Exercitando o raciocínio lógico-dedutivo!
|
|
|
- João Guilherme Caldas Sabala
- 8 Há anos
- Visualizações:
Transcrição
1 Exercitando o raciocínio lógico-dedutivo! Exercícios de raciocínio lógico-dedutivo a favor de Deus. Primeiramente devemos entender o conceito da dedução lógica, para então, realizarmos o seu exercício. O método dedutivo é a modalidade de raciocínio lógico que faz uso da dedução para obter uma conclusão a respeito de determinada(s) premissa(s). Essencialmente, os raciocínios dedutivos se caracterizam por apresentar conclusões que devem, necessariamente, ser verdadeiras, caso todas as premissas sejam verdadeiras bem como se o raciocínio respeitar uma forma lógica válida. Partindo de princípios reconhecidos como verdadeiros (premissa maior), o pesquisador estabelece relações com uma segunda proposição (premissa menor) para, a partir de raciocínio lógico, chegar à verdade daquilo que propõe (conclusão). Mas o que é uma dedução? Simples! Uma dedução é uma espécie de argumento no qual a forma lógica válida garante a verdade da conclusão se as premissas forem verdadeiras. Por exemplo: Temos duas premissas verdadeiras: "P1: Todos os homens são mortais." / "P2: Sócrates é homem". Agora apresentemos a forma lógica válida: "TODO X é Y / Z é X / Logo, Z é Y" Veja que as duas premissas obedecem à uma forma lógica válida. Se a conclusão for "P3: Logo, Sócrates é mortal (Logo, Z é Y)",
2 então temos uma dedução. É comum definir erradamente que na dedução inferimos uma conclusão particular de premissas gerais (o famoso do geral para o particular). Isto é falso. Esse tipo de pensamento existe porque muitas pessoas só conhecem UM tipo de dedução. "TODO X é Y / Z é X / Logo, Z é Y". O problema é que existem deduções cujas premissas maiores são iniciadas por condicionais e não partem necessariamente de premissas gerais, como os modus tollens e ponens: Modus ponendo ponens: "Se P, então Q. P. Portanto Q." Modus tollens: "Se P, então Q. Q é falso. Logo, P é falso." Mas o que é modus? Por exemplo, o Modus tollens (Latim: modo que nega) ou negação do consequente, é o nome formal para a prova indireta. Considere dois exemplos: (1): Se existe fogo aqui, então aqui também há oxigênio. (2): Não há oxigênio aqui. (3): Então aqui não há fogo. (1): Se eu piso em uma casca de banana, eu caio. (2): Eu não caí. (3): Então não pisei em uma casca de banana. Em outro exemplo, o Modus ponens (Latim: modo de afirmar) é um dos modos dos silogismos condicionais (normalmente abreviado para MP). Logo abaixo segue um exemplo: (1): Se chover, então fico em casa. (2): Chove.
3 (3): Então fico em casa. Agora que já entendemos o conceito de dedução lógica, finalmente poderemos dar início ao exercício de dedução lógica a favor da existência de Deus. Sigam o silogismo abaixo (O argumento cosmológico Kalam será a nossa base de exercício): (1): Tudo o que começa a existir tem uma causa. (2): O universo começou a existir. (3): O universo tem uma causa. Agora analise esta outra verdade auto-evidente: (4): A causa primeira precisa ser INFINITA porque senão contraria a proposição (1) (Tudo o que começa a existir tem uma causa) e obviamente porque não havia tempo antes do Big Bang. Logo, chegamos a conclusão: (5): A causa primeira do universo é infinita. Agora analisemos estas outras: (6): O infinito não cabe dentro do tempo. (7): O tempo é finito. Logo, chegamos a conclusão: (8): O infinito precisa ser atemporal. Na sequência:
4 (8): O infinito precisa ser atemporal. (9): A matéria é finita. Então: (10): A matéria não cabe fora do tempo. Logo, com (9) e (10), chegamos a conclusão: (11): Um universo atemporal também é imaterial. Logo, se: (5): A causa primeira do universo é infinita. (8): O infinito precisa ser atemporal. (11): Um universo atemporal também é imaterial. Portanto: (12): O Universo teve uma causa INFINITA / ATEMPORAL e IMATERIAL, a esta causa chamamos de Deus. Este é o argumento de Kalam expandido, todas as conclusões do argumento acima partem de premissas auto-evidentes. Agora sobre a pessoalidade de Deus, segue: (A): O que está contido em uma parte do todo, também está contido no todo. (B): A inteligência está contida nos homens. (C): Os homens estão contidos no tempo e no espaço. (D): O tempo e a matéria não podem estar contidas no nada. (E): Portanto devem estar contidas ou resultar de uma causa atemporal e imaterial. (F): Assim também a inteligência está contida nessa causa primeira.
5 Esta é uma forma de deduzir uma causa atemporal, imaterial e pessoal. Ainda sobre a pessoalidade desta causa primeira, existe o argumento citado pelo autor do brilhante artigo na 2ª parte: A única maneira de ter uma causa eterna mas um efeito temporal é se a causa for um agente pessoal que livremente escolhe criar um efeito no tempo. Além deste, existe a 3ª das 5 vias do São Tomás de Aquino, onde ele diz que nem todos os seres podem ser desnecessários se não o mundo não existiria, logo é preciso que haja um ser que fundamente a existência dos seres contingentes e que não tenha a sua existência fundada em nenhum outro ser. e a 5ª via: Inteligência ordenadora: Existe uma ordem no universo que é facilmente verificada, ora toda ordem é fruto de uma inteligência, não se chega à ordem pelo acaso e nem pelo caos, logo há um ser inteligente que dispôs o universo na forma ordenada. Ainda sim, podemos continuar a inferir certas coisas sobre Ele, utilizando de deduções lógicas, mas sem o auxílio de silogismos, com base no que criou. Em outras palavras, devemos nos perguntar: Podemos entender a causa através dos seus efeitos? A resposta a esta pergunta é sim, podemos, e as seguintes conclusões podem ser tiradas: (1): Ele deve ser de natureza sobrenatural (pois criou o tempo e espaço). (2): Ele deve ser onipotente, em outras palavras, excessivamente poderoso (porque é necessário um poder além da nossa compreensão para tudo criar). (3): Ele deve ser eterno (auto-existente). (4): Ele deve ser onipresente (pois criou o espaço e não é por ele limitado). (5): Ele deve ser eterno e imutável (pois criou o tempo). (6): Ele deve ser imaterial (porque transcende o espaço físico).
6 (7): Ele deve ser pessoal (pois o impessoal não pode criar a personalidade). (8): Ele deve ser infinito e singular (porque não se pode ter dois infinitos). (9): Ele deve ser diversificado e unificado ao mesmo tempo, uma vez que unidade e diversidade existem na natureza. (10): Ele deve ser onisciente, em outras palavras, excessivamente inteligente (porque apenas um ser cognitivo pode criar um outro ser cognitivo). (11): Ele deve ter propósito (pois deliberadamente criou tudo). (12): Ele deve ser moral (porque não se pode ter uma lei moral sem o seu legislador). (13): Ele deve ser cuidadoso (ou as leis morais não teriam sido dadas). [Atenção: Para auxiliar no entendimento das premissas (12) e (13) é necessário observar que o embalsamento delas parte expressamente do argumento da moralidade objetiva] Conclusões e considerações finais: Este é um exercício de extrema relevância para os debatedores, em especial os teístas, pois a lógica é uma parte da filosofia que estuda o fundamento, a estrutura e as expressões humanas do conhecimento e suas aplicações vão além dos limites de qualquer disciplina. Seu objetivo é estudar o pensamento humano e distinguir interferências e argumentos certos e errados. A lógica em Aristóteles tinha a finalidade de apresentar a validade do argumento. Na Filosofia, a lógica tem grande importância, pois os filósofos procuram a verdade, como a lógica, e consideram aquilo que é verdadeiro universalmente. A lógica desempenha dois papéis na filosofia: Clarifica o pensamento e ajuda a evitar erros de raciocínio. Ela também permite criticar os argumentos, problemas e teorias dos filósofos. Então, gostando ou
7 não, ela pode nos demonstrar uma verdade inquestionável, o que é EXTREMAMENTE útil para derrubar as mentiras impostas pelos neo-ateus, afinal de contas, não é preciso mais do que utilizar corretamente a filosofia para derrubá-los.
Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade
Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,
O ARGUMENTO COSMOLÓGICO KALAM EM WILLIAM LANE CRAIG: UMA CONCEPÇÃO SOBRE A EXISTÊNCIA DO UNIVERSO
O ARGUMENTO COSMOLÓGICO KALAM EM WILLIAM LANE CRAIG: UMA CONCEPÇÃO SOBRE A EXISTÊNCIA DO UNIVERSO Beatriz Teixeira Back [email protected] Larissa de Oliveira [email protected] Resumo: Mediante os estudos
Silogismos Categóricos e Hipotéticos
Silogismos Categóricos e Hipotéticos Resumo elaborado por Francisco Cubal Apenas para publicação em Resumos.tk Primeiros objectivos a alcançar: Reconhecer os quatro tipos de proposições categóricas. Enunciar
Filosofia e Religião.
Filosofia e Religião. Filosofia e Cristianismo. Santo Agostinho. (354 430) É considerado um dos introdutores do pensamento filosófico grego na doutrina cristã. Fortemente influenciado por Platão, concebia
Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César
Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições
Raciocínio lógico matemático
Raciocínio lógico matemático Unidade 3: Dedução Seção 3.3 - Contrapositiva 1 Lembrando Modus pones p q, p q Se Pedro guarda dinheiro, então ele não fica negativado. Pedro guardou dinheiro. Dessa forma
Fundamentos da Computação 1. Introdução a Argumentos
Fundamentos da Computação 1 Introdução a s Se você tem um senha atualizada, então você pode entrar na rede Você tem uma senha atualizada Se você tem um senha atualizada, então você pode entrar na rede
n. 5 Implicações Lógicas Def.: Diz-se que uma proposição P (p, q, r, ) implica V V V V F F F V V F F V
n. 5 Implicações Lógicas A implicação lógica trata de um conjunto de afirmações, proposições simples ou compostas, cujo encadeamento lógico resultará em uma conclusão, a ser descoberta. Tal conclusão deverá
Expandindo o Vocabulário. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto. 12 de junho de 2019
Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA Expandindo o Vocabulário Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de junho de 2019
Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016
Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Noções de Lógica Noções de Lógica 1. Lógica? É lógico! Qual é o significado da palavra lógica? É lógico estudar lógica? A quem interessa a lógica? Lógica Matemática? Caro aluno,
Prof. João Giardulli. Unidade III LÓGICA
Prof. João Giardulli Unidade III LÓGICA Objetivo Apresentar os seguintes conceitos: argumento; verificação da validade. Argumento: Algumas definições (dicionário): 1. Raciocínio através do qual se tira
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler
ÍNDICE 1. Introdução... 5 2. Competências essenciais do aluno... 6 3. Como ler um texto... 7 4. Como ler uma pergunta... 8 5. Como fazer um trabalho... 9 6. Conteúdos/Temas 11.º Ano... 11 III Racionalidade
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior
Lógica Formal Matemática Discreta Prof. Vilson Heck Junior [email protected] Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Fundamentos de Lógica Matemática
Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
Proposições e argumentos. Proposições tem de ter as seguintes características:
Ser uma frase declarativa (afirmativa ou negativa) Ter sentido Proposições e argumentos Proposições tem de ter as seguintes características: Ter um valor de verdade( ser verdadeira ou falsa) possível determinável
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Razão e fé. Filosofia MedievaL. Douglas Blanco
Razão e fé Filosofia MedievaL Douglas Blanco CRISTIANO PALAZZINI/SHUTTERSTOCK Aspectos gerais Correntes da filosofia medieval e principais representantes: Patrística (séc. II-V), com Agostinho de Hipona,
Lógica Proposicional. 1- O que é o Modus Ponens?
1- O que é o Modus Ponens? Lógica Proposicional R: é uma forma de inferência válida a partir de duas premissas, na qual se se afirma o antecedente do condicional da 1ª premissa, pode-se concluir o seu
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
IMPLICAÇÃO LÓGICA. Prof.: Rafael Dias Ribeiro,M.Sc.
IMPLICAÇÃO LÓGICA Prof.: Rafael Dias Ribeiro,M.Sc. Imlicação Lógica O rocesso de inferência automática oderia ser realizado utilizando-se tabelas-verdade, mas esta seria uma estratégia lenta e que ocuaria
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
Exemplos de frases e expressões que não são proposições:
Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 1 Lógica: ramo da Filosofia que nos permite distinguir bons de maus argumentos, com o objectivo de produzirmos conclusões verdadeiras a partir de crenças
III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA
III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo
RACIONALIDADE ARGUMENTATIVA DA FILOSOFIA E A DIMENSÃO DISCURSIVA DO TRABALHO FILOSÓFICO
RACIONALIDADE ARGUMENTATIVA DA FILOSOFIA E A DIMENSÃO DISCURSIVA DO TRABALHO FILOSÓFICO Exercícios I. Documento elaborado no âmbito da definição das Aprendizagens Essenciais Aires Almeida, Luizete Dias
Lógica Proposicional Parte 3
Lógica Proposicional Parte 3 Nesta aula, vamos mostrar como usar os conhecimentos sobre regras de inferência para descobrir (ou inferir) novas proposições a partir de proposições dadas. Ilustraremos esse
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
INFORMAÇÃO-PROVA PROVA DE AVALIAÇÃO DE CONHECIMENTOS E CAPACIDADES Componente Específica Filosofia. Código da Prova /2015
INFORMAÇÃO-PROVA PROVA DE AVALIAÇÃO DE CONHECIMENTOS E CAPACIDADES Componente Específica Filosofia Código da Prova 6100 2014/2015 O presente documento divulga informação relativa à Prova de Avaliação de
Introdu c ao ` a L ogica Matem atica Ricardo Bianconi
Introdução à Lógica Matemática Ricardo Bianconi Capítulo 4 Dedução Informal Antes de embarcarmos em um estudo da lógica formal, ou seja, daquela para a qual introduziremos uma nova linguagem artificial
Fundamentos de Lógica Matemática
Webconferência 5-22/03/2012 Prova por resolução Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução É possível
n. 11 Argumentos e Regras de Inferência
n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições
VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO
ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à
Fundamentos de Lógica e Algoritmos. Aula 1.2 Introdução a Lógica Booleana. Prof. Dr. Bruno Moreno
Fundamentos de Lógica e Algoritmos Aula 1.2 Introdução a Lógica Booleana Prof. Dr. Bruno Moreno [email protected] Você está viajando e o pneu do seu carro fura! 2 Quais são os passos para se trocar
Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.
Matemática Discreta ESTiG\IPB 2011.12 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação
Modus ponens, modus tollens, e respectivas falácias formais
Modus ponens, modus tollens, e respectivas falácias formais Jerzy A. Brzozowski 28 de abril de 2011 O objetivo deste texto é apresentar duas formas válidas de argumentos o modus ponens e o modus tollens
CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA
CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA Prof. Dra. Renata Cristina da Penha França E-mail: [email protected] -Recife- 2015 MÉTODO Método, palavra que vem do
Fundamentos de Lógica Matemática
Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução
Exercícios de lógica -sensibilização
Exercícios de lógica -sensibilização 1. Lógica matemática: Qual a lógica da seqüência dos números e quem é x? 2,4,4,6,5,4,4,4,4,x? 2. Charadas: lógica filosófica. Um homem olhava uma foto, e alguém lhe
Lógica Computacional DCC/FCUP 2017/18
2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Lógica Computacional. Métodos de Inferência. Passos de Inferência. Raciocínio por Casos. Raciocínio por Absurdo. 1 Outubro 2015 Lógica Computacional 1
Lógica Computacional Métodos de Inferência Passos de Inferência Raciocínio por Casos Raciocínio por Absurdo 1 Outubro 2015 Lógica Computacional 1 Inferência e Passos de Inferência - A partir de um conjunto
DOUGLAS LÉO RACIOCÍNIO LÓGICO
DOUGLAS LÉO RACIOCÍNIO LÓGICO VALORAÇÃO: DESENCADEAMENTO LÓGICO LÓGICA DE ARGUMENTAÇÃO VALIDADE DE ARGUMENTO SILOGISMOS DESENCADEAMENTO LÓGICO LÓGICA DE ARGUMENTAÇÃO Def: Uma argumentação Lógica correta
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
PENSAMENTO CRÍTICO. Aulas 7 e 8. Profa. Dra. Patrícia Del Nero Velasco Universidade Federal do ABC
PENSAMENTO CRÍTICO Aulas 7 e 8 Profa. Dra. Patrícia Del Nero Velasco Universidade Federal do ABC 2016-2 Avaliação lógica de argumentos: há, entre as premissas e a conclusão, uma conexão apropriada? As
n. 18 ALGUNS TERMOS...
n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.
LÓGICA I. André Pontes
LÓGICA I André Pontes 1. Conceitos fundamentais O que é a Lógica? A LÓGICA ENQUANTO DISCIPLINA Estudo das leis de preservação da verdade. [Frege; O Pensamento] Estudo das formas válidas de argumentos.
A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto
Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA A Linguagem dos Teoremas - Parte II Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de maio
Lógica Dedutiva e Falácias
Lógica Dedutiva e Falácias Aula 3 Prof. André Martins Lógica A Lógica é o ramo do conhecimento humano que estuda as formas pelas quais se pode construir um argumento correto. O que seria um raciocínio
Fundamentos de Lógica Lógica Proposicional
Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos
Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade
Lógica Proposicional
Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado
19/05/2017 DOUGLAS LÉO RACIOCÍNIO LÓGICO
DOUGLAS LÉO RACIOCÍNIO LÓGICO 1. (VUNESP PERITO CRIMINAL PC-SP 2014) Das alternativas apresentadas, assinale a única que contém uma proposição lógica. a) Ser um perito criminal ou não ser? Que dúvida!
Lógica Proposicional e Dedução Natural 1/48. Douglas O. Cardoso docardoso.github.io
Lógica Proposicional e Dedução Natural [email protected] docardoso.github.io Lógica Proposicional e Dedução Natural 1/48 Roteiro 1 Uma Introdução Intuitiva 2 Proposições 3 DN: regras básicas
Lógica Computacional
Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional
Lógica Formal e Booleana. Introdução
Lógica Formal e Booleana Introdução [email protected] Ela, a lógica, lhe dará clareza de pensamento, a habilidade de ver seu caminho através de um quebra-cabeça, o hábito de arranjar suas ideias numa
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
INDUÇÃO ULTRAFORTE: EPISTEMOLOGIA DO SUBJETIVO
INDUÇÃO ULTRAFORTE: EPISTEMOLOGIA DO SUBJETIVO Felipe Sobreira Abrahão Doutorando, HCTE UFRJ E-mail: [email protected] 1. INTRODUÇÃO A problemática do raciocínio indutivo é abordada pelos pensadores
n. 16 DEMONSTRAÇÃO CONDICIONAL E DEMONSTRAÇÃO INDIRETA ou DEMONSTRAÇÃO POR ABSURDO DEMONSTRAÇÃO CONDICIONAL
n. 16 DEMONSTRAÇÃO CONDICIONAL E DEMONSTRAÇÃO INDIRETA ou DEMONSTRAÇÃO POR ABSURDO DEMONSTRAÇÃO CONDICIONAL Para demonstrar a validade de um argumento podemos utilizar outro método, conhecido como Demonstração
Argumento, persuasão e explicação
criticanarede.com ISSN 1749 8457 26 de Agosto de 2003 Lógica e argumentação Argumento, persuasão e explicação Desidério Murcho Este artigo procura esclarecer dois aspectos relacionados e subtis da noção
Introdução à Lógica Proposicional Sintaxe
Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe PASSOS PARA O ESTUDO DE LÓGICA Prof a Maria das Graças Marietto [email protected] 2 ESTUDO DE LÓGICA O estudo
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:
LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,
Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem.
Tautologia Uma proposição composta é uma tautologia, se for sempre verdadeira, independentemente do valor lógico das proposições simples que a compõem. Exemplos: Contradição Uma proposição composta é uma
Prof. Aparecido Carlos Duarte
Unidade I METODOLOGIA CIENTÍFICA Prof. Aparecido Carlos Duarte Conteúdo: o que é ciência; classificação e divisão da ciência; o que é método; o que é metodologia científica; o que é um paradigma; movimentos
Deus e Seus Atributos
Deus e Seus Atributos DEUS é a inteligência suprema, causa primária de todas as coisas. (LE, Q.1) Atanásio Rocha 07/09/2014 Continuação... Sendo DEUS a causa primária de todas as coisas, a origem de tudo
1ª AVALIAÇÃO DE LÓGICA BACHARELADO E LICENCIATURA EM FILOSOFIA (Prof. Rodolfo Petrônio) SOLUÇÃO DAS QUESTÕES DA PROVA
1ª AVALIAÇÃO DE LÓGICA BACHARELADO E LICENCIATURA EM FILOSOFIA 2016.2 (Prof. Rodolfo Petrônio) SOLUÇÃO DAS QUESTÕES DA PROVA 1. (1.0) Responda à seguinte pergunta, recorrendo às regras do silogismo. Você
Lecionação da Filosofia da Religião a partir da Lógica, Metafísica e Epistemologia
Lecionação da Filosofia da Religião a partir da Lógica, Metafísica e Epistemologia Domingos Faria Colégio Pedro Arrupe v180713 Domingos Faria Colégio Pedro Arrupe 1/23 Plano 1 Introdução 2 Problema de
Lógica. História da Lógica
1 Lógica História da Lógica A história da lógica começa com os trabalhos do filósofo grego Aristóteles (384-322 a.c.) de Estagira (hoje Estavro), na Macedônia, não se conhecendo precursores de sua obra,
Raciocínio Lógico. Quantificadores Lógicos: Todo, Nenhum e Existente. Professor Edgar Abreu.
Raciocínio Lógico Quantificadores Lógicos: Todo, Nenhum e Existente Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico QUANTIFICADORES LÓGICOS Chama-se argumento a afirmação de que
LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :
LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:
Onde surge a verdade logica? Surge da correspondência entre pensamento e fato, a qual nasce de um juízo sobre a realidade. Quando surge o erro?
Questionamentos 20/03 Onde surge a verdade logica? Surge da correspondência entre pensamento e fato, a qual nasce de um juízo sobre a realidade. Quando surge o erro? Quando possuímos um juízo que não resulta
Matemática Computacional. Introdução
Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles
Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.
Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos;
Aula 02 - Lógica Disciplina: Algoritmos Prof. Allbert Velleniche de Aquino Almeida E-mail: [email protected] Site: http://www.allbert.com.br /allbert.almeida Resumo aula Conceituação; Origem;
Material Extra Aula 6 Raciocínio Lógico Prof. Edgar Abreu
Auditor Fiscal Material Extra Aula 6 Raciocínio Lógico Prof. Edgar Abreu Raciocínio Lógico SILOGISMO Silogismo Categórico é uma forma de raciocínio lógico na qual há duas premissas e uma conclusão distinta
I ENCONTRO DE PESQUISADORES FAZENDÁRIOS METODOLOGIA PARA O DESENVOLVIMENTO DE PESQUISA CIENTÍFICA: ORIENTAÇÕES INICIAIS UNIDADE II O MÉTODO CIENTÍFICO
I ENCONTRO DE PESQUISADORES FAZENDÁRIOS METODOLOGIA PARA O DESENVOLVIMENTO DE PESQUISA CIENTÍFICA: ORIENTAÇÕES INICIAIS UNIDADE II O MÉTODO CIENTÍFICO Germana Parente Neiva Belchior [email protected]
Aula 6: Dedução Natural
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação
Ciências da Linguagem e da Cognição
Ciências da Linguagem e da Cognição Raciocínio. Silogismos condicionais e regras de inferência. Desempenho dos humanos. Interpretações. Modelo BDI. As apresentações power-point resultam de contribuições
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Argumentos e Validade Petrucio Viana
GAN00166: Lógica para Ciência da Computação Texto da Aula 7 Argumentos e Validade Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Argumentos 1 1.1 Observações................................
O Debate que Nunca Aconteceu: William Lane Craig vs. Richard Dawkins
O Debate que Nunca Aconteceu: William Lane Craig vs. Richard Dawkins Author : Saulo Reis Date : 3 de Janeiro de 2018 1/5 Este debate, nomeado Is God a Delusion?, aconteceu no dia 25 de outubro de 2011
Inferências No momento em que a mulher descobre marcas de baton desconhecido no colarinho do marido, produz-se (entre outras coisas) a inferência.
Módulo 5 Módulo 5 Inferências No momento em que a mulher descobre marcas de baton desconhecido no colarinho do marido, produz-se (entre outras coisas) a inferência. Inferência é o movimento do pensamento
Capítulo O objeto deste livro
Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.
Fundamentos da Computação 1. Aula 03
Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise
Aula 6: Dedução Natural
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Volume 2 Fascículo 2 Filosofia Unidade 3
Atividade extra Volume 2 Fascículo 2 Filosofia Unidade 3 Questão 1 A ideia de que, pela Ciência e pela técnica, o homem se converterá em senhor e possuidor da natureza está presente no pensamento do filósofo
