MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

Tamanho: px
Começar a partir da página:

Download "MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista."

Transcrição

1 MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ : X Y e A um subconjunto de Y, a pré-imagem de A por ϕ é definida como o subconjunto de X formado por todos os elementos x de X tais que ϕ(x) A e é denotada por ϕ 1 [A]. Mais precisamente: ϕ 1 [A] = {x X : ϕ(x) A}. Definição 2. Se V é um espaço vetorial sobre um corpo K, S é um subconjunto de V e v 0 V, definimos o seguinte subconjunto de V : S + v 0 = {v + v 0 : v S}. Dizemos que S + v 0 é o transladado de S por v 0. Tentem fazer um desenho para entender o que é S + v 0. Observação 1. Note que se W é um subespaço vetorial de V, em geral temos que: W + v 0 W + span{v 0 }. Sempre vale que W + v 0 W + span{v 0 }. É fácil ver que a outra inclusão vale se, e somente se, W + v 0 é um subespaço de V. Exercício 1. Sejam V e W espaços vetoriais sobre um corpo K e T : V W uma transformação linear. Fixado w ImT, mostre que: T 1 [{w}] = KerT + v 0, onde v 0 é algum vetor de V satisfazendo T (v 0 ) = w. Observação 2. O Exercício 1 acima esclarece o motivo pelo qual olhamos somente para KerT = T 1[ {0} ] e não para a pré-imagen por T de outros vetores de W, no caso em que T é uma transformação linear. Esse exercício nos diz que se soubermos o kernel de uma trasformação linear, a pré-imagem de qualquer outro ponto da imagem é apenas um transladado desse kernel. Exercício 2. Seja V o conjunto formado por todas a sequências de números reais. Mais precisamente: V = {(x n ) n 0 : x n R, para todo n 0}. Defina em V as seguintes operações: (x n ) n 0 (y n ) n 0 = (x n + y n ) n 0 e λ (x n ) n 0 = (λ x n ) n 0, 1

2 para todos (x n ) n 0 e (y n ) n 0 em V e todo λ R. Note que as operações do lado direito das equações são as operações canônicas de R. Considere a função T : V V definida como: T ( (x n ) n 0 ) = (yn ) n 0, onde y 0 = 0 e y n = x n 1, para todo n 1. Mostre que valem: (1) V é um espaço vetorial sobre R, se munido das operações definidas acima. (2) T é uma transformação linear. (3) T é injetora. (4) T não é sobrejetora. (5) Conclua que V não tem dimensão finita, usando os itens anteriores. Exercício 3. Sejam V e W espaços vetoriais sobre um corpo K e T : V W uma transformação linear. Considere um subconjunto S de V e mostre que: (1) Se S é um conjunto de geradores de V, então o conjunto {T (v) : v S} é um conjunto de geradores da imagem de T. (2) Se S é LI e T é injetora, então o conjunto {T (v) : v S} é LI. Usando os itens (1) e (2) acima, conclua que um isomorfismo leva bases do domínio em bases do contra-domínio. Finalmente, conclua que se V e W têm dimensão finita e T é um isomorfismo, então eles têm a mesma dimensão. Definição 3. Dado um espaço vetorial V sobre um corpo K, uma transformação linear P : V V é dita uma projeção se P P = P, onde denota a composição de funções. Exercício 4. Sejam V um K-espaço vetorial e P : V V uma projeção. Mostre que V = ImP KerP. Ou seja, uma projeção gera uma decomposição em soma direta do espaço. Por outro lado, sejam W e U subespaços de V e suponha que V = W U. Mostre que existe uma projeção P : V V tal que KerP = U e ImP = W. Ou seja, uma decomposição em soma direta do espaço dá origem a uma projeção. Observação 3. Tendo em vista o Exercício 4 acima e a Definição 2 da lista sobre bases e somas de subespaços, concluímos que um subespaço W de um espaço vetorial V é complementado se, e somente se, existe uma projeção P : V V tal que ImP = W. Nesse caso, um complementar de W é dado pelo KerP. Exercício 5. Considere os seguintes conjuntos: c = { (x n ) n 0 : x n R, n 0 e a sequência (x n ) n 0 é convergente em R } 2

3 c 0 = { (x n ) n 0 c : a sequência (x n ) n 0 converge para 0 }. Mostre que c é um espaço vetorial sobre R, se munido das operações coordenada a coordenada e que c 0 é um subespaço desse espaço. Considere a função T : c c 0 definida como T ( (x n ) n 0 ) = (yn ) n 0, onde y 0 é o limite de (x n ) n 0 e y n = x n 1 y 0, para todo n 1. (1) Mostre que T está bem definida, é linear e bijetora. (2) Conclua que c e c 0 são isomorfos. (3) Mostre que c 0 é um subespaço próprio de c. (4) Conclua que c não tem dimensão finita, usando os itens anteriores. Exercício 6. Sejam K um corpo e (V, +, ) um espaço vetorial sobre K. Se Y é um conjunto e ϕ : V Y é uma bijeção, então podemos definir operações : Y Y Y e : K Y Y através de ϕ da seguinte forma: y 1 y 2 = ϕ ( ϕ 1 (y 1 ) + ϕ 1 (y 2 ) ), y 1, y 2 Y λ y = ϕ ( λ ϕ 1 (y) ), λ K e y Y, onde ϕ 1 : Y V denota a função inversa de ϕ. Mostre que: (1) (Y,, ) é um espaço vetorial sobre K; (2) ϕ : V Y é um isomorfismo, se Y está munido das operações e ; Observação 4. No texto sobre estruturas algébricas, usamos a mesma técnica apresentada no Exercício 6 para munir o conjunto dos números inteiros de uma estrutura de corpo, usando uma bijeção entre o corpo dos racionais e o conjunto dos números inteiros (veja Lema 1 e Exercício 1 do texto complementar sobre estruturas algébricas). Exercício 7. Seja W o seguinte subespaço vetorial de R[X]: W = {p R[X] : grau p é menor ou igual a 2} e considere também duas bases ordenadas B = (u i ) 3 i=1 e C = (w i) 3 i=1 de W, onde: u 1 = 1, u 2 = x, u 3 = x 2 e w 1 = 1, w 2 = x + 4, w 3 = (x + 4) 2. Determine as coordenadas de um polinômio p = a 0 +a 1 x+a 2 x 2 com respeito à base ordenada B e com respeito à base ordenada C. Determine a matriz de mudança de base entre as bases ordenadas B e C. Observação 5. Intuitivamente, podemos pensar que diferentes bases ordenadas num espaço vetorial proporcionam diferentes endereços para um mesmo vetor do espaço, onde o endereço de um vetor com respeito a uma base ordenada são suas coordenadas com respeito à essa base. A analogia fica clara quando se pensa que dadas as coordenadas de um vetor do espaço com e 3

4 4 respeito a uma base ordenada, descobrimos que vetor é esse usando o isomorfismo induzido por essa base ordenada entre o espaço e o K n correspondente. Por exemplo, no Exercício 7 se as coordenadas de um polinômio p com respeito à base ordenada C são (6, 2, 5), então p = (x + 4) + 5 (x + 4) 2. Definição 4. Dados V e W espaços vetoriais sobre um corpo K. Definimos: L(V, W ) = {T : V W tal que T é transformação linear}. Defina também as seguintes operações em L(V, W ): T S L(V, W ) dada por (T S)(v) = T (v) + S(v), v V e λ T L(V, W ) dada por (λ T )(v) = λ T (v), v V, para todas T e S em L(V, W ) e todo λ em K. Exercício 8. Mostre que as operações descritas na Definição 4 estão bem definidas, i.e., que se T e S pertencem a L(V, W ) e λ pertence a K, então T S e λ T pertencem a L(V, W ). Mostre também que L(V, W ) é um espaço vetorial sobre K, se munido dessas operações. Exercício 9. Sejam V e W espaços vetoriais de dimensão finita sobre um corpo K. Fixadas bases ordenadas B e C de V e W, respectivamente, mostre que a função ϕ : L(V, W ) M m n (K) definida como ϕ(t ) = [T ] BC, para toda T L(V, W ) é um isomorfismo, onde n denota a dimensão de V e m denota a dimensão de W e L(V, W ) está munido das operações descritas na Definição 4. Utilize isso para determinar uma base de L(V, W ), assim como sua dimensão. Exercício 10. Denote por F o subconjunto do conjunto das funções de R em R formado pelas funções f : R R tais que existem números reais a 0, a 1,..., a 4 satisfazendo: f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4, x R. Mostre que se o espaço de todas as funções reais está munido das operações canônicas, então F é um subespaço desse espaço. Seja T : F F a função definida como: onde f denota a derivada de f. T (f) = f, f F, (1) Mostre que T está bem definida e é linear. Determine o kernel e a imagem de T. (2) Determine a matriz de T com respeito à base ordenada B = (f i ) 5 i=1, onde f 1 denota a função constantemente igual a 1 e f i denota a função dada por f i (x) = x i 1, para todo x R e para todo 2 i 5. Em outras palavras, determine [T ] B.

5 (3) Determine a matriz de T com respeito à base ordenada C = (g i ) 5 i=1, onde g 1 denota a função constantemente igual a 1 e g i denota a função dada por g i (x) = (x + 3) i 1, para todo x R e para todo 2 i 5. (4) Determine a matriz invertível P M 5 (R) tal que: [T ] B = P [T ] C P 1. 5

MCTB Álgebra Linear Avançada I. Lista Ache a forma canônica de Jordan de cada um dos operadores lineares do Exercício 1.

MCTB Álgebra Linear Avançada I. Lista Ache a forma canônica de Jordan de cada um dos operadores lineares do Exercício 1. MCTB002-13 - Álgebra Linear Avançada I Lista 4 1. Para cada um dos seguintes operadores lineares, ache uma base para cada um de seus autoespaços generalizados: 1 1 (a) T = L A, onde A = 1 3 11 4 5 (b)

Leia mais

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes DAMCZB014-17SA Introdução à análise funcional Claudia Correa Conjuntos quocientes e espaços vetoriais quocientes O objetivo do presente texto é recordar as noções relacionadas a conjuntos quocientes e

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Exercício 1. Prove que cada uma das transformações

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre corpos e espaços vetoriais sobre corpos O Exercício 8 é o exercício bônus dessa lista Exercício 1. Seja K um conjunto formado exatamente

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

CM005 Álgebra Linear Lista 2

CM005 Álgebra Linear Lista 2 CM005 Álgebra Linear Lista 2 Alberto Ramos 1. Seja M M n (R) uma matriz. Mostre que se {v 1,..., v p } R n é linearmente dependente, então {Mv 1,..., Mv p } é também linearmente dependente. Agora suponha

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1

Leia mais

MAT Álgebra Linear para Engenharia II

MAT Álgebra Linear para Engenharia II MAT2458 - Álgebra Linear para Engenharia II Prova Substitutiva - 04/12/2013 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

Parte 2 - Espaços Vetoriais

Parte 2 - Espaços Vetoriais Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U. Lista de Álgebra Linear - Prof. Edson Iwaki 1. Quais dos subconjuntos são R subespaços vetoriais? Ache uma base para os que forem. (a) S = {(x, y, z) R 3 x 0} R 3 (b) S = {(x, y, z) R 3 x = 0} R 3 (c)

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

MAT-27 Prova 02 Setembro/2011

MAT-27 Prova 02 Setembro/2011 MAT-7 Prova 0 Setembro/011 Nome: Turma: Duração máxima: 100 min. Cada questão (de 1 a 10) vale 10 pontos. Convenção: EV (espaço vetorial); TL (transformação linear); OL (operador linear); 1. Analise as

Leia mais

No próximo exemplo, veremos um tipo de funcional linear bastante importante.

No próximo exemplo, veremos um tipo de funcional linear bastante importante. UFPR - Universidade Federal do Paraná Departamento de Matemática CM053 - Álgebra Linear II - Notas de aula Prof. José Carlos Eidam Funcionais lineares Nestas notas, estudaremos funcionais lineares sobre

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Verdadeiro ou falso?

