Trabalho 4 Traçar Elipses
|
|
|
- Stella Cabral Vilanova
- 9 Há anos
- Visualizações:
Transcrição
1 Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Matemática Trabalho 4 Traçar Elipses Meios Computacionais de Ensino Professor: Jaime Carvalho e Silva ([email protected]) Autora: Tatiana Salvador [email protected] Data:
2 Geometria é compreender o espaço. Compreender o espaço em que a criança, respira, se move. O espaço que a criança deve aprender a conhecer, explorar, conquistar, de modo a poder aí viver, respirar e mover-se melhor. (...) A geometria presta-se, mais do que outros temas, para a aprendizagem da matematização da realidade e para a realização de descobertas, que sendo feitas também com os próprios olhos e mãos, são mais convincentes e surpreendentes. Hans Freudenthal The Case of Geometry in Mathematics as na Educational Task Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 2/15
3 ÍNDICE 1. INTRODUÇÃO DEFINIÇÃO DA ELIPSE E SEUS ELEMENTOS MÉTODOS DE CONSTRUÇÃO DA ELIPSE MÉTODO ARQUIMEDIANO MÉTODO DE VAN SCHOOTEN MÉTODO DE VAN SCHOOTEN MÉTODO DO JARDINEIRO MÉTODO DO DANNY VISCAINO CONCLUSÕES...15 Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 3/15
4 1. INTRODUÇÃO Foi-nos proposto à cadeira Meios Computacionais de Ensino a elaboração de um trabalho escrito incorporando um tema retirado do site da Casa das Ciências cuja ilustração fosse apenas feita com imagens produzidas com os softwares POLY e CINDERELLA. Antes demais, importa saber que Casa das Ciências é um portal Gulbenkian para professores que tem por objetivo possibilitar que os professores recolham materiais de ciências no ensino básico e secundário ( Este portal contém imensos temas de grande interesse para os alunos, entre os quais materiais de Matemática, Física, Química, Biologia, materiais multimédia, aplicações, documentos bem como materiais relativos aos três ciclos de ensino e ao ensino secundário. Depois de alguma pesquisa na área da Matemática e com a palavra-chave geometria encontrei vários temas interessantes a abordar. No entanto, a minha escolha recaiu sobre o ficheiro relacionado com Traçar elipses intitulado Três métodos para traçar elipses. Neste ficheiro encontramos três diferentes maneiras de traçar elipses: o método de Arquimedes, o método de Van Schooten e o método do Jardineiro. Ao longo o trabalho irei então explicar como se pode traçar uma elipse através do método arquimediano, do método de Van Schooten (apresento dois métodos), do método do jardineiro e ainda do método redescoberto por Danny Viscaino, utilizando o software CINDERELLA em todas as ilustrações apresentadas. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 4/15
5 2. DEFINIÇÃO DE ELIPSE E SEUS ELEMENTOS A elipse é o conjunto dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano os focos - é constante. Ou seja, no plano da elipse existem dois pontos que representam os focos, tais que a soma dada por um ponto genérico da elipse. é contante, sendo P da elipse: Observemos agora a seguinte imagem e especifiquemos então quais são os elementos Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 5/15
6 Assim, os elementos da elipse são: Focos: são os pontos Distância Focal: é a distância 2c entre os focos Centro: é o ponto médio C do segmento Eixo Maior: é o segmento de comprimento 2a ( contém os focos e os seus extremos pertencem à elipse) Eixo Menor: é o segmento de comprimento 2b ( é ortogonal a no seu ponto médio) Vértices: são os pontos Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 6/15
7 3. MÉTODOS DE CONSTRUÇÃO DA ELIPSE 3.1. MÉTODO ARQUIMEDIANO Como construir uma elipse através do método Arquimediano: Traçamos uma circunferência de centro A e raio qualquer; Marcamos um ponto B qualquer na circunferência; Traçamos a reta que passa pelos pontos A e B, a; Traçamos uma perpendicular à reta a que passe por B; Marcamos outro ponto C qualquer na circunferência; Traçamos a segmento de reta [AC]; Determinamos o ponto médio do segmento de reta [AC], designado D; Ocultamos o segmento de reta [AC]; Traçamos a circunferência de centro em D e que passe pelo ponto A; Traçamos outra perpendicular à reta a que passe pelo ponto A; A interseção da reta com a circunferência menor é o ponto E; Traçamos uma perpendicular à reta a que passe pelo ponto C; A interseção da reta com a circunferência menor é o ponto F; Traçamos o segmento de reta [EF]; Marcamos um ponto G qualquer no segmento de reta [EF]; Deixar o ponto G a marcar o seu traço; Animar o ponto C sobre a circunferência maior. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 7/15
8 Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 8/15
9 3.2. MÉTODO DE VAN SCHOOTEN 1 Como construir uma elipse através do método de Van Schooten 1: Construímos uma circunferência de centro A; Construímos um ponto B sobre a circunferência; Construímos o segmento [AB]; Construímos um ponto C no interior da circunferência; Construímos o segmento [CB]; Construímos o ponto médio, D, do segmento [CB] e de seguida construímos a perpendicular a esse segmento que passa em D; Construímos o ponto de interseção, E, do segmento [AB] com a reta perpendicular construída; Fazemos com que o ponto E deixe rasto; Por fim, animamos o ponto B sobre a circunferência. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 9/15
10 Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 10/15
11 3.3. MÉTODO DE VAN SCHOOTEN 2 Como construir uma elipse através do método de Van Schooten 2: Construímos um segmento de reta [XY]; Construímos um segmento [PQ] que vai determinar o raio de duas circunferências; Construímos dois pontos A e D sobre o segmento [XY]; Construímos duas circunferências com centros em A e D, respetivamente, e com raio igual ao comprimento do segmento [PQ]; Marcamos o ponto de interseção B das duas circunferências; Construímos os segmentos [AB] e [BD]. Construímos um ponto E no segmento [BD] e fazemos com que esse ponto deixe rasto; Animamos o ponto D sobre o segmento [XY]; Fazemos uma reflexão do ponto E em relação ao segmento [XY] e obtém-se o pretendido. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 11/15
12 3.4. MÉTODO DO JARDINEIRO Como construir uma elipse através do método do jardineiro: Construímos um segmento de reta [AB], que será o eixo maior da elipse; Marcamos nesse segmento os focos da elipse, ou seja, marcamos dois pontos, C e D, tais que AC=DB; Ainda no segmento [AB] construímos um ponto arbitrário E; Construímos a circunferência de centro C e raio [AE]; Construímos a circunferência de centro D e raio [BE]; Marcamos os pontos de interseção das duas circunferências, digamos F e G; Construímos a semirreta [CF] e a semirreta [DF]; Animamos o ponto E (fazendo-o passar por F) o que nos leva à elipse, pois o ponto F vai deixar rasto, trançando a elipse desejada. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 12/15
13 3.5. MÉTODO (RE)DESCOBERTO POR DANNY VISCAINO Como construir uma elipse através do método de Danny Viscaino: Construímos uma circunferência centrada em e com um raio qualquer; Marcamos um ponto sobre a circunferência; Construímos o segmento de reta [ ]; Construímos um ponto no segmento de reta [ ]; Construímos uma circunferência centrada em e com raio igual à medida do comprimento do segmento [ ]; Marcamos um ponto D na circunferência maior; Construímos um segmento de reta [ ]; Marcamos o ponto de intersecção,, do segmento de reta [ ] com a circunferência menor; Traçamos uma reta perpendicular ao segmento de reta [ ] que passe pelo ponto ; Traçamos uma reta paralela ao segmento de reta [ ] que passe pelo ponto ; Marcamos o ponto de intersecção,, das duas retas construídas anteriormente; Construímos o segmento de reta [AF]; Deixamos o ponto a marcar o seu traço; Animamos o ponto sobre a circunferência maior. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 13/15
14 Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 14/15
15 4. CONCLUSÕES Este trabalho foi, na minha opinião, um dos trabalhos que mais luta deu e um dos mais interessantes. É, de facto, uma mais-valia hoje em dia ter softwares como o CINDERELLA que nos permitem mostrar aos alunos como as coisas se constroem, como funcionam Também eu aprendi imenso com a elaboração deste trabalho, fiquei a conhecer melhor o funcionamento deste software e a saber aplicá-lo e usá-lo melhor. Meios Computacionais de Ensino Mestrado em Ensino da Matemática no 3ºCiclo e Secundário - 15/15
Márcio Dinis do Nascimento de Jesus
Márcio Dinis do Nascimento de Jesus Trabalho 2 Construções com o Cinderella! Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Construções com o Cinderella! Trabalho
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica.
