Márcio Dinis do Nascimento de Jesus
|
|
|
- Matheus Henrique Amarante Angelim
- 9 Há anos
- Visualizações:
Transcrição
1 Márcio Dinis do Nascimento de Jesus Trabalho 2 Construções com o Cinderella! Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013
2 2 Construções com o Cinderella! Trabalho 2: Resolver o seguinte trabalho usando o software Cinderella e colocar na respetiva página pessoal: (P1) Constrói um pentágono regular de lado dado (5, por exemplo). (P2) Constrói um pentágono regular de lado dado (5, por exemplo) usando apenas o compasso. (P3) Constrói um pentágono regular de lado dado (5, por exemplo) usando um pentagrama. (P4) Constrói um octógono regular de lado dado (5, por exemplo). Palavras chave: Cinderella. Compasso. Octógono. Pentágono. Pentagrama. Regular. 1. Introdução Este trabalho insere-se na unidade curricular de Meios Computacionais no Ensino, incluída na parte curricular do Mestrado em Ensino de Matemática no 3 o Ciclo do Ensino Básico e no Secundário. Cinderella é um programa de Geometria Dinâmica da autoria de J. Richter-Gebert e U. H. Kortenkamp. Como programa destinado a fazer geometria no computador, Cinderella constitui um utensílio para investigar construções geométricas de grande qualidade. A matemática em que o Cinderella se baseia foi, em parte, especialmente desenvolvida na sua criação [1]. O menu de ferramentas apresenta imagens sugestivas, o que permite que as suas funções sejam facilmente intuídas. Para além das utilidades habituais, existem ícones para criar pontos, retas, circunferências, polígonos, cónicas, pontos médios, perpendiculares, paralelas, para medir comprimentos, ângulos, áreas, para animar, para criar exercícios interativos, para usar o compasso, etc. No Editor de Aspeto (no menu Propriedades) encontra-se a possibilidade de escolher as cores dos elementos (pontos, retas, fundo da construção, etc), bem como os respetivos tamanhos, entre outras opções. Alguns dos pontos fortes do Cinderella são a criação de exercícios interativos de correção automática, trabalhar com geometrias não euclidianas e a exportação de construções interativas para colocação na Internet. Nas secções seguintes iremos apresentar uma possível (orientação) para a resolução dos problemas propostos.
3 3 2. Construções (uma orientação) 2.1. Problema (P1). 1. Comece com um segmento de reta DE, com medida de comprimento 5, que será o lado do pentágono (podendo ser com outra medida de comprimento qualquer veja Observação 2.1 [Construção interativa]). 2. Com centro em D, faça uma circunferência, C 1, de raio DE. 3. Com centro em E, faça uma circunferência, C 2, de raio ED. 4. Marque os pontos de intersecção entre as duas circunferências C 1 e C 2 como F e G. 5. Com centro em G, faça uma terceira circunferência, C 3, de raio GD. 6. Marque os pontos de intersecção com as outras duas circunferências, C 1 e C 2, como H e K. 7. Pelos pontos F e G trace uma reta, marcando o ponto L na intersecção com circunferência C 3 (esta reta é a mediatriz de [DE]). 8. Trace uma reta passando pelos pontos H e L, definindo o ponto M na intersecção com a circunferência C Trace uma reta passando pelos pontos K e L, definindo o ponto N na intersecção com a circunferência C Com centro em N faça uma nova circunferência, C 4, de raio DE. 11. Faça outra circunferência, C 5, com centro em M e raio DE. 12. Considere o ponto O de intersecção das duas circunferências C 4 e C 5 com a mediatriz de [DE]. 13. Unindo estes pontos, D, E, M, O e N, formamos o pentágono regular pretendido (Figura 1). Figura 1: Pentágono regular de medida de comprimento do lado 5.
4 Problema (P2). 1. Comece por desenhar com o compasso uma circunferência C 1 de centro D e raio r = 5 (podendo ser com outra medida de comprimento qualquer veja Observação 2.1 [Construção interativa]). 2. Seja E um ponto arbitrário da circunferência C Trace uma circunferência de centro em E e raio r. 4. Seja F o ponto de intersecção dessa circunferência com C Trace uma nova circunferência de centro F e raio r. 6. Seja G o novo ponto de intersecção. 7. Analogamente, trace uma circunferência C 2 de centro em G e raio r. 8. Seja H o ponto de intersecção de C 1 com C Com centros E e H e raio EG trace dois arcos. 10. Seja L um dos pontos de intersecção desses dois arcos. 11. Trace uma circunferência C 3 de centro em E e raio DL. 12. Seja M um dos ponto de intersecção de C 3 com C 1, M é o ponto médio do arco F G, (Figura 2). Figura 2: Ponto médio do arco GF (só com compasso). 13. Encontre o ponto médio do segmento de reta [GF ], só com compasso. (a) Construa 2 círculos, C 4 e C 5, um centrado em G e outro centrado em F, ambos com raio GF. (b) Localize o ponto K, que é a intersecção dos círculos C 4 e C 5, e faça um círculo C 6, centrado em K (também de raio GF ) que passe pelos pontos G e F. (c) Localize o ponto N, que é a intersecção dos círculos C 6 e C 5, e faça um círculo, C 7, centrado em N (também de raio GF ) que passe pelos pontos F e K. (d) Localize o ponto O, que é a intersecção dos círculos C 5 e C 7, e faça um círculo, C 8 centrado em O e que passa por K. (e) Construa um circulo C 9, centrado em G e que passe por O.
5 5 (f) Localize os pontos P e Q, que são as intersecções do círculo C 9 com o círculo C 8. (g) Localize o ponto M 1 (ponto médio do segmento de reta [GF ]), que é a intersecção dos círculos C 9 e C 10, com centros P e Q e raio P O = QO (Figura 3). Figura 3: Ponto médio do segmento de reta [GF ] (só com compasso). 13. Com centro em K e raio KM 1, trace uma circunferência que intersecta C Localize os pontos R e S, que são respetivamente os pontos de intersecção das circunferências C 11 com as circunferências C 4 e C Trace duas circunferências, C 12 e C 13, de raio GF e com centros em R e S (respetivamente). 16. Localize o ponto T de intersecção das circunferências C 12 e C Até este momento, encontrou os pontos G, F, S, T e R (Figura 4).
6 6 Figura 4: Vértices do pentágono (só com compasso). 18. Unindo os pontos anteriores obtém um pentágono de lado r, usando apenas o compasso (Figura 5). Figura 5: Pentágono regular de medida de comprimento do lado r = 5 (só com compasso).
7 Problema (P3). 1. Considere um segmento de reta [DE], de medida de comprimento 5, que será o lado do pentágono (podendo ser com outra medida de comprimento qualquer veja Observação 2.1 [Construção interativa]). 2. A partir deste segmento comece por construir o pentagrama: (a) Determine a mediatriz do segmento de reta [DE], reta c, que passa pelo ponto F (ponto médio de [DE]). (b) Marque sobre a reta c o ponto G tal que F G = DE. (c) Trace a reta que passa pelos pontos E e G, reta d. (d) Marque sobre a reta d o ponto H tal que GH = DF. (e) Trace a circunferência C 1, de centro em E e raio [EH]. (f) Marque sobre a reta c o ponto K (intersecção de C 1 com c). (g) Trace as circunferência C 2 e C 3, de centros respetivamente K e E e raio [DE]. (h) Marque o ponto L, ponto de intersecção de C 2 com C 3. (i) De modo análogo se encontra o ponto M. (j) Una os pontos M, E, K, D, L e M e obterá o pentagrama (Figura 6). Figura 6: Pentagrama
8 8 3. Para obter o pentágono de lado pretendido, una os ponto M, D, E, L, K e M (Figura 7). Figura 7: Pentágono regular de medida de comprimento do lado Problema (P4). 1. Considere um segmento de reta [DE] de medida de comprimento 5, que será o lado do octógono (podendo ser com outra medida de comprimento qualquer veja Observação 2.1 [Construção interativa]). 2. Trace a reta, r 1, que contém o segmento de reta [DE]. 3. Trace a reta, r 2, que passa por E e faz um ângulo de 135 o com a reta r 1 (note que a medida de cada ângulo interno de um octógono regular é 135 o ). 4. Seja F o ponto de r 2 tal que DE = EF. 5. No ponto F proceda de forma análoga à anterior, e assim sucessivamente, até encontrar os pontos G, H, K, L e M. 6. Una os pontos anteriores e obtém o octógono pretendido (Figura 8).