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos

Leia mais

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais

MAT Álgebra Linear para Engenharia II

MAT Álgebra Linear para Engenharia II MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a

Leia mais

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 MAT 2458 - ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 1. Sejam u = (x 1, x 2 ) e v = (y 1, y 2 ) vetores de R 2. Para que valores de t R a funcão u, v = x 1 y 1 +

Leia mais

Variedades diferenciáveis e grupos de Lie

Variedades diferenciáveis e grupos de Lie LISTA DE EXERCÍCIOS Variedades diferenciáveis e grupos de Lie 1 VARIEDADES TOPOLÓGICAS 1. Seja M uma n-variedade topológica. Mostre que qualquer aberto N M é também uma n-variedade topológica. 2. Mostre

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

(a) 1 (b) 0 (c) 2 (d) 3. (a) 6 (b) 8 (c) 1. (d) H = {p P 2 p(1) = p(2)} (c) H = {p P 2 p(1) + p(2) = 0} 8. Seja H o subespaço definido por

(a) 1 (b) 0 (c) 2 (d) 3. (a) 6 (b) 8 (c) 1. (d) H = {p P 2 p(1) = p(2)} (c) H = {p P 2 p(1) + p(2) = 0} 8. Seja H o subespaço definido por UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Cesar, Flavio, Luiz Carlos, Mario, Milton, Monique e Paulo Data: 25 de setembro de 2013 Primeira Prova 1. Podemos

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Primeira Lista de Álgebra Linear

Primeira Lista de Álgebra Linear Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof.

1 Espaços Vetoriais. 1.1 Base e Dimensão. 1.2 Mudança de Base. 1 ESPAÇOS VETORIAIS Álgebra Linear. Álgebra Linear Prof. ESPAÇOS VETORIAIS Álgebra Linear Espaços Vetoriais Base e Dimensão Álgebra Linear Prof Ânderson Vieira Definição Um conjunto S = {u,,u n } V é uma base do espaço vetorial V se (I) S é LI; (II) S gera V

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan

Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Exercício 1. Seja A = (a i j ) uma matriz diagonal sobre

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

uma breve introdução a estruturas algébricas de módulos sobre anéis - generalizando o conceito de espaço vetorial

uma breve introdução a estruturas algébricas de módulos sobre anéis - generalizando o conceito de espaço vetorial V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 uma breve introdução a estruturas algébricas de módulos sobre anéis - generalizando

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Aula número 1 (13/08)

Aula número 1 (13/08) Aula número 1 (13/08) (1) Sistemas de coordenadas. Esta seção funciona como uma preparação psicológica para a noção de variedade diferenciável e para os enunciados das formas locais das imersões, submersões

Leia mais

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 7 - Bases e dimensão A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade introduziremos dois conceitos

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Um Estudo Sobre Espaços Vetoriais Simpléticos

Um Estudo Sobre Espaços Vetoriais Simpléticos Um Estudo Sobre Espaços Vetoriais Simpléticos Fabiano Borges da Silva Lívia T. Minami Borges 28 de novembro de 2015 Resumo O presente artigo estuda de maneira detalhada espaços vetoriais que possuem uma

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2. MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)

Leia mais

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão Notas de Aula Álgebra Linear II IFA 2007.1 Prof. Paulo Goldfeld Versão 2007.03.29 1 2 Contents 2 Espaços Vetoriais 5 2.1 Espaços e Subespaços....................... 5 2.2 Independência Linear.......................

Leia mais

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato: Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

Álgebra Linear. Professor: página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin.

Álgebra Linear. Professor: página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin. página da disciplina na web: http: //professor.ufabc.edu.br/~jair.donadelli/algelin.html Sumário I 1 Motivação Google Navegação Sistemas Lineares 2 O que eu não vou explicar Operações com matrizes Matrizes

Leia mais

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0 Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual

Leia mais

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função

Vamos começar relembrando algumas estruturas algébricas Grupos. Um grupo é um conjunto G munido de uma função UMA INTRODUÇÃO A ÁLGEBRAS TIAGO MACEDO Resumo. Neste seminário vamos introduzir uma nova estrutura algébrica, álgebras. Começaremos recapitulando estruturas definidas em seminários anteriores. Em seguida,

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

ESPAÇOS LINEARES (ou vetoriais)

ESPAÇOS LINEARES (ou vetoriais) Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2013.1 17 de Maio de 2013. Gabarito 1) Considere a transformação linear T : R 3 R 2 definida por: T (1, 1, 0) = (2, 2, 0), T (0, 1, 1) = (1, 0, 0) T (0, 1, 0) = (1, 1, 0). (a) Determine

Leia mais

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares.

