Microsoft Word - DTec_05_-_Escalas-exercicios_2-questoes - V. 01.doc
|
|
|
- Jessica Pinto Estrada
- 9 Há anos
- Visualizações:
Transcrição
1 Página 1 de 7 EXERCÍCIOS DE ESCALAS Exercícios baseados em material didático da disciplina de Cartografia ministrada pelo Prof Severino dos Santos no Curso de Georeferenciamento Aplicado à Geodésia. o Vanderlei Questão 01 : Observe o mapa da Região Nordeste do Brasil. I) De acordo com a escala apresentada, podemos concluir que cada centímetro do mapa corresponde a Km no terreno. II) No mapa, a distância em linha reta entre Salvador e Teresina é de 3,5 cm, que equivale a uma distância real de Km. Questão 02 : Para realizar uma viagem de km entre Nova Iorque latitude 41ºN e longitude 74ºW e São Francisco 38ºN e longitude 122ºW aproximadamente foi traçada uma rota no mapa a seguir. Com base no mapa : I) Em que escala está o desenho apresentado? II) Quaisl as distâncias entre Nova Iorque e São Francisco a Houston? e III) Qual a distância entre o Canadá ao México?
2 Página 2 de 7 Questão 03 : Desenhe o barco representado, reduzindo-o à metade: I ) O barco dado é uma. do seu barco, pois as dimensões do barco original são vezes maiores do que as dimensões do novo barco, ou seja, os lados correspondentes foram reduzidos à metade na mesma proporção. II) Sabendo que a altura da vela é de 4,5 metros, quais as escalas dos dois desenhos? e
3 Página 3 de 7 Questão 04 : A seguir é apresentado o mapa do Brasil em duas escalas diferentes. Observamos que os dois mapas possuem a mesma forma mas têm tamanhos diferentes. O mapa da esquerda é uma... do mapa da direita ou o mapa da direita é uma... do mapa da esquerda. Questão 05 : Qual a finalidade da escala em um mapa? Questão 06 : Complete as unidades do sistema métrico: m Questão 07 : Uma sala mede ( 8,20 x 5,80 ) m. Um desenho feito na escala 1 : 50 quais serão suas medidas em cm? Questão 08 : Uma rua está desenhada com 14 mm de largura e mede 28 m. Qual a escala do desenho? Questão 09 : Num projeto desenhado na escala 1 / 50 a altura de um prédio mede 20 cm. Qual a verdadeira grandeza dessa altura?
4 Página 4 de 7 Questão 10 : Para representarmos no papel, uma linha reta que no terreno mede 45 m, utilizando-se a escala 1 / 450, pergunta-se: qual será o valor desta linha em cm? Questão 11 : A distância entre dois pontos, medidas sobre uma planta é de 55 cm. Para uma escala igual a 1 / 250, qual será o valor real desta distância em m? Questão 12 : Relacione as colunas: ( a ) 1 : ( ) 1cm = 250 km ( b ) 1 : ( ) 1cm = 2,5 km ( c ) 1 : ( ) 1cm = 25 km ( d ) 1 : ( ) 1cm = 2500 km Questão 13 : Qual das escalas a seguir é a maior e por que? 1 : 200 ; 1 : 100 ; 1 : 2000 ou 1 : 5000 Questão 14 : Indique se uma escala é maior ( > ) ou menor ( < ) que a outra: ( a ) 1 : 500 ( ) 1 : 100 ( b ) 1 : 100 ( ) 1 : 1000 ( c ) 1 : 1000 ( ) 1 : 5000 ( d ) 1 : 5000 ( ) 1 : 500 Questão 15 : Assinale (V) para as alternativas que apresentarem informações corretas sobre a escala e (F) para as alternativas que apresentarem informações incorretas sobre a escala.
5 Página 5 de 7 ( ) a) 1: (1cm = 20 km) ( ) b) 1: (1cm = 50 km) ( ) c) 1: (1cm = 120 km) ( ) d) 1: ( 1cm = km) ( ) e) 1: (1cm = 7 km) Questão 16 : Considere três mapeamentos - América do Sul, Brasil e Região Metropolitana de São Paulo (RMSP) representados, respectivamente, em folhas de papel de ( 20 x 30 ) cm. Em relação a estas representações, pode-se afirmar que : ( ) a) todas as escalas podem ser IGUAIS, desde que ocupem toda a folha de papel. ( ) b) a escala da RMSP é MAIOR do que a do Brasil e da América do Sul. ( ) c) ocupando toda a folha de papel, somente as escalas da América do Sul e do Brasil podem ser IGUAIS. ( ) d) a escala da América do Sul é MAIOR que a do RMSP e a do Brasil. Questão 17 : Determine as escalas, supondo que na escala gráfica cada divisão dada esteja representando as medidas indicadas, e responda quais as medidas totais das escalas : Medida da Distância Escala Medida total divisão representada da escala ( a ) 1 cm 1 m ( b ) 1 cm 30 m ( c ) 2,5 cm 40 km ( d ) 1,5 cm 7500 m ( e ) 0,8 cm 20 km ( f ) 1,2 cm 720 m
6 Página 6 de 7 Questão 18 : Assinale com V a alternativa verdadeira e com F a falsa : ( ) a) A escala é uma relação entre o tamanho real do objeto ou espaço que se quer representar e sua representação. ( ) b) A cartografia trabalha com escala de redução e de ampliação. ( ) c) A escala numérica tem a forma de fração, onde o numerador representa a unidade de medida no mapa, e o denominador a indicação da medida real. ( ) d) Se a distância entre dois pontos na planta com escala 1:250 é de 80cm, o seu valor no terreno é igual a 200 m. Questão 19 : Em um mapa topográfico, um dos lados da poligonal representada no papel mede 65 cm. Sabendo-se que a escala do desenho é de 1 : 2.000, a medida real correspondente a esse lado no terreno será. Questão 20 : A escala de um desenho em que um dos lados de um polígono que mede, na realidade, 165 m, mas se encontra representado como 55 cm é. Questão 21 : Num mapa do Rio Grande do Sul, cuja escala é 1: , a distância entre duas cidades é de 5 cm. Qual é a distância real entre as duas cidades?. Questão 22 : Sabendo que a Terra tem um raio médio de 6371km e que um globo que a representa tem 25,4cm de diâmetro, é correto afirmar que a escala desse globo corresponde, aproximadamente, a. Questão 23 : Durante as férias de verão, foi realizada uma excursão estudantil para Belo Horizonte, cuja distância real percorrida foi de 75 km em 2,5 cm de deslocamento num mapa. A escala utilizada nesse mapa foi de. Questão 24 : " A escala de um mapa é a relação constante que existe entre as distâncias lineares medidas sobre o mapa e as distâncias lineares correspondentes, medidas sobre o terreno. " (Joly,1990, p.20) Observe a figura abaixo.
7 Página 7 de 7 Considerando que a figura representa áreas em diferentes escalas, pode-se dizer que: ( ) a) a área maior corresponde ao quadro A, sendo possível perceber que a representação apresenta excessiva generalização nessa escala. ( ) b) a área maior corresponde ao quadro B, pois a generalização deforma as figuras. ( ) c) não existe área maior, pois o que varia é o nível de detalhamento. ( ) d) a generalização não permite calcular a área da figura ( ) e) o quadro D mostra todos os detalhes e corresponde à maior das áreas representadas. Questão 25 : Em um mapa, de escala 1: , a distância em linha reta entre as cidades A e B mede 1 cm. Um avião, voando a velocidade constante de 360 Km/h e em linha reta, levaria quanto tempo em minutos para percorrer o trajeto entre as duas cidades?
austral leste ocidente
1. Complete as lacunas, utilizando os seguintes termos: Eixo da Terra norte austral leste ocidente Rosa dos ventos boreal bússola oeste setentrional Equador longitude oriente latitude Equador sul poente
UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino
UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER Prof. Dr. Guttemberg Silvino UNIDADES DE MEDIDAS LINEAR O metro (m) é uma unidade
RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA
CONCURSO DE ADMISSÃO 2014/2015 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CM-BH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS
MÓDULO 2 ÓPTICA E ONDAS Ronaldo Filho e Rhafael Roger
ELEMENTOS DOS ESPELHOS Os elementos geométricos que caracterizam um espelho esférico são: CAPÍTULO 03 ESPELHOS ESFÉRICOS Seccionando-se uma esfera por um plano, ela ficará dividida em duas partes ou Calotas
Disciplina de Matemática Professora Valéria Espíndola Lessa. Atividades de Revisão 1º ano do EM 1º bimestre de 2011. Nome: Data:
Disciplina de Matemática Professora Valéria Espíndola Lessa tividades de Revisão 1º ano do EM 1º bimestre de 011. Nome: Data: a) I b) I e II c) II d) III e) II e III. Num curso de espanhol, a distribuição
UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA
UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA LISTA EXERCÍCIOS CONVERSÃO MÉTRICA, ESCALA E COTAS Disciplina: Desenho Técnico Código: AGR069/AGR012
Questões Gerais de Geometria Plana
Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa
CARTOGRAFIA LINHA DE APOIO
COMEÇO DE CONVERSA PROF. Wagner Atallah CARTOGRAFIA LINHA DE APOIO Chegar a um lugar desconhecido utilizando um mapa requer uma série de conhecimentos que só são adquiridos num processo de alfabetização
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE
1º Ano do Ensino Médio
MINISTÉRIO DA DEFESA Manaus AM 18 de outubro de 009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 009/010 D E C E x - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano do Ensino Médio INSTRUÇÕES (CANDIDATO
DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013
APOSTILA Versão 2013 Prof. Peterson Jaeger 1. Folhas 2. Régua paralela e esquadros 3. Distinção de traços 4. Uso do compasso 5. Construções geométricas básicas 6. Tangentes e concordantes 7. Caligrafia
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA
QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.
1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero
maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios
Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que
04.1 Razão É a comparação entre duas grandezas, de mesma espécie, da forma
EXERCÍCIOS DE MATEMÁTICA Prof. Mário e-mail: [email protected] 04 Razão e Proporção 04. Razão É a comparação entre duas grandezas, de mesma espécie, da forma a ou a : b com b? 0 b Onde: a antecedente
MATEMÁTICA PROVA 2º BIMESTRE 8º ANO
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 8º ANO 2010 QUESTÃO 1 Alberto quis apostar uma corrida
Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.
FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda
Polígonos Regulares Inscritos e Circunscritos
Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é
TERMO DE REFERÊNCIA: IMPLANTAÇÃO DE TRILHAS RETAS E PARCELAS EM CURVA DE NÍVEL EM FLORESTAS NA REGIÃO DE SÃO GABRIEL DA CACHOEIRA.
TERMO DE REFERÊNCIA: IMPLANTAÇÃO DE TRILHAS RETAS E PARCELAS EM CURVA DE NÍVEL EM FLORESTAS NA REGIÃO DE SÃO GABRIEL DA CACHOEIRA. 1. Objeto Contratação de serviço especializado de topografia plani-altimétrica
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA ENSINO FUNDAMENTAL E ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Razões e proporções Ciências da Natureza I Matemática Ensino
= i= Com a aplicação ou uso da primeira expressão obtém-se 18,50m 2. Area=(1*(1 5 )+ 3*(2 6)+ 5*(5 5)+ 7*(6-4) + 9*(5-2)+4*(4-1)+3*(2-2))/2= 18,50m 2.
4.8.5 Avaliação de Área na Projeção UTM O valor numérico da área de um limite determinado por um conjunto de pontos unidos entre si por segmentos de linha reta sucessivos que não se cruzam pode ser calculado
Equipe de Geografia. Geografia
Aluno (a): Série: 3ª Turma: TUTORIAL 2B Ensino Médio Equipe de Geografia Data: Geografia Cartografia Coordenadas geográficas conjunto formado por paralelos e meridianos que atravessam o planeta e permitem
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa
1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12
1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =
1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
Faculdade Pitágoras Unidade Betim
Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da
A Matemática mais perto de você.
Cinemática Velocidade Média (UFMS) Um corredor percorre 0,2 quilômetros em linha reta, em um intervalo de tempo de 6,0 minutos. Qual é a sua velocidade média em km/h? a) 0,55 b) 0,2 c) 2 d) 0,03 e) 1,8
Ano de escolaridade: 9º ano do E. F. Data: / /
AVALIAÇÃO DIAGNÓSTICA 9º ANO Escola Estadual: Disciplina: Matemática Professor(a): Aluno(a): PIP II CBC Ano de escolaridade: 9º ano do E. F. Data: / / Instruções: Leia atentamente cada questão e assinale
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa
1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
a) Qual a sentença matemática que define a função que relaciona o salário mensal do professor de musculação e do professor de aeróbica?
