Planejamento e Otimização de Experimentos
|
|
|
- Alícia da Conceição
- 6 Há anos
- Visualizações:
Transcrição
1 Planejamento e Otimização de Experimentos Planejamentos 3 k, Box-Behnken e Plackett-Burman Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected]
2 Planejamento Fatorial 3 k 3 níveis o 0: baixo (-1) o 1: intermediário (0) o 2: alto (+1) poucos fatores e muitos experimentos regressão com termos quadráticos cada efeito tem uma componente linear e quadrática não é a forma mais eficiente de modelar uma relação quadrática
3 Fator B Combinações em um Planejamento Fator A
4 Combinações em um Planejamento 33
5 Regressão 3 2 = 9 experimentos 3 3 = 27 experimentos Modelo de regressão para 3 2 y = b 0 + b 1 x 1 + b 2 x 2 + b 12 x 1 x 2 + b 11 x b 22 x 22 termos quadráticos: adição de um terceiro nível
6 The effects model 3 2 factorial design y ijk = μ + τ i + β j + τβ ij + ε ijk The means model y ijk = μ ijk + ε ijk i = 1, 2,, a j = 1, 2,, b k = 1, 2,, n where the mean of the ijth cell is μ ij = μ + τ i + β j + τβ ij i = 1, 2,, a j = 1, 2,, b k = 1, 2,, n
7 In the two-factor factorial design we are interested in testing hypothesis abou the equality of row treatment effects, say H 0 : τ 1 = τ 2 = = τ a H 1 : at least one τ i 0 and the equality of column treatment effects, say H 0 : β 1 = β 2 = = β a H 1 : at least one β i 0 We are also interested in determining whether row and column treatment interact H 0 : τβ ij = 0 for all i, j H 1 : at least one τβ ij 0
8 Source of Variation Sum of Squares Degrees of Freedom Mean Square F 0 A treatments SS A a 1 SS A a 1 B treatments SS B b 1 SS B b 1 Interaction SS AB a 1 b 1 SS AB a 1 b 1 MS A MS E MS B MS E MS AB MS E Error SS E ab n 1 SS E ab n 1 Total SS T abn 1 SS A = 1 bn SS B = 1 an a i=1 b j=1 y 2 i.. y 2... abn y 2.j. y 2... abn SS AB = SS Subtotals SS A SS B SS Subtotals = 1 a b y 2 n ij. y 2... abn i=1 j=1 SS E = SS T SS A SS B SS AB SS T = a b n i=1 j=1 k=1 2 y ijk y 2... abn
9 A battery design experiment An engineer is designing a battery for use in a device that will be subjected to some extreme variations in temperature Three plate materials for the battery 3 2 factorial design Material Type Temperature ( F)
10 Material Type y.j. Temperature ( F) y i y... = 3799 SS Material = 1 bn a i=1 SS Temperature = y 2 i.. y 2... abn = = 39, = 10, SS Interaction = , , SS T = = 77, SS E = 77, , , , = 18,
11 Source of Variation Sum of Squares Degrees of Freedom Mean Square F 0 P-Value Material types 10, , Temperature 39, , < Interaction 9, , Error 18, Total 77, The main effects of material type and temperature are significant; The interaction effect is also significant
12 Average life (h) Temperature ( o F) The significant interaction is indicated by the lack of parallelism of the lines
13 Tukey s Test Interaction is significant and comparisons between the means of one factor (e.g., A) may be obscured by the AB interaction One approach is to fix factor B at a specific level and apply Tukey s test to the means of factor A at that level Ex: To detect the differences among the means of the three material types: temperature level 2 (70 F) y 12. = ; y 22. = ; y 32. = T 0.05 = q 0.05,3,27 MS E n = = [XLS] Statistical Tables & Calculators 3 vs 1: = vs 2: = vs 1: =
14 Model Adequacy Checking e ijk = y ijk y ijk y ijk = y ijk e ijk = y ijk y ijk Residuals
15 standardized residual = = is the only residual whose absolute value is larger than 2 e ijk y ijk e ijk material type e ijk temperature
16 Planejamento Box-Behnken, 1960 É o mais usado para planejamentos fatoriais em três níveis, sendo possível para mais do que três variáveis independentes 12 pontos nos centros das arestas 3 pontos centrais
17 Planejamento Box-Behnken X 1 Ensaios X 2 X 3 X 1 X 2 X p1 pontos centrais
18 Planejamento Box-Behnken relação empírica para três variáveis, assumindo o modelo quadrático y = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + b 11 x b 22 x b 33 x 33
19 Três Níveis; k = 3 Um experimento foi conduzido para estudar o efeito de três diferentes tipos de garrafas (B) de 900 g (32 oz) em três diferentes tipos de prateleiras (C), considerando o tempo gasto para armazenar 10 pacotes de 12 garrafas nas prateleiras, com três trabalhadores (A) envolvidos.
20 Trabalhador (A) o 1 o 2 o 3 Prateleira (C) o Permanente o Fim do corredor o Geladeira Garrafa (B) o Plástica o Vidro de 28 mm o Vidro de 38 mm
21 3 k completo 27 experimentos Matriz X não é quadrada b = X T X 1 X T y Experimento Execução A B C Y
22 Box-Behnken 14 experimentos (12 +2pc) sempre incluir pontos centrais: alias não considerar o efeito ABC na matriz X Experimento Execução A B C Y
23 3 k completo Coeficientes oc = 0,66 oac = -0,24 oa 2 = -0,80 oc 2 = 0,31 Box-Behnken Coeficientes oc = 0,57 oa 2 = -0,7 oc 2 = 0,5
24 Planejamento Plackett-Burman, 1946 Muito eficiente quando apenas os efeitos principais são importantes. Os efeitos secundários são confundidos com os principais Screening Fatorial fracionário para estudar k = N-1 variáveis em N experimentos, onde N é um múltiplo de 4 Não geométrico
25 Tabelas, em linhas, apresentam a primeira coluna da matriz de planejamento N k Sinais A segunda linha (coluna) é obtida a partir dessa primeira movendose os elementos da linha para baixo em uma posição, e o colocando o último elemento na primeira posição. E assim por diante Uma linha de sinais -1 é adicionada, completando o planejamento
26 Matriz de contrastes para k = 11, com 12 experimentos X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X A tabela do NIST é multiplicada por -1
27 Número de Publicações no Web of Science Plackett-Burman Box-Behnken *
28 Application of Plackett-Burman Design to evaluate Media Components Affecting Antibacterial Activity of Alkaliphilic Cyanobacteria Isolated from Lonar Lake Turk J Biochem 2010; 35 (2) ; Objective: To evaluate the media components affecting the antimicrobial activity of alkaliphilic cyanobacteria using Plackett-Burman design
29 k = 8 N = 12 todos os contrastes da última linha são iguais a -1
30
31 ? x 2
Planejamento e Otimização de Experimentos Ajuste de Modelos de Regressão e Outros Planejamentos
Planejamento e Otimização de Experimentos Ajuste de Modelos de Regressão e Outros Planejamentos Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Ajuste de modelos
BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva
BAC011 - ESTATÍSTICA Análise de Variância ANÁLISE DE VARIÂNCIA 1 A é utilizada para se verificar a influência de certos fatores sobre uma resposta de interesse. Testa-se como os diversos fatores exercem
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando
Delineamento em quadrado latino (DQL)
Delineamento em quadrado latino (DQL) Universidade Estadual de Santa Cruz Ivan Bezerra Allaman INTRODUÇÃO É utilizado quando se tem duas condições experimentais (física ou biológica) heterogêneas o suficiente
Ensaios Fatoriais. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman
Ensaios Fatoriais Universidade Estadual de Santa Cruz Ivan Bezerra Allaman INTRODUÇÃO As estruturas fatorias são utilizadas quando se tem interesse em avaliar a relação entre dois ou mais fatores no estudo.
Esquema Fatorial. Lucas Santana da Cunha Universidade Estadual de Londrina
Esquema Fatorial Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de junho de 2016 Muitos experimentos envolvem o estudo dos efeitos
Esquema Fatorial. Esquema Fatorial. Lucas Santana da Cunha 06 de outubro de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 06 de outubro de 2018 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos mais simples comparamos
ESQUEMA FATORIAL. Lucas Santana da Cunha Universidade Estadual de Londrina Departamento de Estatística
ESQUEMA FATORIAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 22 de julho de 2017 Esquema Fatorial Nos experimentos mais simples
5.3 Experimentos fatoriais a dois fatores (Revisando...)
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores (Revisando...) Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores
Experimentos Fatoriais
Experimentos Fatoriais Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos
DELINEAMENTO EM BLOCOS CASUALIZADOS COM REPETIÇÕES. Profª. Sheila Regina Oro
DELINEAMENTO EM BLOCOS CASUALIZADOS COM REPETIÇÕES Profª. Sheila Regina Oro Delineamento em Blocos Casualizados com Repetições (DBCr) Utilizado quando temos mais de uma repetição de cada tratamento dentro
5.3 Experimentos fatoriais a dois fatores. Ambos os fatores são supostos fixos e os efeitos de tratamento são definidos como desvios da média tal que
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores. Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores são supostos
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Metodologia de Superfície de Resposta e Simplex Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Visão geral técnicas matemáticas
1) Como vou comparar 3 grupos realizo uma Anova one way:
Gabarito aula anova e teste não-paramétrico: 1) Como vou comparar 3 grupos realizo uma Anova one way: One-way ANOVA: AREA versus VIRUS Analysis of Variance for AREA Source DF SS MS F P VIRUS 2 215,54 107,77
Curso de MINITAB Universidade Federal de Ouro Preto. Planejamento de Experimentos (DOE)
Planejamento de Experimentos (DOE) - Introdução Um experimento é um procedimento no qual as alterações propositais são feitas nas variáveis de entrada de um processo ou sistema, de modo que se possa avaliar
Técnicas Experimentais Aplicadas
Técnicas Experimentais Aplicadas em Ciência do Solo Mario de Andrade Lira Junior lira.pro.br/wordpress 7/4/010 1 Principais delineamentos Inteiramente casualizado Segundo mais comum Blocos completos Normalmente
NOÇÕES SOBRE EXPERIMENTOS FATORIAIS
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planejamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
Delineamento inteiramente casualizado. Mario A. Lira Junior Estatística Aplicada à Agricultura UFRPE
Delineamento inteiramente casualizado Mario A. Lira Junior Estatística Aplicada à Agricultura UFRPE Características especiais Ambiente é homogêneo Ou na ausência de informação sobre heterogeneidade Delineamento
Pesquisador. Planejamento de Experimentos Design of Experiments - DOE NOÇÕES SOBRE EXPERIMENTOS FATORIAIS. 1 - Fixar T e variar P até > Pureza
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planeamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
Aula Prática 03 Estatística Experimental DELINEAMENTO QUADRADO LATINO. *Planejamento do Experimento Delineamento Quadrado Latino (DQL);
Aula Prática 03 Estatística Experimental DELINEAMENTO QUADRADO LATINO *Planejamento do Experimento Delineamento Quadrado Latino (DQL); ods rtf; title 'Planejamento do Experimento - Quadrados Latinos';
Planejamento de Experimentos
Planejamento de Experimentos 6. Os Modelos fatoriais 2 k Trataremos agora de um caso especial de experimentos fatoriais no qual todos os fatores têm apenas dois níveis. Tais níveis podem ser quantitativos
Estatística Experimental
Estatística Experimental Prof. Dr. Evandro Bona [email protected] paginapessoal.utfpr.edu.br/ebona Bibliografia Recomendada Barros Neto, B.; Scarminio, I. S.; Bruns, R. E. Como Fazer Experimentos. 4ª
i j i i Y X X X i j i i i
Mario de Andrade Lira Junior lira.pro.br\wordpress lira.pro.br\wordpress Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida do grau de ligação entre duas variáveis Usos Regressão
Experimentos em Parcelas Subdivididas
Experimentos em Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 08 de novembro de 2018 Londrina Tal como no caso de fatorial, o termo parcelas subdivididas não se refere a um tipo de delineamento
Bibliografia Recomendada.
Bibliografia Recomendada http://paginapessoal.utfpr.edu.br/ebona Bibliografia Recomendada Montgomery, D. C. Design and Analysis of Experiments. Bibliografia Recomendada Barros Neto, B.; Scarminio, I. S.;
Aula no SAS. Planejamento do Experimento - Delineamento inteiramente casualizado. Saídas
Aula no SAS Planejamento do Experimento - Delineamento inteiramente casualizado Saídas title "Antes da Casualização"; data plano; do parc=1 to 20;*DEVE SER MÚLTIPLO DO NÚMERO DE TRATAMENTOS; trat=int((parc-1)/5)+1;*tratamentos+1=5;
Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa
Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 06 de julho de 2016 Nos experimentos fatoriais, todas
Planejamento de experimentos (DOE)
Planejamento de experimentos (DOE) 1 Terminologia Independent vs. Dependent variables Categorical vs. Continuous variables Between- vs. Within-subjects manipulations Experimental vs. Control conditions
Planejamento e Otimização de Experimentos Métodos de Superfície de Resposta
Planejamento e Otimização de Experimentos Métodos de Superfície de Resposta Prof. Dr. Anselmo E de Oliveira www.quimica.ufg.br/docentes/anselmo [email protected] Visão geral técnicas matemáticas estatísticas
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
EXPERIMENTAÇÃO AGRÁRIA
EXPERIMENTAÇÃO AGRÁRIA Tema 4: Experimentos factoriais Definição Experimentos factoriais são aqueles que incluem todas as combinações possíveis de vários conjuntos de factores. Ex : Um experimento com
R-Fácil. Análise de Variância. Universidade Federal de Goiás Escola de Veterinária e Zootecnia
Universidade Federal de Goiás Escola de Veterinária e Zootecnia R-Fácil Análise de Variância Apostila destinada a usuários do R, com demonstrações de uso de funções em exemplos da área de Ciências Agrárias.
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Planejamentos Fatoriais 2 Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Planejamento Fatorial Fracionário k fatores 2 k
Uma Aplicação de Modelos Lineares Mistos
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA Uma Aplicação de Modelos Lineares Mistos Professor Jomar Antonio Camarinha Filho CURITIBA - PARANÁ SETEMBRO/2003ÍNDICE Modelos Mistos Prof. Jomar
Aula Prática 02 Estatística Experimental DELINEAMENTO CASUALIZADO EM BLOCOS. *Planejamento do Experimento Delineamento Casualizado em Blocos (DBC);
Aula Prática 02 Estatística Experimental DELINEAMENTO CASUALIZADO EM BLOCOS *Planejamento do Experimento Delineamento Casualizado em Blocos (DBC); proc plan; factors blocos=3 ordered parcelas=9 ordered;
Projeto de Experimentos
Projeto de Experimentos O uso de Projeto de Experimentos conduz a uma seqüência estruturada de ensaios, que assegura o máximo de informação com um gasto mínimo de tempo/dinheiro. Entrada Processo Saída
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 29 de julho de 2017 Parcelas Subdivididas Tal
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br\wordpress REGRESSÃO X CORRELAÇÃO Diferença Regressão - equação ligando duas ou mais variáveis Correlação medida
Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0
Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0
Testes de Hipóteses. : Existe efeito
Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs. H 1 : Existe efeito Hipótese nula Hipótese alternativa Varia conforme a natureza
BIOESTATÍSTICA. EXERCÍCIOS Folha 7 ANO LECTIVO: 2007/2008 ANOVA
BIOESTATÍSTICA Departamento de Matemática EXERCÍCIOS Folha 7 ANO LECTIVO: 2007/2008 ANOVA 1. A anemia é uma doença que afecta muitas pessoas e que pode ter diversas origens. Pretendendo-se avaliar possíveis
TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO
1 TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior lira.pro.br/wordpress os direitos autorais. ANÁLISE DA VARIÂNCIA Desdobramento da variância total em seus componentes
Planejamentos Fatoriais Fracionários
Planejamentos Fatoriais Fracionários O número de ensaios realizados para se fazer um planejamento fatorial 2 k completo aumenta rapidamente com o número de fatores investigados (k). k Efeitos Interações
PLANEJAMENTOS FATORIAIS E SUPERFÍCIE DE RESPOSTAS
Delineamento de experimentos e ferramentas estatísticas aplicadas às ciências farmacêuticas Felipe Rebello Lourenço PLANEJAMENTOS FATORIAIS E SUPERFÍCIE DE RESPOSTAS PARTE 6 PLANEJAMENTOS FATORIAIS E SUPERFÍCIE
Planejamento e Análise de Experimentos: Experimento sobre o crescimento de bolos
Planejamento e Análise de Experimentos: Experimento sobre o crescimento de bolos Tatiana Alves Costa Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais Av. Antônio Carlos,
Instituto Tecnológico de Aeronáutica
Instituto Tecnológico de Aeronáutica Programa de Pós-Graduação em Engenharia de Infraestrutura Aeronáutica Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica Prova de Seleção 2 o semestre de
INSTITUTO SUPERIOR DE AGRONOMIA ESTATÍSTICA E DELINEAMENTO Resoluções dos Exercícios de Análise de Variância
INSTITUTO SUPERIOR DE AGRONOMIA ESTATÍSTICA E DELINEAMENTO 2016-17 Resoluções dos Exercícios de Análise de Variância 1. Pretende-se modelar a variável resposta numérica concentracao, tendo como variável
Planejamento de Experimentos. 13. Experimentos com fatores aleatórios
Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.
Lucas de Assis Soares, Luisa Nunes Ramaldes, Taciana Toledo de Almeida Albuquerque, Neyval Costa Reis Junior. São Paulo, 2013
COMPARATIVE STUDY OF THE ATMOSPHERIC DISPERSION MODELS AND THROUGH THE ANALYSIS OF AIR QUALITY IN THE METROPOLITAN REGION OF GRANDE VITÓRIA Lucas de Assis Soares, Luisa Nunes Ramaldes, Taciana Toledo de
DECOMPOSIÇÃO DA INTERAÇÃO TRIPLA SIGNIFICATIVA UTILIZANDO O COMANDO CONTRAST DO PROC GLM
DECOMPOSÇÃO DA NTERAÇÃO TRPLA SGNFCATVA UTLZANDO O COMANDO CONTRAST DO PROC GLM DO SAS APLCADO AO MODELO DE CLASSFCAÇÃO TRPLA PARA DADOS BALANCEADOS (1) MARA CRSTNA STOLF NOGUERA (2) ; JOSÉ EDUARDO CORRENTE
RSM MÉTODO DA SUPERFÍCIE DE RESPOSTA
RSM MÉTODO DA SUPERFÍCIE DE RESPOSTA É UMA TÉCNICA ESTATÍSTICA MUITO ÚTIL PARA A MODELAÇÃO E ANÁLISE DE PROBLEMAS NOS QUAIS A (S) RESPOSTA (S) É INFLUENCIADA POR VÁRIAS VARIÁVEIS (FACTORES) E O GRANDE
Teste F-parcial 1 / 16
Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação
Planejamento de experimentos (DOE)
Planejamento de experimentos (DOE) 1 Terminologia Independent vs. Dependent variables Categorical vs. Continuous variables Between- vs. Within-subjects manipulations Experimental vs. Control conditions
Introdução aos experimentos fatoriais
Introdução aos experimentos fatoriais Importância e especificação Prof. Walmes Zeviani [email protected] Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná
Teste F-parcial 1 / 16
Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas
Arranjo fatorial de tratamentos
Matéria Seca de Nódulos (mg/planta) Mario Andrade Lira Junior Estatística Aplicada à Agricultura 01- Exemplo gráfico com fator quantitativo Arranjo fatorial de tratamentos Características básicas Utilizável
Uso de procedimentos de estatistica na obtenção de resultados de toxicidade
Uso de procedimentos de estatistica na obtenção de resultados de toxicidade Dean Leverett Senior Scientist UK Environment Agency Science Biological Effects Measures Plano Resultados dos testes de toxicidade
ANÁLISE DE DADOS. Nome:
UNIVERSIDADE EDUARDO MONDLANE FACULADADE DE AGRONOMIA E ENGENHARIA FLORESTAL Departamento de Economia Agrária e Desenvolvimento Rural Secção de Economia Agrária ANÁLISE DE DADOS 31.05.2012 Nome: 1. Das
DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Mario de Andrade Lira Junior
DELINEAMENTO EM BLOOS ASUALIZADOS (DB) Mario de Andrade Lira Junior GENERALIDADES Delineamento mais comum em ciências agrárias Delineamento mais simples com controle local Só usar quando confiar que pode
Análise de Variância a um factor
1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para
Resultados dos testes estatísticos
Resultados dos testes estatísticos Estudo da fiabilidade do instrumento para avaliação dos comportamentos e atitudes Factor Analysis Communalities Initial Extraction Item47 1,000,759 Item48 1,000,801 Item49
Instituto Superior Técnico, Dep. de Engenharia Mecânica - ACCAII Objectivos e tarefas
Instituto Superior Técnico, Dep. de Engenharia Mecânica - ACCAII Objectivos e tarefas Aplicar os passos do processo de desenvolvimento para a construção de um algoritmo 1 Exercícios Resolvidos 1 - EXERCÍCIO
BIE5782. Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES
BIE5782 Unidade 7: INTRODUÇÃO AOS MODELOS LINEARES ROTEIRO 1.Motivação 2. Método dos mínimos quadrados 3. Ajuste no R: função lm 4. Resultado no R: objeto lm 5. Premissas, interpretação e diagnóstico 6.
UNIVERSIDADE DOS AÇORES Licenciatura em Sociologia. Análise de Dados
UNIVERSIDADE DOS AÇORES Licenciatura em Sociologia Análise de Dados Exame Data: 200 06 07 Duração: 2 horas Nota: Justifique todas as suas afirmações. Um investigador pretende saber se existem ou não diferenças
Incerteza, exatidão, precisão e desvio-padrão
1 Incerteza, exatidão, precisão e desvio-padrão Incerteza ( uncertainty or margin of error ) A incerteza, segundo a Directiva Comunitária 2007/589/CE, é: parâmetro associado ao resultado da determinação
Regressão linear múltipla - Correlação parcial
Regressão linear múltipla - Correlação parcial trigo Matriz de correlações: trigo % matéria orgânica 40 103 32 1 58 192 45 28 50 300 39 5 72 420 46 11 61 510 34 14 69 630 38 2 63 820 32 12 % matéria orgânica
Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro
Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste
Análise de Variância simples (One way ANOVA)
Análise de Variância simples (One way ANOVA) Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos
([DPHGH5HFRUUrQFLDGH0pWRGRV(VWDWtVWLFRV
Data: 09/07/2003 ([DPHGH5HFRUUrQFLDGH0pWRGRV(VWDWtVWLFRV Duração: 2 horas Nome: N.º: Curso: Regime: Número de folhas suplementares entregues pelo aluno: Declaro que desisto (VWDSURYDFRQVLVWHHPTXHVW}HVGHUHVSRVWDDEHUWDHDVUHVSHFWLYDVFRWDo}HVHQFRQWUDPVHQDWDEHODTXHVHVHJXH
DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITETURA
SCHOOL YEAR 01/013 1 ST EXAM 013/01/16 08h00 DURATION: h00 THEORY QUESTIONS (maximum 45 minutes) 1. In a pumped trunk main system explain why the smallest technically viable diameter may not be the least
MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli
MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos