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Transformações lineares MÓDULO 3 - AULA 18 Aula 18 Transformações lineares Objetivos Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Introdução

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Espaços Vetoriais. () Espaços Vetoriais 1 / 17

Espaços Vetoriais. () Espaços Vetoriais 1 / 17 Espaços Vetoriais () Espaços Vetoriais 1 / 17 Espaços Vetoriais Definição Seja um conjunto V, não vazio. i. Uma adição em V é uma operação que a cada par de elementos (u, v) V V associa um elemento u +

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m

Leia mais

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2.

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2. UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA Quinta lista de Exercícios - Análise Funcional, período 2009.2. Professor:

Leia mais

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas.

PROVA EXTRAMUROS-MESTRADO (i) O tempo destinado a esta prova é de 5 horas. PROVA EXTRAMUROS-MESTRADO - 2016 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) A parte I (duas questões dissertativas) corresponde a 25%

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios 1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G de Álgebra Linear I 7. Gabarito ) Considere o conjunto de vetores W = {(,, ); (, 5, ); (,, ); (3,, ); (, 3, ); (,, )}. (a) Determine a equação cartesiana do sub-espaço vetorial V gerado pelos vetores

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Teoria Espectral em Espaços de Hilbert

Teoria Espectral em Espaços de Hilbert Teoria Espectral em Espaços de Hilbert Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense 22 de setembro de 2016 Espaços Vetoriais de Dimensão Finita Sejam V

Leia mais

1 Noções preliminares

1 Noções preliminares Álgebras, subálgebras e endomorfirsmos Ana Cristina - MAT/UFMG Durante este texto, vamos considerar F um corpo de característica zero. Iniciaremos com algumas definições da teoria de anéis que serão importantes

Leia mais

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2)

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2) Espaço Dual, Transposta e Adjunta nota da álgebra linear 2) Sadao Massago Outubro de 2009 1 Espaço Dual Dado um espaço vetorial V sobre o corpo F, o espaço dual V é o espaço de todas transformações lineares

Leia mais

Transformações Lineares

Transformações Lineares Transformações Lineares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

3 Sistema de Steiner e Código de Golay

3 Sistema de Steiner e Código de Golay 3 Sistema de Steiner e Código de Golay Considere o sistema de Steiner S(5, 8, 24, chamaremos os seus blocos de octads. Assim, as octads são subconjuntos de 8 elementos de um conjunto Ω com 24 elementos

Leia mais

Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 8. Formas Bilineares. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 8 Formas Bilineares Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 8: Formas Bilineares Meta

Leia mais

Mudança de base. Lista de exercícios. Professora: Graciela Moro

Mudança de base. Lista de exercícios. Professora: Graciela Moro Lista de exercícios Professora: Graciela Moro Mudança de base. Sejam β {( ) ( )} β {( ) ( )} β { ) ( )} e β {( ) ( )} bases ordenadas de R. (a) Encontre a matrizes mudança de base: i. [I β β ii. [I β β

Leia mais

REVISÃO DE ÁLGEBRA LINEAR

REVISÃO DE ÁLGEBRA LINEAR REVISÃO DE ÁLGEBRA LINEAR I) INTRODUÇÃO D1. Estabilidade para a operação + : x E, y E, x + y E D2. Definição de grupo comutativo (Abeliano): (E,+) é um grupo comutativo se e somente se: 1) Associatividade:

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) ! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja

Leia mais

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

GABARITO PSUB Questão Resposta 1 A 2 A 3 E 4 D 5 A 6 B 7 A 8 A 9 C 10 E 11 C 12 C 13 B 14 C 15 A 16 D

GABARITO PSUB Questão Resposta 1 A 2 A 3 E 4 D 5 A 6 B 7 A 8 A 9 C 10 E 11 C 12 C 13 B 14 C 15 A 16 D GABARITO PSUB 2013 Questão Resposta 1 A 2 A 3 E 4 D 5 A 6 B 7 A 8 A 9 C 10 E 11 C 12 C 13 B 14 C 15 A 16 D MAT2457 - Álgebra Linear para Engenharia I Prova Substitutiva - 26/06/2013 Nome: Professor: NUSP:

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

Lista de exercícios 6 Espaços Vetoriais

Lista de exercícios 6 Espaços Vetoriais Universidade Federal do Paraná semestre 016. Algebra Linear, Olivier Brahic Lista de exercícios 6 Espaços Vetoriais Exercícios da Seção 3. Exercício 1: Determine se os seguintes conjuntos formam subespaços

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais