2. Determine A B, quando :
|
|
|
- HENRIQUE PLÍNIO NASCIMENTO DOS SANTOS
- 8 Há anos
- Visualizações:
Transcrição
1 COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES CAMAÇARI BA ENSINO MÉDIO ANO: 2017 NOME 1ª SÉRIE Turno: PROPESSOR: HENRIQUE LISTA 2 Intervalos e Funções I UNIDADE Se você esperar pelas condições perfeitas, nunca vai fazer nada. 1. Determine A B, quando: a) A = {x R/ 1 x 2} e B = {x R/0 x 5} b) A = {x R/x < 3} e B = {x R/1 < x < 4} c) A = {x R/ 3 x < 1} e B = {x R/0 x 3} d) A = {x R/x 5} e B = { R/x 2} 2. Determine A B, quando : a) A = {x R/0 < x < 3} e B = {x R/1 < x < 5} b) A = {x R/ 4 < x 1} e B = {x R/2 x 3} c) A = {x R/2 < x < 5} e B = {x R/1 < x < 4} d) A = {x R/ 2 x < 2} e B = {x R/x 0} 3. Dados A = [2,7], B = [ 1,5]e E = [3,9[; calcule: a) A B b) B A c) A E d) E - B 4. Sejam os conjuntos A = [ 1,6[; B = ] 4,2]; E = ] 2,4[, calcule: a) (B E) A b) E (A B) 5. (PUC-MG) S A = ] 2,3] e B = [0, 5], então os números inteiros que estão em B A são: a) -1 e 0 b) 1 e 0 c) 4 e 5 d) 3, 4 e 5 e) 0,1,2 e 3 6. (UFF-RJ) O número π 2 pertence ao intervalo: a) [1, 3 2 ] b) ]1 2, 1] c) [3 2, 2] d) ] 1,1[ e) [ 3 2, 0[ 7. Represente no plano cartesiano o seguintes pontos: A(5, 2) B(2, 5) C( 3, 6) D(4, 3) E( 2, 5) F( 5, 3) G( 4, 0) H( 0, 4) I( 0, 0) 8. Observando o plano cartesiano, responda: a) Quais sãos as coordenadas dos vértices do quadrado ABCD? b) Quantas unidades de comprimento tem cada lado? c) Determine o perímetro desse quadrado supondo o seu lado medido em cm. d) Determine a área desse quadrado. 1
2 9. Observe o triângulo ABC no plano cartesiano e responda: a) Quais são as coordenadas dos vértices desse triângulo? b) Como se classifica esse triângulo quanto aos ângulos? c) Quantas unidades de comprimento tem o cateto AB? d) Quantas unidades de comprimento tem o cateto AC? 10. Num sistema cartesiano, os pontos A( 2, 3) e C(5,4) são vértices opostos de um quadrado ABCD. a) Descubra s coordenadas dos outros dois vértices. b) Calcule o perímetro e a área desse quadrado supondo suas dimensões em cm. 11. Responda se cada um dos esquemas abaixo define ou não uma função de A em B. 12. I) Em cada caso verifique se o esquema define uma função de A em B, sendo A = { 1,0,1} e B = { 2, 1,0,1,2}. Em caso afirmativo, dê a lei que define tal função: 12. II) Sendo A = { 1, 0, 1,2} e B = { 2, 1,0,1,2,3,4}, verifique em cada caso se a lei dada define uma função de A com valores em B: 2
3 a) f(x) = 2x b) f(x) = x 2 c) f(x) = 2x Dados os conjuntos A = { 1, 0, 1,2} e B = { 1,0,1,2,5,8}, quais das leis dadas são funções de A em B? a) y = 1 x b) y = x c) y 2 = x 2 d) y = x O diagrama abaixo representa uma função f: A B Calcule: a) f( 2) b) f(0) c) f(3) + f(5) 15. Dada a função f: R R tal que f(x) = 6 2x. a) Calcule f(0) e) Obtenha x tal que f(x) = 8 b) Calcule f(3) f) Obtenha x tal que f(x) = 4 c) Calcule ( 5) g) Obtenha x tal eu f(x) = x d) Calcule ( 1 2 ) 16. Dada a função f: R R tal que f(x) = 6 x x 2. a) Calcule f( 1) d) Obtenha x tal que f(x) = 1 b) Calcule f(3) e) Obtenha x tal que f(x) = 0 c) Calcule f ( 3 ) f) Obtenha x tal que f(x) = Dada a função: R R definida por f(x) = ax + b, com a, b R, calcule a e b, sabendo que f(1) = 4 e f( 1) = Dada a função: R R definida por f(x) = mx + n, com m, n R. Se f(2) = 3 e f( 1) = 3, calcule m e n. 19. Dada a função: R R definida por f(x) = ax 2 + b, com a, b R, calcule a e b, sabendo que f(1) = 7 e f(2) = Dada a função: R R definida por f(x) = x 2 5x + 6. Calcule os valores de x para que se tenha: 3
4 a) f(x) = 0 b) f(x) = 12 c) f(x) = Observe os 6 gráficos abaixo. Eles representam funções. Determine, em cada caso o domínio e o conjunto imagem da função. 22. Quais dos gráficos abaixo representam funções de [ 3,6] em R? 23. (F.M. Santa Casa SP) O gráfico de uma função f é: O domínio e o conjunto imagem de f são respectivamente: a) [ 5,7[ e [ 2,5] b) [ 5,7[ e ] 2,5] c) [ 5, 3[ [4,7[ e ] 2,5] d) [ 5,3[ [4,7[ e ] 2,5] {1} e) R e R 4
5 24. Ao lado tem-se o gráfico de uma função f: A B, onde A = [ 1,0,1,2 ]e B = [ 3, 1,0,1 ]. Determine: a) f( 1) b) f(0) c) f(1) d) f(2) e) 3f(1) f(2) + f( 1) 25. O gráfico ao lado é de uma função f de [ 3,5] em R. Classifique como V ou F cada uma das afirmações. a) f( 3) = 7 b) f(0) = 0 c) f(4) = 0 d) f(5) = 0 e) f ( 9 2 ) < 0 f) f(3) < 0 g) f(5) f( 3) = 11 h) Im(f) = [ 4,7] 26. Responda o que se pede: 5
6 GABARITO 1) a) {x R/0 x 2} 5) C 15) a) 6 b) 0 c) 16 b) {x R/1 < x < 3} 6) C d) 7 e) 1 f)5 g) 2 c) {x R/0 x < 1} d) {x R/x 2} 8)a) A( 2, 2), B( 2, 2), C(2,2) e D( 2,2) 16) a) 7 b) 1 3 c) ) a) {x R/0 < x < 5} b) 4 c) 16cm d) 16 cm 2 9) a) A(1,1), B(5,1), C(1,3) d) 2, 3 e) 6 f) 2, ) a = 3 b = 1 x R/ 4 < x 1 ou b) { } 2 x 3 c) {x R/1 < x < 5} d) {x R/x 2} 3) a) ]5, 7] b) [ 1, 2[ c) [2, 3[ d) ]5, 9[ b) retângulo c) 4 d) 2 18) m = 2 e n = 1 19) a = 5 e b = 2 10) b) 28 cm e 49 cm 2 20) a) 2 e 3 b) 1 e 6 11) c. d 22) b, d, f 12) I) a y = x c y = 2x II) a, b 23) C 4) a) ] 4, 1[ b) ] 2, 1[ ]2,4[ 13) b, d 14) a) 7 b) 1 c) 12 24) a) 1 b) 0 c) 3 d) 0 e) 9 25) a, c, e, g, h são verdadeiros 26) a)8 b) 0 c) 4 d) 5 b, d, f são falsos e) não está definid, 3 ao domínio 21) a) D = {x R/ 2 x < 3} e Im = {y R/ 2 y < 2}. b) D = {x R/ 2 < x < 4} e Im = {y R/ 2 < y < 3} c) D = {x R/ 0 x 5} e Im = {y R/ 0 y 2} d) D = {x R/ 3 < x < 3} e Im = {y R/ 1 y 3} e) D = {x R/ 3 x 4 e x 1} e Im = {y R/ 2 < y 3} f) D = {x R/ 3 < x < 3 e x 1} e Im = {y R/ 1 y < 3} 6
Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff
1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre
Nenhum obstáculo é tão grande se a sua vontade de vencer for maior.
COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES LISTA 1: PONTO E RETA MATEMÁTICA 3ª SÉRIE TURMA: II UNIDADE ------ CAMAÇARI - BA PROFESSOR: HENRIQUE PLÍNIO ALUNO (A): DATA: / /2016 Nenhum obstáculo é tão grande
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m
GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO
Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função
Mat. Monitor: Rodrigo Molinari
Professor: Gabriel Miranda Monitor: Rodrigo Molinari Exercícios: Áreas (FUVEST, UNICAMP E UNESP) 04 jul EXERCÍCIOS 1. Renata pretende decorar parte de uma parede quadrada ABCD com dois tipos de papel de
1 a Lista de Exercícios MAT 105 Geometria Analitica
1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos.
MATEMÁTCA 01. Júnior marca com Daniela às 1 horas para juntos assistirem a um filme, cuja sessão inicia às 16 horas. Como às 1 horas, Daniela não chegou, Júnior resolveu esperar um tempo t 1 igual a 1
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
CANDIDATO: DATA: 20 / 01 / 2010
UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0
30's Volume 15 Matemática
30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna
30 s Volume 16 Matemática
0 s Volume 16 Matemática www.cursomentor.com 2 de dezembro de 2014 Q1. Um triângulo ABC é retângulo em A e possui a altura AH relativa a hipotenusa valendo 2, 4. Se BH vale 1, 8, calcule AC. Q2. Dois triângulos
Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff
1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado
30's Volume 22 Matemática
30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
LISTA EXTRA DE EXERCÍCIOS MAT /I
LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA
COLÉGIO MARISTA - PATOS DE MINAS º ANO DO ENSINO MÉDIO - 013 Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO QUESTÕES Conteúdos: - Matemática Financeira - Geometria Plana
Média, Mediana e Distância entre dois pontos
Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs
Figura 1: Construção criada utilizando Geogebra
Conteúdo: Geometria Analítica Atividade: Material complementar 1 Aluno(s):... N o(s) :... Aluno(s):... N o(s) :... Pontuação:... Professor: Fábio Vinícius Turma:... Data:.../.../... Valor obtido:... [X]
LISTA TRIGONOMETRIA ENSINO MÉDIO
LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
Página 1 de 12. 1º Trimestre/ Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito. a) B = {0, 1, 2,...
Página 1 de 1 1º Trimestre/015 ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT Rua Bento Gonçalves, 1171 Telefone: 359.1795 - CEP: 93010-0 São Leopoldo RS DISCIPLINA: Matemática PROFESSOR: César Lima
PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS
TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência
Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)
Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo
1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale:
MATEMÁTICA 1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale: a) 90 b) 85 c) 80 d) 75 e) 60 2- Nas figuras seguintes,
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:
EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA
EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto
Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),
Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa
SIMULADO GERAL DAS LISTAS
SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique
3º EM LISTA 06 Fabio Henrique 1. A temperatura, 2 em graus Celsius, de um objeto armazenado em um determinado local é modelada pela função x f(x) 2x 10, 12 com x dado em horas. A temperatura máxima, em
a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)
1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL 1. Classifica as seguintes afirmações em verdadeiras (V) ou falsas (F). Na figura estão representados, num referencial o.n. xoy a reta r de equação x = 4, e o
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.
NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
F I C H A D E D I A G N O S E. [ ] 7 ; 9 [ [π; 7 [
Curso CCS e CCT Soluções COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Disciplina Matemática A Ensino Secundário Ano 10º - A e B
Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2
Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente
Lista de exercícios matemática. Semelhança
Semelhança 1. Classifique as sentenças em verdadeiras ou falsas: a) ( ) Dois quadrados são sempre semelhantes. b) ( ) Dois polígonos são semelhantes quando seus lados correspondentes são proporcionais
Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.
Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =
Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
GEOMETRIA: ÂNGULOS E TRIÂNGULOS
Atividade: Ângulos e Triângulos (ECA 03 Atividade para 16/03/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: ÂNGULOS E TRIÂNGULOS ATENÇÃO: Estimados alunos,
Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I
UNIDADE I I funções CAPÍTULO Função quadrática Banco de questões 1 (FURG RS) Determine os números reais a e b b para que a função quadrática f x a x x a tenha valor máximo no ponto x = 3 e que esse valor
F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I. [ ] 7 ; 9 [ [π; 7 [
COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 10º - A e B Duração 90 min Curso CCS
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Resposta de alguns exercícios pares do Simmons - Capítulo 1
Seção 2 Ex. 2a x < 0 ou x > 1. Ex. 2b. -1 < x < 0 ou 0 < x < 1. Ex. 2c. -2 < x < 1. Ex. 2d. x -1 ou x 2. Ex. 2e. x = 0 ou x 1. Ex. 2f. x = -1/2 ou x -1. Ex. 2g. x < -7 ou x > 3. Ex. 2h. -3/2 < x < 1. Ex.
MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO
MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO - -2 + - 1/2 + - 1/2 + + 1 - + + + -1 2 x -1 3 - - - x Como pode cair no enem Um menino chutou uma bola. Esta atingiu altura máxima
1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula.
Exercícios para a Prova 3 de Matemática 2 Trimestre 1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula. Módulo 19 Equações de 2 Grau, Fórmula de Báskara 1. Calcule
LISTA DE REVISÃO MENSAL 1º ANO 2º TRIMESTRE PROF. JADIEL
LISTA DE REVISÃO MENSAL 1º ANO º TRIMESTRE PROF. JADIEL 1) (Unesp 016) Em um terreno retangular ABCD, de 0 m, serão construídos um deque e um lago, ambos de superfícies retangulares de mesma largura, com
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital
Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade Duração da Prova: 90 minutos A PREENCHER PELO ALUNO Nome completo
RETA E CIRCUNFERÊNCIA
RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine
Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.
Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.
GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:
Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4), B(1,1) e C(6,3).
Sistemas de coordenadas cartesianas e distâncias Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4)1,1) e C(6,3). Questão 2 Os pontos A(2,7) 3,0) 16,5) são colineares?
Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2
MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
Colégio Militar de Porto Alegre 2/11
DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
Professor Mascena Cordeiro
www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)
( Marque com um X, a única alternativa certa )
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 004/0) MÚLTIPLA-ESCOLHA ( Marque com um X, a única alternativa certa ) QUESTÃO 01. Na figura abaixo, o círculo tem centro O, OT = 6 unidades
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
Matemática Professor Diego. Tarefa 12
Matemática Professor Diego Tarefa 1 01. (UFRRJ/005) Na figura abaixo, o ponto 0 significa o centro de uma região circular de raio r = 5m. O arco BC é igual ao arco CD e a medida do seguimento AB é 8m.
A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO
A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO TEMAS DO PISM I 01 - GEOMETRIA PLANA Semelhança e congruência de triângulos Áreas. Razões Trigonométricas. 02 - Conjuntos Numéricos 03 - Funções Conceito
MATRIZ FORMAÇÃO E IGUALDADE
MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G
MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados
GAAL: Exercícios 1, umas soluções
GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
III CAPÍTULO 21 ÁREAS DE POLÍGONOS
1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além
Universidade Federal dos Vales do Jequitinhonha e Mucuri.
INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática
a < 0 / > 0 a < 0 / = 0 a < 0 / < 0
FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
Exercícios (Potenciação)
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).
Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB
