2-Introdução à Programação Dinâmica
|
|
|
- Marcos Sequeira Sales
- 9 Há anos
- Visualizações:
Transcrição
1 IA 718 Tópicos em Sisemas Ineligenes 2-Inroução à Programação inâmica ProfFernanoGomie
2 Coneúo 1. Inroução 2. Problema o caminho mínimo 3. Solução com programação inâmica 4. Análise e complexiae 5. Programação inâmica forwar 6. Exemplos
3 1-Inroução Programação inâmica meoologia e oimização problemas que requerem ecisões sequenciais inerelacionaas ecisão em um cuso imeiao e afea conexo ecisões fuuras Objeivo como ober a sequência e ecisões minimização cuso oal em um número e eságios compromisso enre cuso imeiao e fuuro
4 Processos e ecisão mulieságios ecisão mulieságios processo que poe ser esobrao em um número e eapas seqüenciais, ou eságios Esao conição o processo num ao eságio é o esao nese eságio ecisões opções que se em em caa eságio caa ecisão causa uma ransição o esao
5 Esraégia (políica) uma seqüência e ecisões uma ecisão para caa esao o processo Reorno cuso, benefício, associao a caa eságio e ecisão poe variar com o eságio e o esao Quesão eerminar a políica óima (aquela que resula no melhor reorno)
6 Princípio e oimaliae e Bellman Uma esraégia óima apresena a proprieae seguno a qual, a espeio as ecisões omaas para se aingir um esao paricular num cero eságio, as ecisões resanes a parir ese esao evem consiuir uma esraégia óima. [Richar Bellman, 1957] x 1 A x 2 G 1 n N
7 2-Problema o caminho mínimo q 1 c 5 e 2 h f 1 i 3 l Qual é o caminho e menor esfôrço (empo, cuso, is - ância, ec.) enre q e r? g j 2 m 2 o caminhos isinos 5 aições por caminho 19 comparações k 2 n 4 p 1 r
8 3-Solução com programação inâmica v i melhor caminho e i aé r v q min {1+ v c, 0 + v } v a q 0 1 v c c 4 5 e 2 h 1 3 v c min {5 + v e, 4 + v f } v min {7 + v f, 3 + v g }.. v g f 1 i 3 l j 2 m 2 o v l 5 + v o v m min {2 + v o, 8 + v p } v n 4 + v p v o 2 v p 1 k 2 n 4 p 1 r v r 0
9 S esao P S sucessor e S no caminho óimo e S aé r v q 13 q 0 3 g 4 k 1 v c c 4 5 e 2 h f 1 i 3 l j 2 m 2 o n 4 p 1 r Esraégia óima P o r P p r P l o P m o P n p P h l P i m P j m P k n P e i P f j P g j ou k P c f P g P q c 24 aições 9 comparações
10 4-Análise e complexiae Função objeivo (cuso, uiliae, ec.): aiivamene separável Ambienes esocásicos: sisemas Markovianos Enumeração exausiva: O( A n ) A número ecisões (ações) em caa eságio (passo) Programação inâmica: O(n A S ) S número e esaos possíveis n: número e eságios
11 5-Programação inâmica forwar v v i g melhor caminho e q aé i v r min {2+ v o, 1 + v p } v a v c v o min {5+ v l, 2 + v m } q 1 c 5 e 2 h v m min {4 + v i, 2 + v j } v l min {3 + v h, 3 + v i } v n min {2 + v j, 2 + v k } 7 f 1 i 3... l v e min {5 + v c } v 3 5 f min {4+ v c, 7 + v } v g min {3 + v } j 2 m 2 o v 0 v c 1 k 2 n 4 p 1 r v q 0
12 6-Exemplos eerminísico: caminho mínimo r j v L j i, i I L j i, j I j i c j i, L Ι j j i ij para e cusomínimo ) ( que al nós e conjno ) ( que al nós e conjno para e cuso ) ( arcos e conjuno nós e conjuno + q r
13 Equação e Bellman v i min{ v, i min ( c j I + j ij + v j )}, i I Solução ieraiva Ieração cuso o caminho a parir o nó q r
14 Algorimo e Pape M v j 0 C { q} j r j r lisa e caniaos remover nó j C o opo e C 2. j I ˆv i c + j ij + v j se vˆ i < vi enão vi vˆ i se i C enão C C { i} ;i no fim e C remover j e C. Se C φ enão passo 1 senão fim Pape (e jksra) são insâncias o algorimo geral
15 Algorimo geral caminho mínimo remover nó i a lisa e caniaos C para caa arco (i, j) L se v j > v i + c ij enão v j v i + c ij aicionar j à V se j C
16 Proposição: sejam v 1, v 2,...,v N escalares saisfazeno v j v i + c ij (i, j) L e seja P um caminho iniciano em um nó i 1 e erminano em um nó i k. Se v j v i + c ij para oos arcos (i, j) e P enão P é menor caminho e i 1 para i k. Prova Somano v j v i + c ij para arcos e P valor e P v ik v i1 Somano v j v i + c ij para arcos e P ' valor e P ' P Logo, P é o menor caminho.
17 Esocásico: aribuição inâmica aribuos e um écnico a a a a localzação écnico ipo equipameno # ias no rabalho conjuno e oos écnicos R R a A conjno os valores e a # écnicos com aribuo ( R a ) a A a
18 B b b b B b b b b ˆ ˆ b # ˆ b B b ) ( insane no insalao ser a ipo equipameno oal ) ( 1(necessiaserviço) e enre insalaos ipo equipamenos e valores os conjuno ipo) (localização, um equipameno e aribuos emana serviços écnicos
19 ecisões H φ conjuno ecisões enviano écnico p/ casa H represena um local paricular conjno ecisões enviano écncio p/ emana ecisão "fazer naa" com um 'ecnico H φ
20 impaco ecisões nos aribuos: função ransição a δ + 1 a ( a a M ( a,) M 1 se a ( a,) a,) 0 caso conrário inicação as ecisões omaas x x a número vezes ( x a ) a A, ecisão éaplicaa écnico aribuo a
21 inicação as ecisões omaas c c a cuso ecisão ( c a ) a A, éaplicaa écnico aribuo a Moelo míope min x c a a A x a s.a. a a a A x a x x 0 R a b,
22 inâmica o sisema R + 1,a + 1,b a a A,b x δ x a a a A ( a, ) + ˆ + 1,b, Esao o sisema S R, ( )
23 Moelo aribuição inâmica V min x X ( C ( S,x ) + γev +1 ( S + 1)) X { x x R ; x, ; x 0} a a a a A b a
24 Observação Ese maerial refere-se às noas e aula o curso IA 718 Tópicos em Sisemas Ineligenes a Faculae e Engenharia Elérica e e Compuação a Unicamp. Não subsiui o livro exo, as referências recomenaas e nem as aulas exposiivas. Ese maerial não poe ser reprouzio sem auorização prévia os auores. Quano auorizao, seu uso é exclusivo para aiviaes e ensino e pesquisa em insiuições sem fins lucraivos.
Modelos de Programação Linear
EA 0 Planeameno e Análise de Sisemas de Produção Modelos de Programação Linear Tópicos -Inrodução -Modelos de alocação -Modelos de blending -Planeameno de operações 5-Modelos muli-eságios 6-Modelos linearizáveis
MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel
MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel [email protected], [email protected] Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios
3 Modelos de Markov Ocultos
23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável
Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo
Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n
5 Método dos Mínimos Quadrados de Monte Carlo (LSM)
Méodo dos Mínimos Quadrados de Mone Carlo (LSM) 57 5 Méodo dos Mínimos Quadrados de Mone Carlo (LSM) O méodo LSM revela-se uma alernaiva promissora frene às radicionais écnicas de diferenças finias e árvores
Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne
Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2011 Professor: Rubens Penha Cysne Lisa de Exercícios 5 Crescimeno com Inovações Horizonais (Inpu Varieies) 1-
Circuitos Elétricos I EEL420
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011
EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI, 998) (N) (HAYKIN; VEEN,, p 79) O pulso rapezoidal x( ) da figura a seguir é aplicado
4 Análise de Sensibilidade
4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de
Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH
Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale
4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.
4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia
) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.
ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /08 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de Recuperação. Valor:
FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.
FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,
Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.
Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,
5.3 Escalonamento FCFS (First-Come, First Served)
c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,
5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]
Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade
Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística
Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em
está localizado no cruzamento da i-ésima linha com a j-ésima coluna.
MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem
Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial
Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na
Voo Nivelado - Avião a Hélice
- Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA
CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos
Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco
Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade
Experiência IV (aulas 06 e 07) Queda livre
Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de
Confiabilidade e Taxa de Falhas
Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ [email protected] Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado
QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Questão 3. Resposta. Resposta
QUESTÕES DISCURSIVAS Quesão a) O piso de uma sala reangular de 00 dm de comprimeno por 0 dm de largura vai ser revesido com placas quadradas, as maiores possíveis. Qual é a área de cada uma? b) Sobre uma
Manutenção e. Confiabilidade. Confiabilidade. Confiabilidade = probabilidade. Item. Definição
Confiabilidade Manuenção e Confiabilidade DEPROT/UFRGS Flávio S. Fogliao, Ph.D. Definição A confiabilidade de um iem corresponde à sua probabilidade de desempenhar adequadamene ao seu propósio especificado,
Modelos Não-Lineares
Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene
Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.
Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma
Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação
Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal
Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais
XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) [email protected]
4 Modelagem e metodologia de pesquisa
4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,
S = S0 + vt S= posição em um instante qualquer (m) S0 = posição inicial (m) v = velocidade (m/s, km/h) t = tempo (s, h)
MOVIMENTO UNIFORME (moimeno com elocidade consane) 0 = 0 + = posição em um insane qualquer (m) 0 = posição inicial (m) = elocidade (m/s, km/h) = empo (s, h) 1. Uma biciclea moimena-se sobre uma rajeória
Problemas de vestibular funções exponenciais e logaritmos
Problemas de vesibular funções exponenciais e logarimos Professor Fiore Segue lisa com problemas envolvendo funções exponenciais reirados de vesibulares e concursos. Para resolvê-los pode ser necessário
12 Integral Indefinida
Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar
CENTRO DE PESQUISAS DE ENERGIA ELÉTRICA
CEPEL CENTRO DE PESQUISAS DE ENERGIA ELÉTRICA Modelo DECOMP DETERMINAÇÃO DA COORDENAÇÃO DA OPERAÇÃO A CURTO PRAZO Manual de Referência Versão 28 Modelo DECOMP ii INTRODUÇÃO.... AGRADECIMENTOS... 2 O PROBLEMA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: 2ª TURMA: UNIDADE: VV JC JP PC DATA: / /2017 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de recuperação. Valor:
Introdução às Medidas em Física
Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura [email protected] Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica
AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO
Noas de aula de PME 3361 Processos de Transferência de Calor 57 AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO Inrodução Quando um corpo ou sisema a uma dada emperaura é bruscamene
Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL
Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença
3 Metodologia do Estudo 3.1. Tipo de Pesquisa
42 3 Meodologia do Esudo 3.1. Tipo de Pesquisa A pesquisa nese rabalho pode ser classificada de acordo com 3 visões diferenes. Sob o pono de visa de seus objeivos, sob o pono de visa de abordagem do problema
Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica
Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um
Função Exponencial 2013
Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor
GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ
SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E
TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS
ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1
Universidade Federal do Rio de Janeiro
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação
MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO
. INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane
