GERADORES E RECEPTORES eléctricos
|
|
|
- Armando Beppler Lage
- 10 Há anos
- Visualizações:
Transcrição
1 GADOS CPTOS léctrcos No momnto d lgarmos a chav d gnção, a batra fornc nrga léctrca ao motor d arranqu, pondo st m funconamnto. nrga químca nrga léctrca Quando um lmnto do crcuto é capaz d transformar nrga não léctrca (químca, mcânca, atómca, térmca, radant, tc.) m nrga léctrca funcona como um Grador léctrco A função d um grador num crcuto é forncr nrga sufcnt aos portadors d carga, d modo a qu a corrnt léctrca formada por ls faça funconar satsfatoramnt os aparlhos qu a corrnt prcorr. O grador não cra cargas léctrcas!!!!! 1/0
2 cptors léctrcos Durant o funconamnto do motor ocorr uma sgunda fas d funconamnto da batra, oposta à prmra: nrga léctrca nrga químca Quando um lmnto d crcuto é capaz d transformar nrga léctrca m nrga não léctrca funcona como um cptor léctrco. lmnto d crcuto cb nrga Transforma m nrga Grador Não léctrca léctrca cptor léctrca Não léctrca sstênca léctrca Térmca /0
3 Força lctromotrz - x: Batra, plha As racçõs químcas qu ocorrm no ntror da batra mantêm as cargas léctrcas opostas nos sus pólos dando orgm a um d.d.p. léctrca ntr ls. Msmo com a batra m abrto (não stá assocada a um crcuto léctrco) os pólos aprsntam-s com cargas léctrcas opostas há um d.d.p. ntr pólos da batra. sto dpnd dos matras d são ftos os pólos da sua lctropostvdad é chamada d f..m. A força lctromotrz é a nrga transformada d uma forma não léctrca m léctrca por undad d carga crculant: W J f.. m. Volt Q C Porquê nadquada a dsgnação força lctromotrz???? A força lctromotrz não é força mas nrga por undad d carga. 3/0
4 Potênca nrga - nrga por undad d tmpo dw dw dq - P V dt dt dt [WattJ/s] nrga absorvda ou forncda por um lmnto Um lmnto pod W t to Pdt absorvr potênca. forncr Quda d tnsão nrga qu é ncssára dspndr para consgur qu uma carga postva d 1C pass d um trmnal para o outro. 4/0
5 >0, v>0 P>0 lmnto fornc potênca < 0, v > 0, v > 0 < 0 P < 0 lmnto absorvu ou dsspou potênca A nrga dsspa-s por fto d Joul V PV P nrga léctrca nrga térmca Pla l da consrvação d nrga no crcuto não há prda nm cração d nrga, apnas transformação. F PD P somatóro das potêncas forncdas é gual ao somatóro das potêncas dsspadas. 5/0
6 studo do Grador Normalmnt > V cc cc 0 ca V/ ca 0 MAS V cc 0 cc é fscamnt mpossívl!!! Até agora tm-s admtdo qu a tnsão nos pólos d um grador é constant. sto, no ntanto, não corrspond à raldad, pos um grador ral não lva o potncal léctrco das cargas ao msmo valor, para qualqur corrnt léctrca. Vrfca-s xprmntalmnt qu, quanto maor a ntnsdad d corrnt léctrca, qu o atravssa, tanto mnor é a tnsão, V ntr os sus trmnas. 6/0
7 quação do Grador tgα V tgα V V tgα o trmo.tgα rprsnta uma quda d potncal proporconal à ntnsdad d corrnt léctrca, portanto tpo ôhmca. Conclu-s ntão qu tgα tma a dmnsão d uma rsstênca é ntrprtada como uma rsstênca ntrna do grador. V ; A d.d.p. ntr os trmnas do grador só srá gual à sua f..m. no caso d 0 (crcuto-abrto, ), é máxma. Assm a f..m. é numrcamnt gual à d.d.p. ntr os sus trmnas m crcuto abrto. V ca sta tnsão m vazo é a f..m. rprsnta a nrga qu o grador fornc por undad d carga. 7/0
8 f..m100v - o grador fornc uma nrga d 100 Jouls por cada carga léctrca d 1C qu o atravssa.. V cc 0; V cc -. cc 0 cc / ; cc O valor obtdo da corrnt d curto-crcuto prmtnos uma nova ntrprtação d f..m: A f..m d um grador é numrcamnt gual ao produto d rsstênca ntrna pla sua corrnt d curto-crcuto. Balanço nrgétco d um grador P P u. -. P d. P total P dsspada 8/0
9 V V V V V -. f..m. 0 cc Tnsão ntr os pólos do grador V0 cc / - corrspond ao caso m qu os trmnas do grador são undos. 0 V - Grador DAL, não possu rsstênca ntrna 0 9/0
10 cptor xprmntalmnt vrfca-s qu quando maor a ddp aplcada nos trmnas d um rcptor, tanto maor é a ntnsdad d corrnt léctrca qu por l passa. V α Quando 0 a tnsão nos sus pólos é mnma corrspond à força contra lctromotrz (f..c.m.). tgα V tgα V V tgα sta dsgnação é dsncssára uma vz qu os conctos d f..m. f.c..m., tal como os conctos d grador rcptor são sufcnts gras tornando nútl o concto suplmntar d f.c..m. A f.c..m. rprsnta a nrga útl do rcptor por undad d carga. A rprsntação d um rcptor é bastant parcda com a rprsntação d um grador. ls dfrm apnas nos sntdo da corrnt léctrca. 10/0
11 P utl V. P total.. P d. V. P total.. NOTA: Na dfnção d rcptor, não s consdra o calor como nrga não-léctrca útl. Assm, os aparlhos como torradra, scador d cablo, frro léctrco, tc. são classfcados como rsstêncas léctrcas não como rcptors. 11/0
12 Máxma transfrênca d nrga ntr grador carga 1. Cálculo da potênca útl qu o grador fornc ao crcuto xtrno para cada corrnt qu o atravssa. Sabndo qu a potênca é PV u v cc V-. P u.-. P total é a potênca qu o grador transforma m potênca léctrca qu sra forncda ao crcuto s não fossm as prdas ntrnas: P t P u P d. Cálculo d qu maxmza a nrga forncda à carga Cálculo das raízs da quação da parábola : P u.-. P0(-) 0. cc / 1/0
13 13/0 V A máxma potênca transfrda para o crcuto ocorr quando a tnsão ntr os sus pólos é gual a mtad da sua f..m. L d Ohm: V -.. ( ) ( ) OU v v v v P v P P ) ( 1 P max Dvsor d tnsão
14 14/0 ( ) ) ( ) ( ) ( ) ( ) ( ) ( d dp d dp d dp 0 >0 dp/d 0 - P MAX
15 Assocação d Gradors Analogamnt às rsstêncas léctrcas, também os gradors podm sr assocados tanto sér como m parallo. - Assocação m sér: numa assocação m sér, o pólo postvo d cada grador dv sr lgado ao pólo ngatvo do grador sgunt, assm por dant. Caractrstcas: - ntnsdad d corrnt qu passa plos gradors é a msma - A rsstênca léctrca ntrna quvalnt é gual à soma das rsstêncas ntrnas dos gradors - A f..m. quvalnt é gual à soma das f..m. dos gradors 15/0
16 Assocação m parallo: numa assocação m parallo, os pólos postvos dos gradors stão lgados a um únco ponto, o msmo ocorrndo com os pólos ngatvos Caractrstcas: - ntnsdad d corrnt léctrca total é subdvdda ntr os gradors - O nvrso das rsstêncas ntrnas é quvalnt à soma dos nvrsos das rsstêncas ntrnas dos gradors - A f..m. é quvalnt é gual a f..m. d cada grador Nst tpo d assocação só faz sntdo assocar gradors da msma f..m. A vantagm qu s obtém é o aumnto da durabldad do grador, m consquênca da dmnução da dsspação por fto d Joul, uma vz qu a ntnsdad d corrnt léctrca qu o prcorr é mnor. 16/0
17 Fonts Dpndnts ou ndpndnts Fonts ndpndnts d tnsão corrnt Font ndpndnt d tnsão - é caractrzado por uma tnsão nos trmnas compltamnt ndpndnt da corrnt qu flu nos sus trmnas d outras varávs do crcuto. K 0 V Smbologa: V(t)K Grador dal funcona como uma font ndpndnt d tnsão Font ndpndnt d corrnt - a corrnt qu a atravssa é ndpndnt é da tnsão nos sus trmnas, ou d outras varávs do crcuto. V (t)k 0 K Smbologa: 17/0
18 Nota: A font d tnsão ndpndnt é uma font dal qu não corrspond xactamnt a nnhum dspostvo ral, uma vz torcamnt lbrtara uma quantdad nfnta d nrga. Cada Coulomb qu passa através da font rcb uma nrga V Jouls o númro d coulomb por sgundo sra lmtado. X: batra 0 V m Para m a batra comporta-s como uma font dal Do msmo modo a font d corrnt ndpndnt, torcamnt fornc potênca nfnta, pos a sua corrnt é mantda ndpndntmnt da tnsão qu possa aparcr nos sus trmnas. la é no ntanto uma boa aproxmação d stuaçõs ras. Font Dpndnt 1. Font d tnsão controlada por corrnt. Font d tnsão controlada por tnsão 3. Font d corrnt controlada por corrnt 4. Font d corrnt controlada por tnsão Parâmtro controlado Parâmtro d controlo 18/0
19 lmntos Actvos Passvos: As fonts d tnsão ou d corrnt dpndnts ou ndpndnts são lmntos actvos pos são capazs d forncr potênca a qualqur dspostvo xtrno. Os lmntos aptos para apnas rcbr potênca são dsgnados d lmntos passvos. mbora nm smpr tal acontça uma vz qu o condnsador possu a capacdad d armaznar nrga, podndo dpos sr forncda dspostvos xtrnos. Dtrmnar a potênca absorvda forncda por cada lmnto do crcuto, mostr qu a soma das potêncas absorvdas é gual à soma das potêncas forncdas. P B W (potênca absorvda) P A W (potênca forncda) P 5V W (potênca absorvda) P x 3. 3 x 3.3(5) 45 W (potênca forncda) P absorvda P A P x W P forncda P B P 5V W Obdc à convnção d lmnto passvo actvo. 19/0
20 Torma Da Sobrposção 0/0
Resoluções das atividades
IO FÍSI soluçõs das atvdads Sumáro ula Eltrodnâmca III sstors... ula Eltrodnâmca I... ula 5 Eltrostátca Eltrodnâmca...6 ula 6 Eltrodnâmca...8 ula 7 rcutos létrcos I...0 ula Eltrodnâmca III sstors tvdads
TIPOS DE GERADORES DE CC
ANOTAÇÕS D MÁQUINAS LÉTRICAS 17 TIPOS D GRADORS D CC S dfnm m função dos tpos d bobnas dos pólos. ssas bobnas, atravssadas pla corrnt d xctação, produzm a força magntomotrz qu produz o fluxo magnétco ndutor.
TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.
TRANSMISSÃO DE CALOR II Prof. Eduardo C. M. Lourro, DSc. ANÁLISE TÉRMICA Dtrmnação da ára rqurda para transfrr o calor, numa dtrmnada quantdad por undad d tmpo, dadas as vlocdads d scoamnto as tmpraturas
Módulo II Resistores, Capacitores e Circuitos
Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm
TRANSFERÊNCIA DE CALOR (TCL)
CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR TRANSFERÊNCIA DE CALOR (TCL) Volum I Part 3 Prof. Carlos Boabad Nto, M. Eng. 200 2 ÍNDICE Págna CAPÍTULO 3 - TRANSFERÊNCIA DE CALOR
Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:
Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários
MÁQUINAS SÍNCRONAS PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS. Princípio de Funcionamento Aplicado ao Motor Elétrico
PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS MÁQUINAS SÍNCRONAS Princípio d indução aplicado ao grador d tnsão Princípio d Funcionamnto Aplicado ao Motor Elétrico Princípio d Funcionamnto Aplicado
/augustofisicamelo. Menu. 01 Gerador elétrico (Introdução) 12 Associação de geradores em série
Menu 01 Gerador elétrco (Introdução) 12 Assocação de geradores em sére 02 Equação do gerador 13 Assocação de geradores em paralelo 03 Gráfco característco dos geradores 14 Receptores elétrcos (Introdução)
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
Curso de Eletrônica Parte Analógica. Ademarlaudo Barbosa
urso d Eltrônca Part Analógca Admarlaudo Barbosa III spostos smcondutors Os átomos d um matral smcondutor são dspostos m uma rd crstalna. Enquanto m um átomo solado os nís d nrga acssís a um létron são
ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES
ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas
Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.
Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.
Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014
Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca
Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.
Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos
Desenvolvimento de Sistema de Avaliação da Capacidade de Transferência de Sistemas de Transmissão
1 Dsnvolvmnto d stma d Avalação da Capacdad d Transfrênca d stmas d Transmssão F. C. Gano, A. Padlha-Fltrn, UEP L. F.. Dlbon, CTEEP Rsumo- Algortmos fcnts para calcular a capacdad d transfrênca m uma rd
ELEMENTOS DE CIRCUITOS
MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES
EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES
- - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no
ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.
soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,
CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas
3 CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO A técnca uada para obtr um tma dgtal controlado nctam, bacamnt, da aplcação d algum método d dcrtação. Matmatcamnt falando, pod- obrvar qu o método d dcrtação
Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 8 Boylestad Cap. 11 Malvino
Trantor Bpolar d Junção TBJ Cap. 4 Sdra/Smth Cap. 8 Boyltad Cap. 11 Malno Amplfcador BC CC Nota d Aula SEL 313 Crcuto Eltrônco 1 Part 7 1 o Sm/216 Prof. Manol Amplfcador m Ba-Comum ( BC ) Nta confguração,
Ciências Física e química
Dretos Exclusvos para o autor: rof. Gl Renato Rbero Gonçalves CMB- Colégo Mltar de Brasíla Reservados todos os dretos. É probda a duplcação ou reprodução desta aula, com ou sem modfcações (plágo) no todo
Exame de Matemática Página 1 de 6. obtém-se: 2 C.
Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com
2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.
4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download
4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)
4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua
PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.
PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr
Avaliação de momentos fletores em lajes cogumelo de concreto armado
Avalação d momntos fltors m lajs cogumlo d concrto armado Rosângla Mara d Olvra(1); Lus Gonçalvs Clmnt(2); Ibrê Martns da Slva(3) (1) Engnhra Cvl, Unvrsdad Santa Ccíla, [email protected] (2) Engnhro
AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS
Projto Rng - Eng. Elétrca Apostla d stmas d Control I V- &$3Ì78/ 9 AÇÕE BÁICA DE CONTROLE E CONTROLADORE AUTOMÁTICO INDUTRIAI Conform havíamos mnconado no Capítulo I, a busca da qualdad, fcênca prcsão
Resoluções dos exercícios propostos
Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se
TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.
Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas
Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1
Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform
Estudo da Transmissão de Sinal em um Cabo co-axial
Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional
Transistor de junção bipolar Sedra & Smith, 4 a edição, capítulo 4
ransstor d junção bpolar Sdra & Smth, 4 a dção, capítulo 4 http://c-www.colorado.du/~bart/book/book/toc5.htm ransstor npn ransstor d junção bpolar () ransstor pnp Fgura 4. Estrutura smplfcada do transstor
Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2).
Númros complxos Atvdad d dagnóstco AB + + + AB ( ) ( ) ( ) + + + 9+ A, ; B, ; P x, y Pág AP BP x+ y x + y + x + x + + y x + x x + + y + x + yx y x A bsstr dos quadrants ímpars é a mdatr d [AB] B(, ) ;
r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .
Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a
Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1
Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas
Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:
Resoluções dos testes propostos
da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando
CARGA E DESCARGA DE CAPACITORES
ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga
Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.
Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo
λ, para x 0. Outras Distribuições de Probabilidade Contínuas
abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl
Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações
Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida
CAMPOS ELÉCTRICOS. Formalismo do Electromagnetismo (equações de Maxwell)
CAMPOS ELÉCTRICOS Fomalsmo do Elctomagntsmo (quaçõs d Maxwll) Explcatvo d todos os fnómnos qu nvolvm popdads léctcas magnétcas PROPRIEDADES DAS CARGAS ELÉCTRICAS Exstm dos tpos d cagas: postvas ngatvas.
Tópicos do Curso ELETROTÉCNICA Eng.ª Mec. - ELM
Tópicos do urso EETROTÉNIA Eng.ª Mc. - EM Est rotiro tm como finalidad ofrcr aos alunos da disciplina Eltrotécnica, dos cursos d Engnharia, spcificamnt, d ngnharia mcânica, EM, os principais fundamntos
POTÊNCIAS EM SISTEMAS TRIFÁSICOS
Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas
A JUNÇÃO P-N E O DIODO RETIFICADOR
A JUNÇÃO P-N E O DIODO RETIFICADOR JOSÉ ARNALDO REDINZ Dpartamnto d Física - Univrsidad Fdral d Viçosa CEP : 36571-, Viçosa MG 8/2 1) A TEORIA DE BANDAS PARA A CONDUÇÃO ELÉTRICA A única toria capaz d xplicar
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Segunda Prova de Física Aluno: Número USP:
Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO
II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício
03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica
Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.
5.10 EXERCÍCIO pg. 215
EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção
GRANDEZAS SINUSOIDAIS
www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas
AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. [email protected]
AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,
6. Moeda, Preços e Taxa de Câmbio no Longo Prazo
6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,
REAÇÕES DE NEUTRALIZAÇÃO TITULAÇÕES ÁCIDO-BASE SOLUÇÕES TAMPÃO
REAÇÕE DE NEUTRALIZAÇÃO Uma ração d nutralização ocorr ntr um ácido uma bas qu s nutralizam mutuamnt. Esta ração obdc normalmnt ao sguint squma: Ácido + Bas al + Água O sal formado nstas raçõs dtrmina
Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20
1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões
ASSOCIAÇÃO DE RESISTORES
Prof(a) Stela Mara de arvalho Fernandes SSOIÇÃO DE ESISTOES ssocação de esstores em Sére Dos ou mas resstores estão assocados em sére quando são percorrdos pela mesma corrente elétrca. omo U D Somando
AMPLIFICADORES A TRANSISTOR
MINISTÉIO D DUÇÃO STI D DUÇÃO POFISSION TNOÓGI INSTITUTO FD D DUÇÃO, IÊNI TNOOGI D SNT TIN USO D TOMUNIÇÕS Áa d onhcmnto: ltônca I MPIFIDOS TNSISTO Pofsso: Pdo mando da Sla J São José, nomo d 213 1 1 MPIFIDOS
,1),/75$d 2'($5$75$9e6'(3257$6'($&(662$&Ç0$5$6)5,*25Ì),&$6
,1),/75$d 2'($5$75$96'(3257$6'($&(662$&Ç0$5$6)5,*25Ì),&$6 9HULILFDomR([SHULPHQWDOGH3UHYLV}HV$QDOtWLFDVHDWUDYpVGH&)' -2 2*21d$/9(6-26&267$ $17Ï1,2),*8(,5('2 $17Ï1,2/23(6 &, '(76(VFROD6XSHULRU$JUULDGR,QVWLWXWR3ROLWpFQLFRGH9LVHX
Corrente Elétrica. Professor Rodrigo Penna - - CHROMOS PRÉ-VESTIBULARES
Corrente Elétrca Professor Rodrgo Penna E CHROMOS PRÉVESTIBULARES Corrente Elétrca Conceto Num condutor, alguns elétrons estão presos ao núcleo enquanto os chamados elétrons lvres podem passar de um átomo
Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como
Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl
Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C
apítulo da físca apactores Testes propostos ndade apítulo apactores Resoluções dos testes propostos T.55 Resposta: d O potencal elétrco de uma esfera condutora eletrzada é dado por: Vk 0 9 00 9 0,0 0 9
Módulo III Capacitores
laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.
Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.
Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que
Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador
IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id
Edson B. Ramos Féris
Edson B. amos Férs - MÉTODO ACADÊMICO E MÉTODO PÁTICO DE CÁCUO DE CICUITOS PAA TENSÕES E COENTES ATENADAS Método acadêmco A l d Krchhoff das tnsõs, qu aplcamos aos crcutos d corrnt contínua é adaptál para
ELETRICIDADE E MAGNETISMO
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente
a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.
TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand
Geradores elétricos. Antes de estudar o capítulo PARTE I
PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de
Dinâmica Longitudinal do Veículo
Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.
NR-35 TRABALHO EM ALTURA
Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através