9 9 Figura 8: Octógono regular de medida de comprimento do lado 5. Observação 2.1. [Construção interativa] As construções anteriores podem ser feitas de forma interativa. Para tal comece por desenhar um segmento de reta, [AB], arbitrário, no Cinderella. Seja C um ponto arbitrário de AB. Com o compasso marque o segmento de reta [DE], tal que DE = AC e preceda como explicado em cada um dos problemas anteriores. Fazendo deslocar o ponto móvel C sobre o segmento de reta [AB], vai obter vários polígonos (no caso dos problemas (P1), (P2) e (P3) pentágonos e no caso do problema (P4) octógonos (ver animação no Cinderella). Observação 2.2. As construções anteriores tiveram por base a Webgrafia [2-6]. Na Resolução do problema (P2), também foi fundamental o livro [7]. 3. Webgrafia [1] [2] [3] [4] [5] [6] caetano/sitedg/compasso/compasso04.htm [7] Ian Stewart, Galois Theory, third edition. Chapman and Hall/Crc, 2003, pp
EXERCÍCIOS RESOLVIDOS - RETAS
1 EXERCÍCIOS RESOLVIDOS - RETAS 1. CONSTRUIR A MEDIATRIZ DE UM SEGMENTO DADO AB = 7 CM: - Utilizando a régua trace o segmento AB de medida igual a 7 cm. - Com a ponta seca do compasso no ponto A, abra
EXERCÍCIOS RESOLVIDOS POLÍGONOS
1 EXERCÍCIOS RESOLVIDOS POLÍGONOS 1. CONSTRUIR A ESCALA DE "DELAISTRE" PARA CONSTRUÇÃO DE POLÍGONOS REGULARES. Seja o segmento AB igual ao lado do polígono. Sendo AB=Lado, centralizar a ponta seca do compasso
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre Lugar Geométrico Lugar geométrico é uma figura cujos pontos e somente eles satisfazem determinada condição. Todos
Expressões Algébricas
META: Resolver geometricamente problemas algébricos. AULA 11 OBJETIVOS: Introduzir a 4 a proporcional. Construir segmentos que resolvem uma equação algébrica. PRÉ-REQUISITOS O aluno deverá ter compreendido
EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA
1 EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA 1. RECUPERAR O CENTRO DE UMA CIRCUNFERÊNCIA DADA. Seja uma circunferência de raio 3 cm. Marque na circunferência três pontos quaisquer A, B e C. Trace as cordas AB
Desenho Geométrico e Concordâncias
UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que
Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências
Iniciação ao Estudo de Geometria com TI-Nspire» Passeio no Parque» Circunferências P Estrada Parque CONTEÚDO ELABORADO PELO GRUPO T 3 PORTUGAL, UTILIZADO NAS SESSÕES PRÁTICAS DOS DIAS T 3 2014 I. Passeio
Trabalho 4 Traçar Elipses
Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Matemática Trabalho 4 Traçar Elipses Meios Computacionais de Ensino Professor: Jaime Carvalho e Silva ([email protected])
Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de
Guia do C.a.R. para Alunos do Terceiro Ciclo
Guia do C.a.R. para Alunos do Terceiro Ciclo Núcleo de estágio 2008-2009 Professores associados: Dr. José Carlos Santos Maria José Carvalho Escola Básica de Santa Marinha Faculdade de Ciências da Universidade
GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas:
GeoGebra: Guia Rápido GEOGEBRA GUIA RÁPIDO O GeoGebra é um programa educativo de Geometria Dinâmica que permite construir, de modo simples e rápido, pontos, segmentos de reta, retas, polígonos, circunferências,
Geometria e seus Artefatos
Geometria e seus Artefatos Prof. Mário Selhorst Construção dos conceitos básicos de Geometria Analítica 1 SUMÁRIO (Use os links para acessar diretamente aos exemplos e o ícone 1. Perpendicular por um ponto
RETAS E ARCOS Prof. Robson Naoto Shimizu
CONCORDÂNCIA ENTRE RETAS E ARCOS Prof. Robson Naoto Shimizu O QUE É? Concordar duas linhas, de mesma ou diferente espécie, é reuni-las de forma que nos pontos de contato se possa passar de uma para
Geometria Analítica Plana
Softwares Para o Ensino da Matemática Geometria Analítica Plana Nome do programa: EUKLID Descrição: Software de geometria dinâmica e construções em régua e compasso para criação de figuras geométricas.