01) Indique o gráfico que melhor representa a distância (d) percorrida por um caminhante, em função do tempo (t), num passeio em que ele atravessa uma região plana, sobe uma montanha, dá uma parada a fim
Exercícios complementares para estudo 3º Bimestre 7º ano Prof.ª Roseli Lista 1
Exercícios complementares para estudo 3º Bimestre 7º ano Prof.ª Roseli Lista 1 1) Mônica pretendia comprar um televisor que estava em promoção em uma loja, mas acabou desistindo por ter algumas despesas
Conjuntos mecânicos II
A UU L AL A Conjuntos mecânicos II Nesta aula trataremos de outro assunto também relacionado a conjuntos mecânicos: o desenho de conjunto. Introdução Desenho de conjunto Desenho de conjunto é o desenho
5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede:
Relações Métricas nos Triângulos Retângulos Professor lístenes unha 1-(Mack SP-97) Num triângulo, retângulo, um cateto é o dobro do outro. Então a razão entre o maior e o menor dos segmentos determinados
1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado
P R O V A DE MATE M Á TICA I
1 P R O V A DE MATE M Á TICA I QUESTÃO 01 Uma pessoa tem 36 moedas. Um quarto dessas moedas é de 25 centavos, um terço é de 5 centavos, e as restantes são de 10 centavos. Essas moedas totalizam a quantia
Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras
Triângulo Retângulo Relações Métrica e Teorema de Pitágoras 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a
Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas
Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste
Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre
ALUNO (S) SÉRIE / TURMA Lista de exercícios Recuperação Semestral 9º Ano 1 Semestre 01. Observe o par de polígonos semelhantes e responda: b) Calcule o valor de x: a) Qual é a razão de semelhança? 02.
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
FICHA DE ATIVIDADE - FÍSICA: MRU E MRV
Alexandre Santos (Xandão) 9º FICHA DE ATIVIDADE - FÍSICA: MRU E MRV 1 Assinale na coluna I as afirmativas verdadeiras e, na coluna II as falsas. A velocidade da partícula varia de acordo com o gráfico
Professor (a): Pedro Paulo S. Arrais Aluno (a): Série: 1ª Data: / / 2016. LISTA DE FÍSICA I
Ensino Médio Unid. São Judas Tadeu Professor (a): Pedro Paulo S. Arrais Aluno (a): Série: 1ª Data: / / 2016. LISTA DE FÍSICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou
Lista extra de exercícios
7º ANO Lista extra de exercícios 1. A proporção 10 30 3 6 é verdadeira?. A proporção 15 6 5 é verdadeira? 3. Apresente a razão entre as grandezas dadas e interprete o significado do resultado. a) Um carro
2 Com base na situação apresentada no exercício número 1, reescreva as afirmativas incorretas, fazendo as correções necessárias, justificando-as.
EXERCÍCIOS CONCEITOS BÁSICOS DE CINEMÁTICA 9ºANO 3ºBIMESTRE 1-Uma pessoa (A), parada ao lado da via férrea, observa uma locomotiva passar sem vagões. Ela vê o maquinista (B) e uma lâmpada (C) acessa dentro
ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3 ACTIVIDADE
Tema de vida: O mundo em mudança somos consumidores Nome do Formando: Data: / / Critérios de Evidência: MV3C 3, 5, 8, 10, 11 ACTIVIDADE Proporcionalidade Directa e Inversa 1. Leia a lista de ingredientes
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro
SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC)
(UFCG-PB) (IBMEC) Um jornalista anuncia que, em determinado momento, o público presente em um comício realizado numa praça com formato do trapézio isósceles ABCD, com bases medindo 00 m e 40 m (vide figura
Movimento uniformemente variado. Capítulo 4 (MUV)
Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade
CURSO TÉCNICO DE ENSINO MÉDIO INTEGRADO / SUBSEQUENTE
CURSO TÉCNICO DE ENSINO MÉDIO INTEGRADO / SUBSEQUENTE Tema Desenho Técnico Prof a. Msc. Karisa Lorena Carmo Barbosa Pinheiro Tópicos 1- Normas; 2- Construções fundamentais; 3- Desenhos utilizados na representação
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)
MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra
PROFESSOR: EQUIPE DE MATEMÁTICA
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================================= 01- Um reservatório
Supressão de vistas em peças prismáticas e piramidais
Supressão de vistas em peças prismáticas e piramidais A UU L AL A Em determinadas peças, a disposição adequada das cotas, além de informar sobre o tamanho, também permite deduzir as formas das partes cotadas.
Tr a b a l h o On l in e
Tr a b a l h o On l in e NOME: Nº: DISCIPLINA: GEOGRAFIA - PDF PROFESSOR: FELIPE VENTURA 1º ANO E.Médio TURMA: 110 1º Bimestre DATA: / / Nota: QUESTÕES DISCURSIVAS 1) (Ueg) Tomando o centro da Praça da
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro
FSP FACULDADE SUDOESTE PAULISTA. Curso: Engenharia Civil. Prof.ª Amansleone da S. Temóteo APONTAMENTO DA AULA
FSP FACULDADE SUDOESTE PAULISTA Curso: Engenharia Civil Prof.ª Amansleone da S. Temóteo APONTAMENTO DA AULA INTRODUÇÃO À TOPOGRAFIA APLICADA CONSIDERAÇÕES Historicamente há relatos de que as práticas topográficas
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
EXERCICIOS DE CARTOGRAFIA 2016
EXERCICIOS DE CARTOGRAFIA 2016 Em uma escala numérica, quanto maior foi o seu denominador isto é, o número que vem depois dos dois pontos, menor será a escala. Mas quanto menor for uma escala, maior será
EXERCÍCIOS COMPLEMENTARES
EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu
Definição: representação matemática computacional da distribuição de um fenômeno espacial que ocorre dentro de uma região da superfície terrestre.
MODELO DIGITAL DE ELEVAÇÃO Modelagem Digital de Elevação Definição: UmModeloDigitaldeElevação (MDE) é uma UmModeloDigitaldeElevação (MDE) é uma representação matemática computacional da distribuição de
Medida de ângulos. Há muitas situações em que uma pequena
A UUL AL A Medida de ângulos Há muitas situações em que uma pequena mudança de ângulo causa grandes modificações no resultado final. Veja alguns casos nos quais a precisão dos ângulos é fundamental: Introdução
1.3.1 Princípios Gerais.
1.3 HIDRODINÂMICA UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL 1.3.1 Princípios Gerais. Prof. Adão Wagner Pêgo Evangelista 1 - NOÇÕES DE HIDRÁULICA
MINISTÉRIO DA EDUCAÇÃO Universidade Federal do Triângulo Mineiro Laboratório de Cartografia e Geoprocessamento CARTOGEO/DEGEO/UFTM
ESCALA CARTOGRÁFICA Parte 1: questões para resolução na aula 1) Para obter, em um mapa, informação mais detalhada, qual das escalas a seguir é utilizada? a) 1/100. b) 1/1.000. c) 1/10.000. d) 1/100.000.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
A área do triângulo OAB esboçado na figura abaixo é
Questão 01 - (UNICAMP SP) No plano cartesiano, a reta de equação = 1 intercepta os eios coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas (4, 4/) b) (, ) c) (4, 4/) d) (, ) Questão
Exercícios propostos, 9 UEL 2009
Exercícios propostos, 9 UEL 2009 Se uma imagem vale mais do que mil palavras, um mapa pode valer um milhão mas cuidado. Todos os mapas distorcem a realidade. (...) Todos os cartógrafos procuram retratar
MATEMÁTICA. Comparando as duas modalidades de pagamento quanto ao custo para o cliente, é correto afirmar que
MATEMÁTICA 49 Um estacionamento para automóveis oferece duas modalidades de pagamento pelos seus serviços: a primeira, em que o cliente paga R$ 5, por dia de utilização, e a segunda, em que ele adquire
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
b) 1, 0. d) 2, 0. Página 1 de 10
Retas: Paralelas, Perpendiculares, Inequações de retas, Sistema de inequações de retas, Distância entre ponto e reta e Distância entre duas retas paralelas. 1. (Insper 014) No plano cartesiano da figura,
a) 30 b) 40 c) 50 d) 60 e) 70
Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo
LISTA DE EXERCÍCIOS MATEMÁTICA
LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.
CADERNO DE EXERCÍCIOS 1A
CADERNO DE EXERCÍCIOS 1A Ensino Fundamental Matemática Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Área de figuras planas H21 2 Multiplicação Divisão Unidades de medida H6 H35 3 Frações H13 4 Frações
GEOGRAFIA FRENTE C 1º ENSINO MÉDIO ESCALA. Luiz Gustavo Silveira - Profão
GEOGRAFIA FRENTE C 1º ENSINO MÉDIO ESCALA Luiz Gustavo Silveira - Profão ESCALA ESCALA - indica a proporção entre o objeto real (o mundo ou uma parte dele) e sua representação cartográfica, ou seja, quantas
Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela
Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Observe a
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
1.Determine o raio do círculo de centro O. Dados: AB=3x-3 e AO=x-3 R. 12
Eercício de Círculo e Circunferência (Relações Métricas) 1.Determine o raio do círculo de centro O. Dados: =3-3 e O=-3 R. 12 o 2. Determine o valor de nos casos: a. s é perpendicular a. =3-5 = +7 R. 6
Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação
Dependência 1ª série 2016 Conteúdo programático 1- Cinemática 1.1 Movimento Uniforme 1.2 - Movimento Uniformemente Variado 1.3 Cinemática Vetorial 2 Dinâmica 2.1 Princípios Fundamentais da dinâmica 2.2
LOCALIZANDO PONTOS ATRAVÉS DE COORDENADAS GEOGRÁFICAS
CONHECENDO A CARTOGRAFIA E OS MAPAS Segundo a Associação Brasileira de Normas Técnicas (ABNT), Cartografia é definida como: "A arte do levantamento, construção e edição de mapas e cartas de qualquer natureza..
Professora Bruna FÍSICA A. Aula 13 Aceleração escalar média classificação dos movimentos. Página - 181
FÍSICA A Aula 13 Aceleração escalar média classificação dos movimentos Página - 181 PARA COMEÇAR Você sabe o que é um porta-aviões? Você sabia que a pista de um porta-aviões tem cerca de 100 metros de
Prática. Exercícios didáticos ( I)
1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
Polígonos semelhantes
Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / / 011 Assunto: Semelhança de figuras Lição nº e Figuras semelhantes têm a mesma forma. Duas figuras são semelhantes se são geometricamente
MÓDULO V. Certamente nesse módulo vamos trabalhar com temas imprescindíveis para quem tem como objetivo participar de seleções de concursos públicos.
1 MÓDULO V Certamente nesse módulo vamos trabalhar com temas imprescindíveis para quem tem como objetivo participar de seleções de concursos públicos. Problemas envolvendo grandezas proporcionais, regra
Escalas ESCALAS COTAGEM
Escalas Antes de representar objectos, modelos, peças, etc. Deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas no papel
Professor Dacar Lista de Revisão - Trigonometria
1. Obtenha a medida, em graus, de um arco AB de comprimento 3 metros, sabendo que ele está contido em uma circunferência de diâmetro igual a 24 metros. 45 2. (UFPR) Em uma circunferência de 12 dm de comprimento,
2. (G1 - cps 2015) Página 1 de 6
1. (Ufsc 2015) Dois amigos, Tiago e João, resolvem iniciar a prática de exercícios físicos a fim de melhorar o condicionamento. Tiago escolhe uma caminhada, sempre com velocidade escalar constante de 0,875m
Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.
1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume
NOME: CURSO: MATEMÁTICA DATA: / /2013
1. (Upe 013) Dois retângulos foram superpostos, e a intersecção formou um paralelogramo, como mostra a figura abaixo: Sabendo-se que um dos lados do paralelogramo mede,5 cm, quanto mede a área desse paralelogramo?
PLANO DE ESTUDO TRIMESTRE:1º
C O L É G I O K E N N E D Y / R E D E P I T Á G O R A S PLANO DE ESTUDO TRIMESTRE:1º PLANO DE ESTUDO PROFESSOR:MARCÃO DATA DA AVALIAÇÃO: 30/09/16 CONTEÚDO(S) A SER(EM) COBRADO(S) NA AVALIAÇÃO: DISCIPLINA:
Grandeza é tudo aquilo que pode ser medido.
Vimos que a ciência é todo o conjunto de conecimentos, construído pelo omem ao longo de sua existência, que permite compreender ou descrever a ordem existente por traz das coisas que existem no mundo.
REPRESENTAÇÃO DO RELEVO
REPRESENTAÇÃO Representação do Relevo DO RELEVO 1 FINALIDADE Registrar e permitir visualizar a forma da superfície terrestre, fornecendo com precisão cotas altimétricas de pontos de interesse. Em topografia:
