40 x 0 x 0 0 y 8 Como 40 x é um múltiplo de 5, por inspeção, encontramos Ω {(x, y) ; (0, 8), (5, 6), (10, 4), (15, ), (0, 0)}.. Portanto, como os únicos casos favoráveis são (5, 6) e (15, ), segue-se que a probabilidade pedida é igual a. 5 Resposta da questão 6: [A] Sejam V, r e h, respectivamente, o volume, o raio da base e a altura do cilindro. Logo, como π segue-se que a variação percentual pedida é dada por V r h, r π h πr h 100% 50%, π r h isto é, houve uma redução de 50% no volume do cilindro. Resposta da questão 7: [D] A equação segmentária da reta AB é x y x y Desse modo, como A (6, 0) e B (0, 4), segue-se que o ponto médio do segmento AB tem coordenadas ( 4), (, ). Resposta da questão 8: [A] Como i 4 (i ) ( 1) 1, vem Meta Vestibulares (11) Página 9 de 15
10 Simulado Matemática UNICAMP z i i i i (i ) i (i ) i 1 i. Portanto, z 1 i ( 1) 1. Resposta da questão 9: [C] Se x é a idade de Pedro, e a soma das duas idades é igual a 55 anos, então a idade do pai de Pedro é igual a 55 x. Portanto, sabendo que a razão entre as idades é igual a, 9 obtemos x 11x 110 x x 9 Resposta da questão 10: [C] Sabendo que senx π tgx, com x kπ e cos x cos x 1 sen x, vem sen x cos x tgx cos x cos x cos x sen x sen x sen x sen x sen x 5 1 sen x. Resposta da questão 11: [A] a Seja b o quociente da divisão de a por b, com a, b e a. b Nos dois primeiros meses, o investidor comprou ações, ao custo total de R$ 94,00. Portanto, vendendo essas ações ao preço unitário de R$ 8,00, segue-se que o investidor teve um lucro de R$ 6,00. Observação: Note que é indiferente o fato do investidor comprar ou não ações no terceiro mês. Meta Vestibulares (11) Página 10 de 15
11 Simulado Matemática UNICAMP Resposta da questão 1: [B] Observando o gráfico podemos notar que em quatro dias Campinas teve risco de alagamento. Resposta da questão 1: [A] Total de placas possíveis no modelo em estudo: Total de placas possíveis no modelo atual: Razão entre os dois valores: ,6. Portanto, o aumento será de,6 1 = 1,6 (160%), ou seja, menos que o dobro. Resposta da questão 14: Gabarito Oficial: [C] Gabarito SuperPro : [A] e [C] Volumes iguais. R h π.r.h π.r.h (I) r H R 5 h π.r.h 1,5.πr.h (II) r 4 H substituindo (I) em (II), temos: R 5 R 1 5 R R 4 e H 5 r 4 r 4 r r 5 h 16 Como : H 5 H 16 h 16 h 9 R 4 R r 5 r 4 As alternativas [A] e [C] estão corretas. Resposta da questão 15: Meta Vestibulares (11) Página 11 de 15
12 Simulado Matemática UNICAMP [C] De acordo com os dados do problema, temos: t 1 T t T0 TAR 10 TAR t t t t 1 1 log10 log7 t log7 1 t 1 log7 minutos Resposta da questão 16: [B] ΔHPQ ΔFQP(L.A.A o ) HP FQ K e PF HQ ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 6 K ΔAGF~ ΔQPF K 4 K 5 No ΔGBH : GH GH No Δ HPQ: HQ 4 HQ 5 Logo, a distância total percorrida pelo feixe luminoso no trajeto PFGHQ é PF + FG + GH + HQ = 5 + 5/ + 5/ + 5 = 15 cm. Resposta da questão 17: [A] Meta Vestibulares (11) Página 1 de 15
13 Simulado Matemática UNICAMP Sejam φ π 90, R o raio do semicírculo e x o lado do triângulo isósceles. x x R x.r 1 π R S( φ) π R π R T( φ) 1 xx x R π Resposta da questão 18: [D] Calculando a soma dos 014 termos de uma P.G de primeiro termo 1 e razão i, temos: (i 1) i 1 (1 i) i i i i i i 1 i 1 i 1 i 1 (1 i) Resposta da questão 19: [D] s = r t implica que as raízes deste polinômio estão em Progressão Geométrica, o que nos permite escrever que : s r, s, t, s, sq, q em que q é a razão da P.G. Utilizando as relações de Girard para soma e produto das raízes, podemos escrever: b s a b s s q s q 1 a a b r s t r t a 1 a Resposta da questão 0: [D] 50 ml...5 mg 1500 ml... x Meta Vestibulares (11) Página 1 de 15
14 Simulado Matemática UNICAMP Logo x = 150 mg. Em relação ao total recomendado, temos: % Resposta da questão 1: [B] Dividindo 70 por 4.000, temos: 70 0,0 % 4000 Resposta da questão : [A] h = altura do avião ao ultrapassar o morro. h tan 15 h,8 tg 15,8 Resposta da questão : [C] Meta Vestibulares (11) Página 14 de 15
15 Simulado Matemática UNICAMP a a a No ΔCMB : cos0 x x x a a a No ΔENB : cos0 y y y CBE ˆ Aplicando o teorema dos cossenos no triângulo CBE, temos: CE x y.x.y.cos10 4a a a a 1 CE CE CE 5a a 7a CE a. 7 Meta Vestibulares (11) Página 15 de 15
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular
EXERCÍCIOS MATEMÁTICA - 1
EXERCÍCIOS MATEMÁTICA - 1 1. (Fgv 01) Se 1 1 14, com 0, então a) 7 b) 7 c) 7 10 d) 10 e) 7 é igual a. (Unesp 011) Transforme o polinômio P 1 em um produto de dois polinômios, sendo um deles do º grau..
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
Geometria Plana 2013
Geometria Plana 013 1. (Fuvest 013) São dados, no plano cartesiano, o ponto P de coordenadas (3,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18 d) 19 e) 0.
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
3, sendo B o ponto médio de DE. O perímetro do triângulo ABC é igual a: a) 12 b) 14 c) 13
Geometria Plana I 1. Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo isósceles o ângulo externo relativo ao vértice oposto da
Rua 13 de junho,
NOME: 1. (G1 - cftmg 01) O percurso reto de um rio, cuja correnteza aponta para a direita, encontra-se representado pela figura abaixo. Um nadador deseja determinar a largura do rio nesse trecho e propõe-se
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
Matemática Matrizes e Determinantes
. (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA
MARATONA AFA 0 SIMULADO AFA. Duas cidades A e B, que distam entre si 6 km, estão ligadas por uma estrada de ferro de linha dupla. De cada uma das estações, partem trens de 3 em 3 minutos. Os trens trafegam
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados
ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...
O valor da expressão y = para x = 1,3 é: a) 2 b) 2 c) 2,6 d) 1,3 e) 1,3 Resolução. y = = = 0,7 x. Para x = 1,3 resulta y = 0,7 ( 1,3) = 0,7 + 1,3 = 2
MATEMÁTICA a 0,9 x O valor da expressão y = para x =, é: 0,7 + x a) b) c),6 d), e), 0,9 x (0,7 + x)(0,7 x) y = = = 0,7 x. 0,7 + x (0,7 + x) Para x =, resulta y = 0,7 (,) = 0,7 +, = e A soma dos valores
VESTIBULAR 2002 Prova de Matemática
VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E
Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970
A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UP 014...................................... 1 1.1.1 Questão 1................................. 1 1.1. Questão................................. 1 1.1.3 Questão 3.................................
Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001
Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
II OMIF 2019 RESOLUÇÃO DA PROVA
II OMIF 019 RESOLUÇÃO DA PROVA QUESTÃO 01 GABARITO: B Como 3µ tem que tem valor terminado em µ, então µ =0 ou µ =5. Contudo, µ não pode ser zero, pois, se fosse, todos os algarismos teriam que ser zero.
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
EXERCÍCIOS MATEMÁTICA 2
EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3
Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =
Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:
Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado
Equipe de Matemática
Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.
Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO E GRADUAÇÃO DE SARGENTOS 2020-21 SOLUÇÃO DAS QUESTÕES DE
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente
Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.
Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..
Prova Vestibular ITA 1995
Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua
QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y.
SIMULADO DE MATEMÁTICA _ 008 a SÉRIE E M _ COLÉGIO ANCHIETA-BA ELABORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO 0 Se x, y e z são números reais, é verdade que: 0)
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.
Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 20152 Gabarito Questão 01 [ 1,00 ::: (a)0,50; (b)0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
Prof: Danilo Dacar Matemática
1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. No triângulo acutângulo ABC, ilustrado na figura, o comprimento do
GABARITO ITA MATEMÁTICA
GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 101.968 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-90 Fone: 101-968/Site:
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe
CPV conquista 93% das vagas do ibmec
conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.
FGV ADM 04/JUNHO/2017
FGV ADM 0/JUNHO/017 MATEMÁTICA 01. Habitualmente, dois supermercados A e B vendem garrafas de certa marca de vinho por p reais a unidade. Em determinada semana, o supermercado A anunciou uma promoção para
04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)
RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 1 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA.
PROA DE MATEMÁTICA DA FUEST-07 FASE PROFESSORA MARIA ANTÔNIA C GOUEIA 0 Sejam a e b dois números inteiros positivos Diz-se que a e b são equivalentes se a soma dos divisores positivos de a coincide com
(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que
01. (UFRGS/1999) O algarismo das unidades de (6 10 + 1) é (A) 1. (B). (C) 3. (D) 6. (E) 7. 0. (UFRGS/1999) Considere as densidades abaixo. I. 4 4 < 8 8 II. 0,5 < 0, 5 III. -3 < 3 - Pode-se afirma que (A)
PROVAS DA SEGUNDA ETAPA PS2007/UFG
UFG-PS/7 PROVAS DA SEGUNDA ETAPA PS7/UFG Esta parte do relatório mostra o desempenho dos candidatos do grupo na prova de Matemática da ª etapa do PS7. Inicialmente, são apresentados os dados gerais dos
Colégio Santa Dorotéia
Área de Disciplina: Ano: º Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 019 Valor: xx,x pontos Aluno(a): Nº: Turma: QUEST 1 (UFG) Observe a figura: Nessa figura, o segmento
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
PROCESSO SELETIVO 2006 QUESTÕES OBJETIVAS
3 PROCESSO SELETIVO 006 QUESTÕES OBJETIVAS MATEMÁTICA 01 - O serviço de atendimento ao consumidor de uma concessionária de veículos recebe as reclamações dos clientes via telefone. Tendo em vista a melhoria
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca
QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01.
QUESTÃO 03. Analise o circuito elétrico e as afirmações que seguem. Leia as questões deste Simulado e, em seguida, responda-as preenchendo os parênteses com V (verdadeiro), F (falso) ou B (branco). Questões
Questão 01 EB EA = EC ED. 6 x = 3. x =
Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre
MATEMÁTICA. Questões de 01 a 12
GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA
21 1ª P A R T E - MATEMÁTICA ITEM 01. O produto do MMC entre 30, 60 e 192 pelo MDC entre 144, 180 e 640 pode ser expresso por 2 a x 3 x 5. O valor do expoente a é a.( ) 1 b.( ) 2 c.( ) 4 d.( ) 6 e.( )
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011
CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática
RESOLUÇÃO MATEMÁTICA 2ª FASE
RESOLUÇÃO MATEMÁTICA ª FASE UFPR 01. Encontre o conjunto solução em IR das seguintes inequações: a) 5 x x. 5 x x x 3 (-1) 3 x 3 S x R / x b) 3x 1 3. 3x 1 3 3 3x 1 3 3x 1 3 e 3x 1 3 3x 4 3x 4 x x 3 3 4
Universidade Federal dos Vales do Jequitinhonha e Mucuri.
INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática
Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios
Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2
MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
LISTA DE EXERCÍCIOS FUVEST / UNICAMP Prof. Ulisses Motta.
LISTA DE EXERCÍCIOS FUVEST / UNICAMP Prof. Ulisses Motta. 1. (Fuvest) Seja (a n ) uma progressão geométrica de primeiro termo a 1 = 1 e razão q 2, onde q é um número inteiro maior que 1. Seja (b n ) uma
& ( $ + & ( U V $ QUESTÃO 01.
Resolução da prova de Matemática do º Vestibular Simulado de 004 _ Colégio Anchieta-BA Elaboração; prof. Octamar Marques. Resolução e comentário: profa. Maria Antônia Gouveia. QUESTÃO 0. & ( 0 4 U V $
( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que
Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