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Sobre Ontem estava pensando em algumas funções interessantes para implementar em um editor de
1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista
GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas:
GeoGebra: Guia Rápido GEOGEBRA GUIA RÁPIDO O GeoGebra é um programa educativo de Geometria Dinâmica que permite construir, de modo simples e rápido, pontos, segmentos de reta, retas, polígonos, circunferências,
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente
Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas
Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza Hipérbole É o conjunto de todos os pontos de um plano cuja diferença das distâncias, em valor absoluto, a dois pontos fixos desse plano é constante.
Desenho Geométrico e Concordâncias
UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS
1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a
1. Depois de se traçar um segmento [PQ] como na figura abaixo, uma solução possível é o ângulo c obtido da seguinte forma:
METAS CURRICULARES DO ENSINO BÁSICO EXEMPLOS DO CADERNO DE APOIO 2.º CICLO António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo 5.º ano Parte 1, pág. 69 1. Considera os ângulos a e b
Lista de Exercícios de Geometria
Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)
Tema III Geometria analítica
Tema III Geometria analítica Unidade 1 Geometria analítica no plano Páginas 154 a 181 1. a) A(1, ) B( 3, 1) d(a, B) = ( 3 1) + (1 ( )) = ( 4) + 3 = 16 + 9 = 5 = 5 b) C ( 3, 3) O(0, 0) d(c, O) = (0 3 )
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas
Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
Geometria Analítica - Aula
Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1
GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza 1. GEOMETRIA ANALÍTICA Respostas da 10 a
Geometria Analítica: Cônicas
Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto
Item 1 (Paralelismo) Item 2 (Distâncias)
Item 1 (Paralelismo) 1. Representam-se os dados do enunciado; 2. Este relatório apresenta dois processos distintos para a resolução do primeiro exercício do Exame: o Processo A (que consiste em visualizar
Profª.. Deli Garcia Ollé Barreto
CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro
Porque?
Porque? 6 Parábola Dados um ponto F e uma reta d, com F d, seja p = d(f,d). Chamamos parábola o conjunto dos pontos P do plano que são equidistantes de F e d, i. é., d(p,f)= d(p,d). 7 Elementos da Parábola
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 7 1 Geometria Analítica I 01/03/2011 Respostas dos Exercícios do Módulo I - Aula 7 Aula 7 1. a. Procedendo como nos Exemplos 7.1 e 7.2, ou a Proposição 7.15
Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:
Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,
Curso de Geometria Analítica. Hipérbole
Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 03 - Cônicas- Circunferência, Elipse, Hipérbole e Parábola
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 10º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Título do Livro. Capítulo 5
Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema
P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)
P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
Avaliação 1 Solução Geometria Espacial MAT 050
Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados
Geometria Analítica - Aula
Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:...
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:... ============================================================================================= 1.
DEFINIÇÃO. Dados dois pontos F 1 e F 2 chamamos elipse o conjunto dos pontos P do plano tais que d(p,f 1 )+d(p,f 2 )=2a. Cônicas 4
CÔNICAS Cônicas ELIPSE Cônicas 3 DEFINIÇÃO Dados dois pontos F 1 e F chamamos elipse o conjunto dos pontos P do plano tais que d(p,f 1 )+d(p,f )=a. Cônicas 4 ELIPSE Cônicas Elipse é o conjunto dos pontos
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina [email protected] Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1
14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos
TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies
Geometria e seus Artefatos
Geometria e seus Artefatos Prof. Mário Selhorst Construção dos conceitos básicos de Geometria Analítica 1 SUMÁRIO (Use os links para acessar diretamente aos exemplos e o ícone 1. Perpendicular por um ponto
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre Lugar Geométrico Lugar geométrico é uma figura cujos pontos e somente eles satisfazem determinada condição. Todos
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 SUMÁRIO Apresentação ---------------------------------------------- 3 Capítulo 5 ---------------------------------------------------4
I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.
9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,
1 Construções geométricas fundamentais
UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Expressão Gráfica 1 Construções geométricas fundamentais Prof ª Drª Adriana Augusta Benigno dos Santos Luz Jheniffer Chinasso de
Mat. Monitor: Roberta Teixeira
1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos
Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.
n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo
Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano
Módulo de Elementos básicos de geometria plana Condição de alinhamentos de três pontos e a desigualdade triangular Oitavo Ano Condição de alinhamentos de três pontos e a desigualdade triangular Exercícios
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de
ENSINO MÉDIO - 2012 LISTA DE EXERCÍCIOS 3ª SÉRIE - 3º TRIM PROF. MARCELO DISCIPLINA : GEOMETRIA GEOMETRIA ANALÍTICA 1) Espcex (Aman) 2013) Considere a circunferência 2 2 λ x y 4x 0 e o ponto P 1, 3. Se
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
MAT-230 Diurno 1ª Folha de Exercícios
MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO
LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO 1) Um ponto P é da forma P(2a + 4, a 6). Determine P nos seguintes casos: a) P pertence ao eixo das abscissas. b) P pertence ao eixo das ordenadas. c)
Curiosidades relacionadas com o Cartaz da OBMEP 2017
Curiosidades relacionadas com o Cartaz da OBMEP 2017 As esferas de Dandelin A integração das duas maiores competições matemáticas do país, a OBMEP e a OBM, inspirou-nos a anunciar nos quatro cantos do
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 4.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/03/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Prova Modelo Teste 4 1 Nuno Miguel Guerreiro I Chave da Escolha Múltipla CCDBA 1. Tem-se quanto à proposição p: F A + AO + }{{ OB } 1 DC A + AB 1 AB 5 }{{}}{{ 5 } AB
Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade
1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:
5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências
Iniciação ao Estudo de Geometria com TI-Nspire» Passeio no Parque» Circunferências P Estrada Parque CONTEÚDO ELABORADO PELO GRUPO T 3 PORTUGAL, UTILIZADO NAS SESSÕES PRÁTICAS DOS DIAS T 3 2014 I. Passeio
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1
18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
0 < c < a ; d(f 1, F 2 ) = 2c
Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Ricardo Bianconi. Fevereiro de 2015
Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a superfície esférica tem centro no ponto V e contém o ponto A, então
APLICAÇÕES NA GEOMETRIA ANALÍTICA
4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas
Resolução Analógica de Problemas Geométricos
Resolução Analógica de Problemas Geométricos Lúcio Souza Fassarella Abril/2018 Diversos problemas reais podem ser resolvidos pela construção de modelos físicos, modelos matemáticos ou simulações computacionais.
Módulo de Elementos básicos de geometria plana. Conceitos Geométricos Básicos. Oitavo ano
Módulo de Elementos básicos de geometria plana Conceitos Geométricos Básicos Oitavo ano Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Dados quatro pontos distintos
Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.
Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da
Exercícios de Matemática II
Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para
Atitudes: Valoração da importância da representação gráfica na resolução de problemas em situações geométricas.
Unidade 3. Geometria Analítica no Plano: Enquadramento curricular em Espanha: Objetos de aprendizagem 3.1. Conceito de vetor. Conhecer o conceito de Vetor fixo. Analisar os componentes de um vetor: módulo,
Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016
INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
À descoberta das retas, semirretas e segmentos de retas
À descoberta das retas, semirretas e segmentos de retas RETAS NÃO TÊM PRINCIPIO NEM FIM Uma reta pode representar-se de duas formas: através de uma letra minúscula, s (reta s) através de duas letras maiúsculas,
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
Aula 4. Coordenadas polares. Definição 1. Observação 1
Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas
Expressões Algébricas
META: Resolver geometricamente problemas algébricos. AULA 11 OBJETIVOS: Introduzir a 4 a proporcional. Construir segmentos que resolvem uma equação algébrica. PRÉ-REQUISITOS O aluno deverá ter compreendido
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico
