Algoritmo Simplex em Tabelas. Prof. Ricardo Santos
|
|
|
- Levi Estrela Campos
- 9 Há anos
- Visualizações:
Transcrição
1 Prof. Ricardo Santos
2 Manipular problemas pequenos e compreender como o método funciona Considerar problema na forma padrão Coeficientes e função objetivo são organizados como: x... x n variáveis c c 2... c n f Coeficientes da func. objetivo a a 2... a n b Coeficientes das restrições
3 Dado o problema de PL: Minimizar f(x, )= x 2 s.a. x + <=6 x <=4 x + <=4 x <=, <= Como já sabemos, para transformar o problema anterior na forma padrão necessitamos inserir variáveis de folga: =b (x + )=6 x =b 2 (x )=4 x + =b 3 ( x + )=4+x
4 A Tabela Simplex fica então da seguinte forma: x 2 Observe que as colunas de, e formam uma matriz identidade., e são chamadas de variáveis básicas x e são variáveis não básicas f 6 4 4
5 A Tabela Simplex fica então da seguinte forma: x 2 Fixando os valores de x = =, temos que: =6, =4, =4 e f= Se mantermos x = e aumentarmos vemos que a função decresce. Logo, x = = não é uma solução ótima f 6 4 4
6 Se todos os a i2 <=, i=,2,...m então a variável cresceria indefinidamente de forma que f > Algoritmo Simplex em Tabelas Na estratégia simplex (alterar apenas uma variável nãobásica), deve se tomar o cuidado para manter a nãonegatividade das variáveis de folga Considerando então x =, podemos reescrever as variáveis de folga como: =b (x + )=6 >= =b 2 (x )=4+ >= =b 3 ( x + )=4 >= Das desigualdades anteriores, notamos que apenas e limitam o crescimento de Como a 2 >, então b a 2 >= implica <=b /a 2, então <=6 Como a 32 >, então b 3 a 32 >= implica <=b 3 /a 32, então <=4 Observe que a 22 <, de forma que cresce junto com
7 Das observações anteriores, notamos que o maior valor para é 4 pois: =minimo(b/a2, b3/a32)=minimo(6,4)=4 Com esse valor, segue que =4 =4 4=. Assim, temos que: Variáveis não básicas: x =, =4 Variáveis básicas: =2, =8, = Função objetivo: f= 8 Se redefinirmos as variáveis não básicas como aquelas com valores nulos e as variáveis básicas aquelas com valores positivos, temos que: Variáveis não básicas: x =, = Variáveis básicas: =2, =8, =4
8 Se redefinirmos as variáveis não básicas como aquelas com valores nulos e as variáveis básicas aquelas com valores positivos, temos que: Variáveis não básicas: x =, = Variáveis básicas: =2, =8, =4 Nesse caso, entrou na base e saiu da base As colunas das novas variáveis básicas não formam uma matriz identidade e, assim, a tabela simplex precisa ser atualizada O que fizemos até agora (partir de uma solução factível e encontrar outra melhor) foi uma interação do método simplex
9 As operações realizadas em uma interação do simplex são: Encontre variável não básica que tenha o coeficiente negativo na função objetivo, por exemplo: x k Percorra a coluna na tabela simplex da variável x k e, para cada coeficiente positivo (aik>), calcule a razão bi/aik (valores que anulam a variável básica na linha i) e determine bl/alk=minimo(bi/aik tal que aik>, i=,...,m) Com x k =bl/alk, a variável básica na linha l se anula (isto é, sai da base). Se aik<, i=,...,m então f > e, nesse caso, pare (não tem solução ótima finita) Redefina as variáveis básicas e não básicas e reconstrua a tabela simplex para essa nova solução básica
10 Antes de atualizar a tabela simplex, precisamos pivotar (aplicar eliminação de Gauss) a tabela anterior para que os coeficientes das variáveis nãobásicas formem uma matriz identidade Assim, a coluna de deve ser transformada na 3a. coluna da matriz identidade Tomemos o elemento 4,2 (intersecção entre e ) como pivô e aplicamos operações elementares sobre a tabela: o. Definimos multiplicadores para cada linha: M2=m2/m42= 2/= 2; M22=m22/m42=/=; M32=m32/m42= /= 2o. Atualizamos cada linha i como: Li=Li (mi2.l4)
11 A Tabela Simplex fica então da seguinte forma: x 3 2 f Agora, observamos que a função objetivo é dada por f= 8 3x +2 Se aumentarmos x mantendo =, a função objetivo descreve na taxa de 3
12 A Tabela Simplex fica então da seguinte forma: x 3 2 Mantendo =, temos que: =2 2x >= =8+x >= 2 f Note ainda que o valor máximo para x =b/a=
13 A Tabela Simplex fica então da seguinte forma: x 3 2 f Note ainda que o valor máximo para x =b/a= Com x =, a variável básica se anula. Variáveis não básicas: x =, x = 5 Variáveis básicas: x =, 3 x =8, 4 x =4 2
14 Como há necessidade de atualizar a tabela simplex, escolhemos o elemento, como pivô e aplicamos operações elementares sobre a tabela de forma que: Variáveis não básicas: =, = Variáveis básicas: x =, =8, =4 x 3/2 3/2 f+ /2 /2 8 /2 /2 5
15 Podemos reescrever as variáveis e função objetivo como: f= +3/2 +3/2, como = =, então f= x = /2 +/2 =8 x =5 /2 /2 3/2 3/2 f+ /2 /2 8 /2 /2 5
16 Note que os custos relativos (a. Linha) de e são positivos. Logo, qualquer atribuição em ou faz f(x)>= Então, f(x)= é a solução ótima! x 3/2 3/2 f+ /2 /2 8 /2 /2 5
17 Podemos dividir o algoritmo Simplex em Tabelas em 2 fases: Fase I: Determinar a tabela simplex inicial Matriz de coeficientes contém uma matriz identidade mxm e o vetor independente b Função objetivo é escrita em termos de variáveis não básicas, isto é, coeficientes das variáveis básicas são nulos Iteração= Fase II: Determinação das soluções em cada iteração. Determine o menor dos custos relativos ck=minimo entre os coeficientes das variáveis não básicas 2. Se ck>, então pare. Senão, ck entra na base 3. Se aik<=, i=,...,m, então pare (não existe solução ótima finita. Senão, determine: bl/alk=minimo(bi/aik tal que aik>, i=,...,m). Variável básica da linha l sai da base 4. Atualize a tabela simplex (pivotamente no elemento (l,k). A variável xk passa a ser a variável básica na linha l 5. Iteração=Iteração+ 6. Retorne passo
Método Simplex Resolução Algébrica. Prof. Ricardo Santos
Método Simplex Resolução Algébrica Prof. Ricardo Santos Método Simplex A função objetivo f(x) pode ser expressa considerando a partição básica: f(x)=c T x= [ ] c T c T x B c T x c T x B N = + x B B N N
Teoria Básica e o Método Simplex. Prof. Ricardo Santos
Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere
Método Simplex Revisado
Método Simplex Revisado Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins [email protected] Introdução Método
Programação Linear - Parte 4
Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex
que não torne uma variável básica negativa. Se esse valor for infinito, o PL é ilimitado. Caso contrário, escolha uma variável
Método Simple. Montar um dicionário inicial 2. Olhando a equação do z, escolha uma variável nãobásica in cujo aumento melhoraria a solução corrente do dicionário (coeficiente negativo se for minimização,
CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional
CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima
MÉTODO SIMPLEX QUADRO SIMPLEX
MÉODO SIMPLEX QUDRO SIMPLEX O Método Simplex é um procedimento matricial para resolver o modelo de programação linear na forma normal. omeçando com X, o método localiza sucessivamente outras soluções básicas
Método Simplex das Duas Fases
Notas de aula da disciplina Pesquisa Operacional 1. 2003/1 c DECOM/ICEB/UFOP. Método Simplex das Duas Fases 1 Descrição do método Suponhamos inicialmente que tenham sido efetuadas transformações no PPL,
(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,
Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)
Resolução de sistemas de equações lineares: Método de eliminação de Gauss
Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)
Programação Linear - Parte 3
Matemática Industrial - RC/UFG Programação Linear - Parte 3 Prof. Thiago Alves de Queiroz 1/2016 Thiago Queiroz (IMTec) Parte 3 1/2016 1 / 26 O Método Simplex Encontre o vértice ótimo pesquisando um subconjunto
MANUAL DO USUÁRIO SIMPLEX. Prof. Erico Fagundes Anicet Lisboa, M. Sc.
MANUAL DO USUÁRIO SIMPLEX Prof. Erico Fagundes Anicet Lisboa, M. Sc. [email protected] Versão digital disponível na internet http://www.ericolisboa.eng.br RIO DE JANEIRO, RJ - BRASIL DEZEMBRO DE
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Revisão Método Simplex Solução básica factível: xˆ xˆ, xˆ N em que xˆ N 0 1 xˆ b 0 Solução geral
Pesquisa Operacional. Prof. José Luiz
Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected].
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
Regressão, Interpolação e Extrapolação Numéricas
, e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)
P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a
Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016
Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização
Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação
Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação À seguir eemplificaremos e analisaremos cada uma dessas três situações. : A X B Podemos
Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada
Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Sistema de equações lineares e não lineares Tiago de Souza Farias
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex
INVESTIGAÇÃO OPERACIONAL Programação Linear Eercícios Cap. III Método Simple António Carlos Morais da Silva Professor de I.O. INVESTIGAÇÃO OPERACIONAL (MS edição de 006) i Cap. III - Método Simple - Eercícios
Semana 7 Resolução de Sistemas Lineares
1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam
Exercícios de Método Simplex Enunciados
Capítulo Exercícios de Método Simplex Enunciados Enunciados 8 Problema Problema Problema 3 Problema 4 Problema 5 max F =0x +7x x + x 5000 4x + 5x 5000 x, x 0 max F =x + x x + x x + x 4 x, x 0 max F = x
Cálculo Numérico / Métodos Numéricos. Solução de sistemas não lineares Método de Newton
Cálculo Numérico / Métodos Numéricos Solução de sistemas não lineares Método de Newton Várias equações várias incónitas. 5:4 Queremos resolver:... m... m... m... m Eemplo: Intersecção de duas parábolas.
UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO
UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO SAD Sistemas de Apoio à Decisão 2011/02 Aula Cinco [email protected] Modelos de decisão Sistemas de
PROGRAMAÇÃO LINEAR. Formulação de problemas de programação linear e resolução gráfica
PROGRAMAÇÃO LINEAR Formulação de problemas de programação linear e resolução gráfica A programação linear surge pela primeira vez, nos novos programas de Matemática A no 11º ano de escolaridade. Contudo
Determinação de Uma Solução Básica Factível Inicial
Determinação de Uma Solução Básica Factível Inicial Método das duas fases Prof. Ricardo R. Santos Determinação de Uma Solução Básica Factível Inicial Para que o simplex seja aplicado, precisamos de uma
Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.
Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine
ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes
ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.
Solução básica viável inicial Marina Andretta ICMC-USP 10 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211
Simplex. Investigação Operacional José António Oliveira Simplex
18 Considere um problema de maximização de lucro relacionado com duas actividades e três recursos. Na tabela seguinte são dados os consumos unitários de cada recurso (A, B e C) por actividade (1 e 2),
Método Simplex. Alexandre Salles da Cunha. DCC-UFMG, Março 2012 - v.02
DCC-UFMG, Março 2012 - v.02 Idéias centrais do método Se um PL na forma padrão possui uma solução ótima, então existe uma solução básica viável ótima para o problema. O baseia-se neste fato. Iniciando
Solução de Sistemas Lineares
Solução de Sistemas Lineares Estima-se que em 75% dos problemas científicos a solução de um sistema linear de equações aparece em algum estágio da solução. Podemos, entre outros, citar os seguintes problemas
ESTATÍSTICA DESCRITIVA:
UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
O cilindro deitado. Eduardo Colli
O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas
Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana
Otimização Linear Profª : Adriana Departamento de Matemática [email protected] wwwp.fc.unesp.br/~adriana Perguntas?? Dada uma solução básica factível (vértice de S e, portanto, candidata à solução ótima),
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de
Regras para evitar ciclagem
Regras para evitar ciclagem Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 -
Programação Linear/Inteira
Unidade de Matemática e Tecnologia - RC/UFG Programação Linear/Inteira Prof. Thiago Alves de Queiroz Aula 3 Thiago Queiroz (IMTec) Aula 3 Aula 3 1 / 45 O Método Simplex Encontre o vértice ótimo pesquisando
Método Simplex. Marina Andretta ICMC-USP. 19 de outubro de 2016
Método Simplex Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização linear
Profa. Luciana Rosa de Souza
Profa. Luciana Rosa de Souza o Curto prazo e Longo prazo No estudo da produção, é importante que se diferencie o curto prazo do longo prazo. Curto Prazo: refere-se ao período de tempo no qual um ou mais
Introdução à Algoritmos. Aula 11
Introdução à Algoritmos Aula 11 Um programa de computador é um produto resultante da atividade intelectual. Essa atividade depende de um treinamento prévio em abstração e modelagem de problemas, bem como
Aula 5: determinação e simplificação de expressões lógicas
Aula 5: determinação e simplificação de expressões lógicas Circuitos Digitais Rodrigo Hausen CMCC UFABC 4 e 6 de Fev. de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 5: determinação
Distribuição Binomial e Normal
Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que
Exercícios de Álgebra Linear
Exercícios de Álgebra Linear Mestrado Integrado em Engenharia do Ambiente Mestrado Integrado em Engenharia Biológica Nuno Martins Departamento de Matemática Instituto Superior Técnico Setembro de Índice
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br [email protected] www.barrere.ufjf.br Solução de recorrências Para analisar o consumo de tempo de um algoritmo
TP052-PESQUISA OPERACIONAL I Algoritmo Dual Simplex. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil
TP052-PESQUISA OPERACIONAL I Algoritmo Dual Simplex Prof. Volmir Wilhelm Curitiba, Paraná, Brasil Algoritmo Dual Simplex Motivação max sa Z = cx Ax = b x 0 escolhida uma base viável max sa Z = c B x B
AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.
Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos
MATRIZ - FORMAÇÃO E IGUALDADE
MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma
Investigação Operacional
Introdução e Histórico Durante a II Guerra Mundial, lideres militares da Inglaterra e dos Estados Unidos requisitaram um grupo de cientistas de diversas áreas de conhecimento para analisarem alguns problemas
FUNDAMENTOS DA MATEMÁTICA
FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º
Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira
Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras
Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e
Programação Linear A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Existe um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento
Introdução ao determinante
ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld
Exercícios de Fixação Aulas 05 e 06
Disciplina: TCC-0.0 Prog. de Computadores III Professor: Leandro Augusto Frata Fernandes Turma: E- Data: / / Exercícios de Fixação Aulas 0 e 0. Construa um algoritmo (pseudocódigo e fluxograma) que determine
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
Lógica do Método Simplex: Passar de Solução Básica Factível para outra Solução Básica, buscando melhorar a Função Objetivo e manter factibilidade
Lógica do : Passar de Solução Básica Factível para outra Solução Básica, buscando melhorar a Função Objetivo e manter factibilidade Para isso, as condições que devem orientar esse movimento são: (i) a
Calculando seno(x)/x com o interpretador Hall.
Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Linear (PL) Aula 8 : O método Simplex. Casos particulares. Empate no critério de entrada. Óptimo não finito. Soluções óptimas alternativas. Degenerescência. INÍCIO Forma Padrão Faculdade
GEOMETRIA ANALÍTICA II
Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo
Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão
MC3305 Algoritmos e Estruturas de Dados II Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão Prof. Jesús P. Mena-Chalco [email protected] 2Q-2015 1 Custo de um algoritmo
Coordenadoria de Matemática Programação Linear. Professor: Oscar Luiz T. de Rezende
Coordenadoria de Matemática Programação Linear Professor: Oscar Luiz T. de Rezende INTRODUÇÃO Pesquisa operacional (P.O) foi a denominação dada ao conjunto de processos e métodos de análise desenvolvidos
PESQUISA OPERACIONAL I
PESQUISA OPERACIONAL I Profa. Tamara Angélica Baldo Apostila para auxiliar os estudos da disciplina de Pesquisa Operacional I Esta apostila encontra-se em fase de construção e está sujeita a erros e alterações.
3.3 Qual o menor caminho até a Escola? 28 CAPÍTULO 3. CICLOS E CAMINHOS
2 CAPÍTULO. CICLOS E CAMINHOS solução para um problema tem se modificado. Em vez de procurarmos um número, uma resposta (o que em muitos casos é necessário), procuramos um algoritmo, isto é, uma série
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções
Análise de Algoritmos
Análise de Algoritmos Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2016 A invariante de laço pode ser definida como uma relação entre as variáveis de um algoritmo que é verdadeira em um determinado
FUNÇÕES. 1.Definição e Conceitos Básicos
FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra
. (A verificação é imediata.)
1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza
INTEGRAIS INTEGRAL INDEFINIDA
INTEGRAIS INTEGRAL INDEFINIDA A integração indefinida ou anti-derivação é a operação inversa da derivação, da mesma forma que a subtração é a operação inversa da adição ou a divisão é a operação inversa
PUC-Rio Desafio em Matemática 23 de outubro de 2010
PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu
FUNÇÃO QUADRÁTICA. Resumo
01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:
EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine
Elvis Magno da Silva, autor Vladas Urbanavicius Júnior, autor
RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL ANTES DO SURGIMENTO DOS SOFTWARES: UMA ABORDAGEM SOBRE O ALGORITMO SIMPLEX Elvis Magno da Silva, autor Vladas Urbanavicius Júnior, autor 1 FACESM/Gpde, Av.
Ficha de Exercícios nº 2
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:
Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema
Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira e Samuel Barbosa Aula 1 Divisibilidade 1 Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos
Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos
Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:
Análise de algoritmos. Parte II
Análise de algoritmos Parte II 1 Análise de algoritmos Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores Empírica ou teoricamente É desejável e possível
Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x)
Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares Anteriormente, vimos que um dos problemas no cálculo de ites surge quando desejamos f() calcular a. A estratégia incial é calcular
PRO 528 - Pesquisa Operacional II
Pesquisa Operacional II 3. Software LINDO Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Problemas em forma não padrão São 4 características de um problema na forma padrão, lembram-se?
Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de
Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.
Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz
Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1.
Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1 Matrizes 1 Considere as matrizes A = 1 2 3 2 3 1 3 1 2 Calcule
Referências. www.inf.ufes.br/~luciac
Computação Científica Sistema Lineares Métodos Diretos Métodos Iterativos Estacionários Lucia Catabriga LCAD - Laboratório de Computação de Alto Desempenho Departamento de Informática - CT/UFES LCAD Referências
UM SOFTWARE INTERATIVO PARA O ALGORITMO SIMPLEX EM PROGRAMAÇÃO LINEAR
UM SOFTWARE INTERATIVO PARA O ALGORITMO SIMPLEX EM PROGRAMAÇÃO LINEAR Leizer de Lima Pinto PESC / COPPE / UFRJ Cidade Universitária, Rio de Janeiro, RJ, Brasil [email protected] Cláudio Thomás Bornstein
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:
SISTEMAS LINEARES PROF. EDÉZIO
SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x
Programação Linear. MÉTODOS QUANTITATIVOS: ESTATÍSTICA E MATEMÁTICA APLICADAS De 30 de setembro a 13 de novembro de 2011 prof. Lori Viali, Dr.
Programação Linear São problemas complexos, muitas vezes de difícil solução e que envolvem significativas reduções de custos, melhorias de tempos de processos, ou uma melhor alocação de recursos em atividades.
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 9 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise clusters: técnica de agrupamento de observações/ variáveis com base na similaridade das suas característicassters
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010
1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para