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo
EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS
1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a
TI-NSPIRE NA GEOMETRIA
TI-NSPIRE NA GEOMETRIA Raul Aparício Gonçalves Maio 2010 Índice Introdução ----------------------------------------------------------------------------------------- -------- 02 Como construir pontos, segmentos
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado
Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff
Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.
APÊNDICE D SEQUÊNCIA DIDÁTICA
APÊNDICE D SEQUÊNCIA DIDÁTICA ENCONTRO 1 Atividades de familiarização do menu do GeoGebra Apresentação de um PowerPoint com as informações sobre o curso e um vídeo desenvolvido no GeoGebra para estabelecermos
EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS
1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três
EXERCÍCIOS RESOLVIDOS TANGÊNCIA
1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS
Coletânea Desenhos Geométricos PUC - Goiás 2018/1 Escola de Engenharia - Prof. Dr. Luciano Mendes Caixeta
01. Conceito básico Mediatriz Todos os pontos de uma circunferência são equidistantes de seu centro. Em um segmento B, qualquer, a mediatriz estará no encontro de duas circunferências (raio maior que a
Resolução Analógica de Problemas Geométricos
Resolução Analógica de Problemas Geométricos Lúcio Souza Fassarella Abril/2018 Diversos problemas reais podem ser resolvidos pela construção de modelos físicos, modelos matemáticos ou simulações computacionais.
No desenvolvimento deste guião, procure sempre colocar as denominações referidas em cada ponto.
1 Este 3º guião contém atividades elementares com a finalidade de favorecer o reconhecimento e a consolidação das funções de algumas ferramentas do programa de geometria dinâmica Geogebra. Neste guião,
FICHA DE ESTUDO DE DESENHO GEOMÉTRICO 1ª º ANO PROFESSOR:
FICHA DE ESTUDO DE DESENHO GEOMÉTRICO 1ª Unidade Letiva 2016 9º ANO PROFESSOR: Jean Ricardo Nahas de Oliveira LUGAR GEOMÉTRICO Uma figura geométrica recebe o nome de lugar geométrico, quando os pontos
CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.
CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois
5. Desenhos geométricos
17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 2
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 2 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
EXERCÍCIOS RESOLVIDOS TRIÂNGULOS
1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o
ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).
QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos
DESENHO GEOMÉTRICO ETECVAV
DESENHO GEOMÉTRICO ETECVAV 1. DEFINIÇÕES Desenho Geométrico é a "expressão gráfica da forma, considerando-se as propriedades relativas à sua extensão, ou seja, suas dimensões" (REIS, p.08) Existem três
DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA
DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA Ana Clecia Capistrano de Maria 1, Leandro Santos Ribeiro 2, Ana Clívia Capistrano de Maria 3. 1. Instituto Federal de Educação,
ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.
ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em
Aula 19 Elipse - continuação
MÓDULO 1 - AULA 19 Aula 19 Elipse - continuação Objetivos Desenhar a elipse com compasso e régua com escala. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio
Plano de Recuperação Final EF2
Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos
CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 1
Prof. Élio Mega ONSTRUÇÕES GEOMÉTRIS E DEMONSTRÇÕES nível 1 partir do século V a, os matemáticos gregos desenvolveram uma parte da Matemática, intimamente ligada à Geometria, conhecida como onstruções
MA13 Geometria AV3 2014
MA13 Geometria AV3 014 Questão 1 [,0 pt ] Sejam P T e P U segmentos tangentes a duas circunferências concêntricas, com T pertencente à menor e U à maior. Se o segmento P T corta a circunferência maior
Plano de Recuperação Final EF2
Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos
I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.
9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,
CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO
CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO
Hewlett-Packard CIRCUNFERÊNCIA. AULAS 01 e 02. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CIRCUNFERÊNCIA AULAS 01 e 0 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário Circunferência... 1 CIRCUNFERÊNCIA E CÍRCULO... 1 CIRCUNFERÊNCIA... 1 CÍRCULO... 1 CORDA DE
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA O Desenvolvimento de Hábitos de Pensamento: Um Estudo de Caso a partir de Construções
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina [email protected] Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades
Desenho Mecânico. Prof. Carlos Eduardo Turino
Desenho Mecânico Prof. Carlos Eduardo Turino [email protected] Objetivo da Aula Aplicar a construção de desenhos geométricos utilizando régua e compasso Conceitos Básicos Retas paralelas
Resolução de equações do 2º grau no Cabri-Géomètre II
Resolução de equações do º grau no Cabri-Géomètre II Para resolver equações do º grau, provavelmente você já aprendeu várias estratégias que usavam sempre a álgebra (parte da matemática que estuda equações
OFICINA DE DOBRADURAS PARTE I
OFICINA DE DOBRADURAS PARTE I OFICINA DE DOBRADURAS - OBMEP APRESENTAÇÃO O uso de dobraduras no ensino de geometria está tornando-se cada vez mais reconhecido como um instrumento pedagógico interessante
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO
1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1.1. O que é desenho geométrico Desenho Geométrico é o conjunto de técnicas utilizadas
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de
TANGÊNCIA. rectas tangentes a circunferências.
Desenho Técnico I TANGÊNCIA Se prestarmos atenção no funcionamento das esteiras de uma escada rolante, nas esteiras que transportam cargas, no equilibrista do circo, o qual está sobre uma tábua apoiada
MAT-230 Diurno 1ª Folha de Exercícios
MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e
Profª.. Deli Garcia Ollé Barreto
CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro
EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS
Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre ARCOS ARQUITETÔNICOS em Desenho Geométrico. Geométrica vol.1 n.8c. 2005. Desenhos construídos por: Enéias de A. Prado e Maria Bernadete
18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA
COMPUTADOR NA SALA DE AULA Estudo das cônicas com Geometria Dinâmica José Carlos de Souza Jr. Andréa Cardoso Unifal MG COMPUTADOR NA SALA DE AULA A exploração de softwares de Geometria Dinâmica nos permite
Mini Curso GeoGebra. Download do GeoGebra: Java: / Divisão.
Mini Curso GeoGebra Etapa I: Apresentação do Software; O GeoGebra é um software dinâmico, muito usado em conteúdos de Geometria, Álgebra, Estatística e Cálculo. É um programa livre e de código aberto;
Quadrilátero convexo
EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: [email protected] Aula 10 (material didático produzido por Paula Rigo)
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
1 Processos Aproximativos
Desenho Geométrico Professora: Sandra Maria Tieppo 1 Processos Aproximativos Um processo é chamado aproximativo quando existe nele um erro teórico. Muitas vezes tais processos podem ser convenientes haja
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA
O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA SERGIO ALVES IME-USP [email protected] Sejam A e A dois pontos distintos de um fixado plano euclidiano E. Se E indica a circunferência de diâmetro
DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS
1 DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1. DIVIDIR O SEGMENTO AB = 5 CM EM MÉDIA E EXTREMA RAZÃO E INDICAR O SEGMENTO ÁUREO DE AB E TAMBÉM O SEGMENTO O QUAL AB É ÁUREO. Seja o segmento AB =
DESENHO TÉCNICO 1. Professor: Gleison Renan Inácio Curso: Mecânica
DESENHO TÉCNICO 1 Professor: Gleison Renan Inácio [email protected] Curso: Mecânica - Aula 04 Técnicas de Desenho Exerícios de projeção Recapitulando as avaliações? Objetivos da Disciplina Pontualidade
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)
DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A
META Introduzir e explorar o conceito de congruência de segmentos e de triângulos.
META Introduzir e explorar o conceito de congruência de segmentos e de triângulos. AULA 3 OBJETIVOS Identificar segmentos e ângulos congruentes. Identificar os casos de congruência de triângulos. Usar
Preparar o Exame Matemática A
07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes
CONSTRUÇÕES GEOMÉTRICAS
CONSTRUÇÕES GEOMÉTRICAS 2014 ROF. CRISTIANO ARBEX INTRODUÇÃO Este material tem o objetivo de mostrar as principais construções geométricas utilizadas em Desenho Técnico. ara cada definição apresentada
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica.
Geometria analítica: descobrindo a reta que tange duas circunferências e entendendo a construção geométrica. Sobre Ontem estava pensando em algumas funções interessantes para implementar em um editor de
Sejam a, b e c as medidas dos lados do triângulo e l a medida do lado do quadrado, conforme Figura 1. Figura 1 Polígonos de áreas iguais.
Solução extraída da dissertação de mestrado Desigualdade das Médias e a resolução de problemas geométricos, autor Mauro Rigodanzo, disponível em http://www.profmat-sbm.org.br. Sejam a, b e c as medidas
1 Adaptado pelo GRUPO MDMAT-UFRGS (http://mdmat.mat.ufrgs.br).
Este guia é uma adaptação 1 de atividades utilizadas por professores, alunos, ex-alunos e ex-professores da Universidade Federal do Rio Grande do Sul (UFRGS) em oficinas, laboratórios de ensino, estágios
1 Construções geométricas fundamentais
UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Expressão Gráfica 1 Construções geométricas fundamentais Prof ª Drª Adriana Augusta Benigno dos Santos Luz Jheniffer Chinasso de
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 10 1. Na figura está representado, num referencial
DESAFIOS: NÍVEL 4 desafios de geometria
DESFIOS: NÍVEL 4 desafios de geometria (01) Considere um quadrado inscrito num octógono regular. Os vértices do quadrado são pontos médios de quatro dos lados do octógono, como mostra a figura. Se a área
UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA
UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA CADERNO DE EXERCÍCIOS ELABORADOS PELOS PARTICIPANTES DOS MINICURSOS SOBRE OS SOFTWARES
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
Conceitos Básicos de Desenho Técnico
Conceitos Básicos de Desenho Técnico 1. Conceitos Básicos de Desenho Técnico: exemplos e prática das Aulas 02 e 03 Esta aula tem por objetivos exercitar e aprimorar: Conhecimento de escalas numéricas;
1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta
1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA III Semana Acadêmica de Matemática Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática Profª Lahis Braga Souza Profª Thais Sena de Lanna Profª Cristiane Neves
Gabarito da Primeira Fase Nível Beta
. Gabarito da Primeira Fase 2019 - Nível Beta Questão 1 (20 pontos) A Figura 1 a seguir é uma representação da praça do ciclo básico na Unicamp. Nos extremos desta praça, cujo formato é circular, se encontram
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2006-2 a Chamada Proposta de resolução 1. 1.1. Fazendo mas medições com uma régua, obtemos valores para as dimensões do retângulo do lado esquerdo e da bandeira: Calculando
(0,0,4). Qual a condição que define essa superfície esférica? (A) (C) (B) (D) define a. 7. A condição região do plano:
Escola Secundária de Francisco Franco Matemática A (métodos curriculares) 10.º ano Eercícios saídos em eames, provas globais e em testes intermédios Tema III: GEMETRIA ANALÍTICA 1. Num referencial o.n.
Estudando Cônicas com Auxílio do Software Wingeom
Estudando Cônicas com Auxílio do Software Wingeom Flávio de Freitas Afonso Bolsista PIBIC/CNPq Licenciando em Matemática CEFET-Campos Gilmara Teixeira Barcelos Professora do CEFET Campos - Mestre em Ciências
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
Construções Elementares
META: Introduzir as principais construções elementares. AULA 10 OBJETIVOS: Introduzir as construções elementares. Resolver problemas práticos. PRÉ-REQUISITOS Para um melhor aproveitamento o aluno deverá
Plano de Recuperação 1º Semestre EF2
Professores: Cíntia / Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos
Aula 09 (material didático produzido por Paula Rigo)
EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: [email protected] Aula 09 (material didático produzido por Paula Rigo)
A UTILIZAÇÃO DO SOFTWARE GEOGEBRA NA FORMAÇÃO DE EDUCADORES DE MATEMÁTICA NO ENSINO FUNDAMENTAL
A UTILIZAÇÃO DO SOFTWARE GEOGEBRA NA FORMAÇÃO DE EDUCADORES DE MATEMÁTICA NO ENSINO FUNDAMENTAL GT 05 Educação Matemática: tecnologias informáticas e educação à distância Prof a. Dr a. Julhane A. Thomas
