Página 02 de 12 MATEMÁTICA
|
|
|
- Rubens Castanho Assunção
- 9 Há anos
- Visualizações:
Transcrição
1 C Adm 1ª Série EM MATEMÁTICA 2005 Nº DE INSCRIÇÃO Tempo de duração da prova: 120 minutos Página 02 de 12 MATEMÁTICA ESCOLHA A ÚNICA RESPOSTA CERTA, CONFORME O ENUNCIADO DA QUESTÃO, ASSINALANDO-A CORRETAMENTE NO CARTÃO RESPOSTA. A INTERPRETAÇÃO CORRETA É ESSENCIAL PARA A PERFEITA SOLUÇÃO. UTILIZE AS FOLHAS DE RASCUNHO NO FINAL DA PROVA PARA FAZER OS CÁLCULOS Item 01. Analise as afirmativas abaixo, classificando-as em verdadeira (V) ou falsa (F). ( ) A soma de dois números racionais é um número racional. ( ) O produto de dois números irracionais pode ser um número racional. ( ) A soma de dois números irracionais é sempre irracional. ( ) x. y = x. y quaisquer que sejam os reais x e y. A seqüência correta de cima para baixo é: a. ( ) V V F F. b. ( ) V F V F. c. ( ) V V F V. d. ( ) F F V F. e. ( ) F F V V. Item 02. Ranna e Lara são primas que estudam no Colégio Militar de Santa Maria (CMSM). Hoje, a idade de Ranna representa 60% da idade de Lara, mas daqui a 11 anos, o dobro da idade de Ranna será igual à idade de Lara mais 13 anos. Podemos afirmar que a soma das idades de Ranna e Lara daqui a 5 anos será: a. ( ) 29 b. ( ) 32 c. ( ) 34 d. ( ) 40 e. ( ) 26
2 C Adm 1ª Série EM MATEMÁTICA 2005 Nº DE INSCRIÇÃO Página 03 de 12 Item 03. A expressão é igual a: a. ( ) 70 b. ( ) 81 c. ( ) 92 d. ( ) 97 e. ( ) 103 Item 04. Todas as manhãs, os alunos do CMSM entram em forma onde acontece a formatura matinal. Nessa formatura, são formados grupos de alunos dispostos em fila. Em uma determinada manhã, não estavam presentes todos os alunos, apenas 135, dispostos de forma retangular em filas, de tal modo que o número de alunos de cada fila supera em 6 o número de filas. A quantidade de alunos em cada fila é: a. ( ) 6 b. ( ) 9 c. ( ) 15 d. ( ) 27 e. ( ) 45
3 Página 04 de 12 Item 05. Um estudante da 8ª série do CMSM resolve uma equação tipo x 2 + bx + c = 0 e, enganando-se no valor de c, obteve as raízes 1 e 5. Um colega seu, resolvendo a mesma equação, enganou-se no valor de b e obteve as raízes 16 e 1. Resolvendo-se a equação correta, quanto se obtém somando-se o dobro da menor raiz com o triplo da outra? a. ( ) -20 b. ( ) 20 c. ( ) 10 d. ( ) 12 e. ( ) -10 Item 06. Uma caixa d água possui uma tubulação que a alimenta e que a enche em x horas. Possui também um ladrão que a esvazia em x + 5 horas. A caixa d água, quando vazia, enche em 30 horas com a tubulação e o ladrão funcionando simultaneamente. Se a tubulação entupir e a caixa d água estiver cheia, em quanto tempo ficará novamente vazia? a. ( ) 25 horas b. ( ) 15 horas c. ( ) 20 horas d. ( ) 10 horas e. ( ) 30 horas
4 Página 05 de 12 Item 07. A expressão a. ( ) 2 b. ( ) 2 1 c. ( ) é igual a: d. ( ) e. ( ) Item 08. O Perímetro do polígono abaixo é: 2, 8 x 10-5 km 0, 21 dm 2, 2 cm 0, 003 dam 40 mm a. ( ) 12,213 cm b. ( ) 9,213 cm c. ( ) 45,213 cm d. ( ) 14,1 cm e. ( ) 42,413 cm
5 Página 06 de 12 Item 09. Um professor de matemática do CMSM nasceu no Espírito Santo, um dos estados mais belos do país. Nas férias de julho, em viagem de carro à sua terra natal, na primeira metade do percurso, viajou com uma velocidade média de 70Km/h, e na segunda metade 90Km/h. Qual foi a velocidade média no percurso total? a. ( ) 70 Km/h b. ( ) 75,5 Km/h c. ( ) 78,75 Km/h d. ( ) 80 Km/h e. ( ) 81,05 Km/h Item 10. Se x + y = 2, o valor de x 4 + y 4 x 3 y 2 x 2 y xy é: a. ( ) 2 b. ( ) 4 c. ( ) 8 d. ( ) 16 e. ( ) 32
6 Página 07 de 12 Item 11. Uma fita de vídeo foi programada para gravar 6 horas. Quanto tempo já se gravou se o que resta para terminar a fita é 3 1 do que já passou? a. ( ) 5 horas b. ( ) 4,5 horas c. ( ) 4 horas d. ( ) 3,5 horas e. ( ) 3 horas Item 12. O perímetro de um triângulo equilátero cuja altura mede 5 3 cm é: a. ( ) 13 3 cm b. ( ) 10 cm c. ( ) 75 cm d. ( ) 30 cm e. ( ) 30 3 cm
7 Página 08 de 12 Item 13. A Prefeitura de Santa Maria pretende gramar toda a área interna da pista de corrida do FARREZÃO, cujo esboço está desenhado abaixo. Durante uma visita do secretário de obras ao local, esse percebeu que um jovem deu 12 voltas em torno da pista. Podemos afirmar que a Prefeitura deverá comprar m 2 de grama para realizar o serviço, e que o jovem correu m. (adote π = 3,14) 90 m 25 m... A alternativa que preenche corretamente as lacunas é: a. ( ) 6.462,5 e b. ( ) e c. ( ) 5.835,5 e d. ( ) 5.947,5 e e. ( ) e m. Item 14. A quantidade de pares (x, y) para os quais o número 12x3y é divisível por 36 é: a. ( ) 0 b. ( ) 1 c. ( ) 2 d. ( ) 3 e. ( ) 4
8 Página 09 de 12 Item 15. Um aluno resolve 6 problemas de matemática em meia hora, enquanto come 3 biscoitos e bebe uma xícara de café. Se considerarmos que o biscoito diminui a eficiência, e o café a estimula, quantos exercícios resolveria comendo 8 biscoitos e bebendo 4 xícaras de café em 2 horas? a. ( ) 9 b. ( ) 36 c. ( ) 24. d. ( ) 256 e. ( ) 318 Item 16. Um trapézio isósceles circunscrito a um círculo tem perímetro igual a 20 cm, e a medida de uma das bases excede a outra em 6 cm. A área do círculo é: a. ( ) 10π cm 2 b. ( ) 5π cm 2 c. ( ) 8π cm 2 d. ( ) 6π cm 2 e. ( ) 4π cm 2
9 Página 10 de 12 Item 17. Gasolina aumenta mais de 7% em Santa Maria Segundo cálculos de especialistas, o impacto nas bombas deveria ser de até 7%, ou R$ 0,15 por litro, no caso da gasolina, e cerca de 10%, ou R$ 0,16, no diesel. Mas, a pesquisa realizada pelo jornal A Razão em 12 postos de Santa Maria revelou que o aumento, no caso da gasolina, ficou um pouco acima desse cálculo. O aumento variou de 6,17% a 9,41%. O litro do combustível está custando, em média, R$ 0,19 a mais do que há um mês e pode ser encontrado de R$ 2,70 a R$ 2,80. (baseado na reportagem do jornal A Razão de 12 Out 05) O posto Brasil reajustou o preço da gasolina de R$ 2,55 para R$ 2,79, efetuando um aumento de aproximadamente %, enquanto o posto Classe A reajustou o seu preço de R$ 2,57 para R$, efetuando um aumento de 7%. A alternativa que completa corretamente os espaços em branco é: a. ( ) 9,41 e 2,75 b. ( ) 7,68 e 2,58 c. ( ) 6,17 e 2,80 d. ( ) 8,94 e 2,79 e. ( ) 6,17 e 2,74 C Adm - 1ª Série EM MATEMÁTICA 2005 Nº DE INSCRIÇÃO
10 Página 11 de 12 Item 18. Dentre os vários feitos do notável matemático grego Tales de Mileto, destaca-se o que ele se propôs a medir a altura de uma pirâmide egípcia sem escalar o monumento. Em um dia de sol escaldante, na presença do rei Amisis, Tales posicionou-se ao lado da pirâmide cravando verticalmente uma haste no solo. A seguir, mediu o comprimento h = 1,5 m da haste e o comprimento s = 2 m da sombra projetada por ela; calculou, também, a distância S = 170 m entre o centro da pirâmide e o ponto mais distante da sombra projetada pelo monumento, conforme mostra a figura. A partir dessa situação, Tales calculou a medida H da altura da pirâmide, para espanto do rei e de todas as pessoas presentes. Nessas condições, podemos afirmar que: a. ( ) H = 127,5 m b. ( ) H = 126,5 m c. ( ) H = 128,5 m d. ( ) H = 125 m e. ( ) H = 131,5 m C Adm - 1ª Série EM MATEMÁTICA 2005 Nº DE INSCRIÇÃO
11 Página 12 de 12 Item 19. No século XII, o matemático Bháskara publicou no Lilavati e Vija-Ganita o seguinte problema: Um bambu de 32 côvados, erguendo-se verticalmente sobre um terreno horizontal, é quebrado num certo ponto pela força do vento. Sua extremidade vem tocar a terra a 16 côvados do seu pé. Dize, matemático, a quantos côvados do pé ele se quebrou? Com base na figura acima, a resposta do problema enunciado é: a. ( ) 10 b. ( ) 11 c. ( ) 12 d. ( ) 15 e. ( ) 20 Item 20. Uma função polinomial do 1º grau é tal que f(4) = 1 e f(2) = -3. Portanto, o valor de f(20) é: a. ( ) 51 b. ( ) 30 c. ( ) 34 d. ( ) 45 e. ( ) 33 FIM DA PROVA
Lista de exercícios matemática. Semelhança
Semelhança 1. Classifique as sentenças em verdadeiras ou falsas: a) ( ) Dois quadrados são sempre semelhantes. b) ( ) Dois polígonos são semelhantes quando seus lados correspondentes são proporcionais
Equacionando problemas - II
A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula
MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...
Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
TURMA: M. DATA DE ENTREGA: 01/set/2015 COMPONENTE CURRICULAR: Matemática I. PROFESSOR: Thiago Pardo Severiano
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS NATAL CIDADE ALTA CURSO: Técnico Integrado em Multimídia TURMA: 1.20151.12807. M DATA DE ENTREGA: 01/set/2015 COMPONENTE
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO :
COLÉGIO MILITAR DE ELO HORIZONTE ELO HORIZONTE MG DE OUTURO DE 00 DURAÇÃO: 0 MINUTOS CONCURSO DE ADMISSÃO 00 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO
Prova de Matemática 1º Ano do Ensino Médio 2/6. é igual a X 1 =
Prova de Matemática 1º Ano do Ensino Médio 2/6 01. Num determinado concurso, havia apenas dois problemas: o problema A e o problema B. Corrigidas as provas, verificou-se que, do total de 1150 candidatos,
a) ( ) 1/999 b) ( ) 1/989 c) ( ) 1/99 d) ( ) 1/98 e) ( ) 1/97
01) Para facilitar a contagem de germes de uma determinada amostra de leite, foram feitas duas diluições, ambas em água destilada. Na primeira, misturou-se 1 cm 3 de leite em 99 cm 3 de água. Depois, diluiu-se
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Divisibilidade: múltiplos e divisores
DIVISIBILIDADE: MÚLTIPLOS E DIVISORES Divisibilidade: múltiplos e divisores Entender o conceito de múltiplos e divisores; Conhecer as regras de divisibilidade. 1) a) {0, 3, 6, 9...} b) 0, 13 e 26 c) 21,
Exercícios de Revisão para a Prova Final 8º ano Matemática Profª Tatiane
Exercícios de Revisão para a Prova Final 8º ano Matemática Profª Tatiane 1) Determine os valores numéricos de x, y, z na figura abaixo: 2) Determine o valor de x nos seguintes casos: a) b) 3) As semiretas
1. Escreve uma equação de 2º grau, na forma canónica que admita as raízes:
Escola Secundária de Lousada Matemática do 9º ano FT 5 Data: / 0 / 0 Assunto: Fórmula Resolvente e outros métodos de resolução; Artifício do Quadrado do binómio e número de soluções de uma equação; Problemas..
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
Escola Secundária com 3º CEB de Lousada
Escola Secundária com º CE de Lousada Ficha de Trabalho de Matemática do 8º no N.º7 ssunto: Ficha de Preparação para o Teste Intermédio (Parte ) bril 011 1. Indique qual das seguintes afirmações é verdadeira:
02. Uma maneira rudimentar e eficiente para se medir o ângulo de inclinação α de uma rua R, em relação à horizontal H, é construir um triângulo
o PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Um motorista percorre 600 km em 9 horas, dirigindo durante 4 horas numa velocidade v 1, e 5 horas numa outra velocidade v.
rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.
01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual
EXAME NACIONAL DE ACESSO 2018 (21/10/2017)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] Para colorir os quatro triângulos, indicados na figura abaixo por A, B, C e D, pode-se usar uma mesma cor mais de uma vez, desde que dois triângulos com um lado
EXAME NACIONAL DE ACESSO 2018 (21/10/2017) 1 x 3. [01] O conjunto solução, nos reais, da inequação (A) (1, 2) (B) (, 2) (C) (, 2) (3, + ) (D) (2, 3)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] O conjunto solução, nos reais, da inequação (A) (, ) (B) (, ) (C) (, ) (, + ) (D) (, ) (E) x >, é: x [0] Na figura, os triângulos ABC, CDE, EFG e GH I são equiláteros,
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
!"##$% & ' "( )*"+!)*", -. */ && )*"+
-!"##$% & ' "( )*"+!)*", -. */ && )*"+ &0120' - )*3456.7*89459!" # $ % & ' () #*" &0' - +, *" *+6:; -,"8
EXAME DE SELEÇÃO
CURSO DIURNO EXAME DE SELEÇÃO - 014 DATA: 07/1/01 DISCIPLINA: MATEMÁTICA CADERNO DE QUESTÕES Nome do candidato: Nº de inscrição: Observações: 1. Duração da prova: 10 minutos.. Identificar os cadernos de
LISTA DE RECUPERAÇÃO DE GEOMETRIA
Rua Rui Barbosa, 74 Centro/Sul Fone: (86) 106-0606 Teresina PI Site: www.procampus.com.br E-mail: [email protected] ALUNO(A): DATA: COLÉGIO PRO CAMPUS JÚNIOR LISTA DE RECUPERAÇÃO DE GEOMETRIA
ACLÉSIO MOREIRA MATEMÁTICA
ACLÉSIO MOREIRA MATEMÁTICA 1. (VUNESP-2017) Em um terreno retangular ABCD, que tem 15 m de frente para a Avenida Sumaré e uma medida x, em metros, da frente até o fundo, a diagonal AC mede 25 m, conforme
Colégio XIX de Março Educação do jeito que deve ser
Aluno(a): Nº Ano: 9º Turma: Data: 19/08/2017 Nota: Professor(a): Cláudia e Gustavo Valor da Prova: 40 pontos Orientações gerais: 1) Número de questões desta prova: 15 2) Valor das questões: Abertas (5):
1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Calcule m e n na figura abaixo. 0. Na figura abaixo, as retas r e s são paralelas, determine o valor de x. 03. Determine x nas
Curso de Professores do Ensino Básico Variante de Português, História e Ciências Sociais. Disciplina: Matemática Data: Ficha de trabalho: 15
Instituto Politécnico de Bragança Escola Superior de Educação Curso de Professores do Ensino Básico Variante de Português, História e Ciências Sociais Conteúdos: grandezas e medidas 1. Resolva cada um
Matemática. Geometria plana
Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,
Colégio Santa Dorotéia
olégio Santa Dorotéia Área de Matemática Disciplina: Matemática no: 9º Ensino Fundamental Professores: Elias e Elvira Matemática tividades para Estudos utônomos Data: / 1 / 01 ORIENTÇÕES PR REUPERÇÃO FINL
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 08 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 (UFMG ADAPTADO) O produto dos algarismos
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 004005 DE OUTUBRO DE 004 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:
Gabarito Prova da Primeira Fase - Nível Alfa
. Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA
21 1ª P A R T E - MATEMÁTICA ITEM 01. O produto do MMC entre 30, 60 e 192 pelo MDC entre 144, 180 e 640 pode ser expresso por 2 a x 3 x 5. O valor do expoente a é a.( ) 1 b.( ) 2 c.( ) 4 d.( ) 6 e.( )
QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio
LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 00 / 01 QUESTÃO ÚNICA
14 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Um conjunto A contém os cinco primeiros números naturais, os cinco primeiros números
Representando a situação problema pelo gráfico ao lado. Podemos concluir:
5(6/8d '$ 359$ '( 0$7(0È7,&$B $9$/,$d '$ 81,'$'( B B &/e*, $1&+,(7$%$ 359$ (/$%5$'$ 35 35) &7$0$5 0$548(6 5(6/8d ( &0(17È5,6 35)$ 0$5,$ $17Ð1,$ *89(,$ QUESTÃO 01 1,111 O número - 0,056 equivale a x%. Calcule
CENPRO - CONCURSOS MILITARES E TÉCNICOS 4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 22/10/12
4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH 013 Nome Completo: /10/1 Instruções ao candidato: * Esta prova é composta de 0 questões de múltipla escolha; * A duração da prova é de horas, incluindo
QUESTÃO 16 Se x = ( ) : 10, então x 2 é igual a: a) 64 b) 144 c) 196 d) 225 e) 256
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 208 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Se x = (2 +. 6 2) : 0, então x 2 é igual
LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
EXERCÍCIOS. Questão 03 (INSS) A razão entre o número de homens e de mulheres, funcionários de uma firma, é de 5
EXERCÍCIOS Questão 01 (Banco do Brasil) Uma empresa possui atualmente.100 funcionários. Se a relação entre o número de efetivos e contratados é de 5 para, quantos são os efetivos? a) 600 b) 1.000 c) 1.500
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
CONCURSO VESTIBULAR UNIFICADO 2008
QUESTÃO: 12 12. Um ônibus de 40 lugares foi fretado para uma excursão. A empresa exigiu de cada passageiro R$ 20,00 mais R$ 2,00 por lugar vago. Sobre esse contexto, analise as afirmações a se seguir:
COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO
Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
PROVA DE MATEMÁTICA QUESTÃO 31 UFMG. Seja. O valor de m é D) 20 PROVA DE MATEMÁTICA
QUESTÃO 31 Seja. O valor de m é A) B) 68 3 85 1 C) 15 1 D) 0 3 5 QUESTÃO 3 Um reservatório cúbico, de 50 cm de profundidade, está com água até a metade e precisa ser totalmente esvaziado. O volume de água
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 016 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA
MARATONA AFA 0 SIMULADO AFA. Duas cidades A e B, que distam entre si 6 km, estão ligadas por uma estrada de ferro de linha dupla. De cada uma das estações, partem trens de 3 em 3 minutos. Os trens trafegam
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
1ª Parte Questões de Múltipla Escolha. Matemática
c UFSCar ª Parte Questões de Múltipla Escolha Matemática O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. O diâmetro AB mede 0 cm e o comprimento
Conteúdos Exame Final 2018
Componente Curricular: Matemática Ano: 7º ANO Turmas: 17 A, B, C, D e E. Professoras: Fernanda, Kelly e Suziene Conteúdos Exame Final 2018 1. Números Racionais 2. Área e perímetro de figuras planas 3.
POTENCIAÇÃO, RADICIAÇÃO, PRODUTOS NOTÁVEIS, FATORAÇÃO, EQUAÇÕES DE 1 o E 2 o GRAUS
MATEMÁTICA ÁLGEBRA vesti.stockler.com.br Stockler Vesties @StocklerVest Stockler Vesties EXERCÍCIOS DE POTENCIAÇÃO. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800
a < 0 / > 0 a < 0 / = 0 a < 0 / < 0
FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 016 Nível Segunda Fase 4/09/16 Duração: 4 Horas e 30 minutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos acima. Esta prova contém
Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios.
Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medidas de Comprimentos e Primeiros Exercícios. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Unidades de Medidas de Comprimentos e
CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND MATEMÁTICA 2008/09 PAG. 02 PROVA DE MATEMÁTICA
CONCURSO DE ADMISSÃO 6º ANO/ENS. FUND MATEMÁTICA 2008/09 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. Uma pessoa foi a um concurso
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
Exercícios (Potenciação)
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)
MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA
ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 14.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos
CONJUNTOS NUMÉRICOS Questão 01 Dados os números racionais 2,3; ; ; ; ; ; ;, escreva:
Educador: Flávia da C. Lemos C. Curricular: Matemática Data: / /2012 Estudante:. 7º Ano CONJUNTOS NUMÉRICOS Questão 01 Dados os números racionais 2,3; ; ; ; ; ; ;, escreva: a) Os números inteiros. b) Os
Professor B PB Matemática
Professor B PB Matemática 11)Com uma peça de tecido foram confeccionadas 45 toalhas de mesa com 1,40 m de comprimento por 2,40 m de largura. Quantas toalhas de 0,80 m de comprimento por 0,70 m de largura
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. Estamos no mês de outubro.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
COLÉGIIO MIILIITR DE BRSÍÍLII CONCURSO DE DMISSÃO 00 PROV DE MTEMÁTIIC RELIZÇÃO: OUT 0 1ª SÉRIIE Chefe da Seção INSTRUÇÕES PR RELIZÇÃO D PROV 1. CONFIR SU PROV a. Sua prova contém 10 (dez) páginas numeradas
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 6º ano - Ensino Fundamental 3º Trimestre Matemática Dia: 07/1 - sexta-feira Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - 3º TRI 1. A prova terá
Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre
Área das figuras planas
AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:
QUESTÕES OBJETIVAS. 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196:
QUESTÕES OBJETIVAS 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60. Um grupo de 6 pessoas é formado por André, Bento,
QUESTÃO 16 (FGV ADAPTADO) Trinta por cento da quarta parte de é igual a:
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (FGV ADAPTADO) Trinta por cento da quarta parte de 6 00 é igual
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Uma adição possui três parcelas. Se aumentarmos
1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale:
MATEMÁTICA 1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale: a) 90 b) 85 c) 80 d) 75 e) 60 2- Nas figuras seguintes,
DISCIPLINA: Matemática SÉRIE: 9. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:
GOIÂNIA, / / 2017 PROFESSOR: Douglas Rezende DISCIPLINA: Matemática SÉRIE: 9 ALUNO(a): No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: - É
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
1ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS
1ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS 1) Num triângulo isósceles, o ângulo do vértice mede a quarta parte da soma dos ângulos da base. A medida do ângulo do vértice é: a) 36º b) 45º c) 50º d) 60º
TRABALHO DE RECUPERAÇÃO
COLÉGIO SHALOM 65 Ensino Fundamental II 6º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO 1) Os códigos do quadro ao lado foram usados para escrever a mensagem
Trigonometria Básica e Relações Métricas
1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 2017 2ª PROVA SUBSTITUTIVA DE MATEMÁTICA Aluno(a): Nº Ano: 8º Turma: Nair Prado Data: 18/09/2017 Nota: Professor(a): Luiz Gustavo Valor da Prova: 40
QUESTÃO 16 (OBM) Ana começou a descer uma escada no mesmo instante em que Beatriz começou a
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 05 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBM) Ana começou a descer uma escada no
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales Período: 1 o Bimestre Série/Turma: 1 a série EM Professor(a): Cleubim Valor: Nota: Aluno(a): Razão e Proporção
Página 02 de 11 MATEMÁTICA
Tempo de duração da prova: 120 minutos Página 02 de 11 MATEMÁTICA ESCOLHA A ÚNICA RESPOSTA CERTA, CONFORME O ENUNCIADO DA QUESTÃO, ASSINALANDO-A CORRETAMENTE NO CARTÃO RESPOSTA. A INTERPRETAÇÃO CORRETA
EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA
OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva
dos ângulos internos de um polígono regular de n lados é dada por: S i
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 Dado o polígono regular: Cada ângulo interno
Lista de Exercícios extras (aula 1 à aula 3)
Lista de Exercícios extras (aula 1 à aula 3) 1) (IFMG) - Sejam dois ângulos x e y tais qual (2x) e (y + 10 ) são complementares e (5x) e (3y - 40 ) são suplementares. O ângulo x mede a)5 b)10 c)15 d)20
Revisão EXAMES FINAIS Data: 2017.
Revisão EXAMES FINAIS Data: 07. Componente Curricular: Matemática Série: 3ª Turmas : 3 A, 3 B e 3 C Professor (a): Anelise Bruch DICA Estudar com o auxilio das apostilas, das provas anteriores, das listas
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
PROVA DE MATEMÁTICA Assinale a alternativa correta.
COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENINO DA AERONÁUTICA ECOLA PREPARATÓRIA DE CADETE-DO-AR EXAME DE ADMIÃO AO O ANO DO CPCAR 007 PROVA DE MATEMÁTICA 9 de AGOTO de 006 Transcreva o dado abaixo para
Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva
Matemática Guarda Municipal de Curitiba Prof.: Braian Azael da Silva CONJUNTOS NUMÉRICOS Exercício A sequência abaixo foi criada repetindo-se as letras da palavra JANEIRO na mesma ordem: J A N E I R O
GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012
GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012 Questão 46. D Divide o círculo em 6 partes iguais Custo = C/6. Questão 47. D R + 2R = 1m 5R = 100 cm R = 20 cm = 3.(200).100 = 60000cm 3 M = 60000.(0,9)
Solução do Simulado PROFMAT/UESC 2012
Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo
Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS
Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um
