A pirâmide de Pascal
|
|
|
- João Vítor Bastos Leal
- 10 Há anos
- Visualizações:
Transcrição
1 A pirâmide de Pascal Luzitelma Maria Barbosa de Castro Tarcisio Praciano-Pereira Departamento de Matemática Universidade Estadual Vale do Acaraú Março de 2003 pré-prints do Curso de Matemática de Sobral no Editor Tarcisio Praciano-Pereira Resumo Mostramos uma generalização do Triângulo de Pascal em que pisos de uma pirâmide governam a distribuição das potências de um trinômio. palavras chave: pirâmide de Pascal, potências de um trinômio [email protected] Dep de Matemática Universidade Estadual Vale do Acaraú [email protected] 1
2 1 Introdução Um programa em Python permite calcular os coeficientes na multiplicação de dois polinômios, em particular as potências de um polinômio qualquer. O programa se encontra na última seção. Uma descrição dos resultados segue-se para nos levar à descoberta da lei de formação. Essencialmente faremos uma transcrição dos resultados obtidos com o programa que é uma implementação da convolução para dados discretos, ver [1]. 2 Os primeiros experimentos Rodando um programa em Python obtivemos os seguintes resultados, devidamente editados. a = (1,1,1) (a + b + c) a 2 = (1,2,3,2,1) (a + b + c) 2 segunda potência a 3 = (1,3,6,7,6,3,1) (a + b + c) 3 terceira potência a 4 = (1,4,10,16,19,16,10,4,1) (a + b + c) 4 quarta potência Cada seção abaixo, corresponde a um novo plano na pirâmide. Observe que a seqüência de linhas do Triângulo de Pascal estão escritas da maior para a menor.
3 1 (a + b + c) (b + c) 1 1 (b + c) (a + b + c) (b + c) (b + c) 1 1 (b + c) (a + b + c) (b + c) (b + c) (b + c) (b + c) (a + b + c) 3 Veja a distribuição dos termos de (a + b + c) 3 sem os coeficientes: a 3 a 2 c ac 2 c 3 a 2 b abc bc 2 ab 2 b 2 c b 3 é só colar os coeficientes em cima... Mais um exemplo, os coeficientes (a + b + c) 4 : (b + c) (b + c) (b + c) (b + c) 1 1 1(b + c) A distribuição dos coeficientes a p,b q,c r correspondem a esta distribuição acima perfeitamente. Veja a quinta potência:
4 Os coeficientes de (a + b + c) 5 são: 1,5,15,30,45,51,45,30,15,5,1 como distribuir quem com quem? Analise (a + (b + c)) 5. Agora você tem um binômio, cujos coeficientes saem da L5 do triângulo: 1/5/10/10/5/1 Depois a distribuição dos coeficientes de (a + (b + c)) 5 ficam, espaciamente, distribuidos assim: 1 (b + c) (b + c) (b + c) (b + c) (b + c) (b + c) 0 1 somando Quer dizer que (a+b+c) 5 se obtem com este coeficientes, assim distribuidos espacialmente, com uma distruibuição em cada linha dos coeficientes de a, b ou c com potências decrescentes e crescentes. a 5 a 4 c a 3 c 2 a 2 c 3 ac 4 c 5 a 4 b a 3 bc a 2 bc 2 abc 3 bc 4 a 3 b 2 a 2 b 2 c ab 2 c 2 ab 2 c 3 a 2 b 3 ab 3 c ab 3 c 2 ab 4 ab 4 c b 5 (1)
5 Existe uma simetria perfeita em cada seção plana da pirâmide à semelhança do que acontece com as linhas do triângulo de Pascal. As variáveis se mantêm com expoentes constantes ao longo das mesmas linhas paralelas. Se numa linha os expoentes variarem, o mesmo vai acontecer, e da mesma forma em qualquer outra paralela. A arrumação depende apenas da escolha da posição das variáveis com expoente máximo, colocadas nos vértices dos triângulos. Outro exemplo. Mais uma potência: Os coeficientes são: (a + b + c) 6 1,6,21,50,90,126,141,126,90,50,21,6,1 e para encontrar a distribuição uso os elementos da linha L6 do Triângulo de Pascal cada um como coeficiente da expansão do binômio (b + c) k 1 (b + c) (b + c) (b + c) (b + c) (b + c) (b + c) (b + c) que corresponde ao cálculo feito com o programa para a 6a. potência de ( ) 6 : 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1
6 Outras potências: 7a. 1,7,28,77,161,266,357,393,357,266,161,77,28,7,1 8a. 1,8,36,112,266,504,784,1016,1107,1016,784,504, 266,112,36,8,1 9a. 1,9,45,156,414,882,1554,2304,2907,3139,2907, 2304,1554,882,414,156,45,9,1 10a. 1,10,55,210,615,1452,2850,4740,6765,8350,8953, 8350,6765,4740,2850,1452,615,210,55,10,1 11a. 1,11,66,275,880,2277,4917,9042,14355,19855,24068,25653, 24068,19855,14355,9042,4917,2277,880,275,66,11,1 12a. 1,12,78,352,1221,3432,8074,16236,28314,43252, 58278, 69576, 73789, 69576, 58278, 43252,28314,16236,8074,3432,1221,352,78,12,1 3 Algoritmo para obtenção de P n - piso de ordem n Faça uma tabela de dupla entrada usando a linha de ordem L n do Triângulo de Pascal, na vertical.
7 Coloque, sucessivamente, as linhas do Triângulo de Pascal, a partir da linha L n, na horizontal, multiplicada pelo termo que se encontra na vertical. Os termos de cada nova linha, devem ter suas colunas intercaladas em relação a anterior, de modo que o primeiro elemento ocupe a posição intermediária entre o primeiro e o segundo elemento da linha mais acima. A soma as colunas o resultado serão os termos cuja soma correspondem a ( ) n o que ainda corresponde a 111 n numa base adequada. Por exemplo, para obter o P 7. Escrever L 7 do triângulo na vertical, e todas as linhas do triângulo, a partir de L 7 na horizontal, multiplicadas pelo elemento indexador de coluna na vertical O piso P7:
8 A distribuição das potências de a,b,c em (a + b + c) 7 se fazem de tal forma que as potências cresçam ou decresçam com a soma dos expoentes constantes. Para obtê-las, coloque nos 1 s a 7,b 7,c 7 e depois ao longo dos lados externos distribua os produtos de modo que em cada uma das linhas externas do piso, só apareçam os fatores que aparecem nos vértices que determinam estas linhas. Depois, em cada paralela, e nos mesmo sentido em que na externa, a potência de um fator tiver decrescido, da mesma forma vai descrescer em cada paralela como se pode ver na figura (1) página 8, 4 Um programa para convolução discreta O programa abaixo, chamado multipol(), calcula o produto de dois polinômios. O algoritmo é exatamente o da convolução de dados discretos. def multipol (lista1,lista2): ## ## (1) If a number is given change order etc... if (type(lista2) == type(1)) or (type(lista2) == type(1.111)): lista1, lista2 = lista2, lista1 ## troca os argumentos ## ## (2) (numberp lista2) (* lista1 lista2) if (type(lista2) == type(1)) or (type(lista2) == type(1.111)):
9 Figura 1: O piso de ordem 7 produto = lista1*lista2 else: ## (mapcar * lista2) ## ## (3) lista1=lista1 to force lambda recognise lista1 produto = map(lambda x,lista1=lista1: lista1*x, lista2) elif (type(lista1) == type(1)) or (type(lista1) == type(1.111)): produto = map(lambda x,lista1=lista1: lista1*x, lista2) else: ## ## (4) Else if only lists are given produto = convolucao(lista1,lista2) return produto ## faz a convolucao quando len(lista1) < len(lista2)
10 def convolucao(lista1,lista2): if len(lista1) > len(lista2): lista1,lista2 = lista2,lista1 produto = [] lista1.reverse() k = len(lista1)-1 while k >=0 : produto.append(produto_escalar(lista1[k:],lista2)) k = k-1 while lista2: ### (5) produto.append(produto_escalar(lista1,lista2[1:])) lista2=lista2[1:] return produto[:len(produto)-1] ### (6) def produto_escalar(lista1,lista2): if len(lista1) > len(lista2): lista1,lista2 = lista2,lista1 soma = 0 while lista1: soma = soma + lista1[0]*lista2[0] lista1 = lista1[1:] lista2 = lista2[1:] return soma def sum(lista): soma = 0 while lista: soma = soma + lista[0] lista=lista[1:]
11 return soma lista1 = [1,1,1,1,1,1] lista2 = [1,1,1,1,1,1] print multipol(lista1,lista2) Você pode rodar este programa assim python multipol.py e o resultado será o produto dos polinômios cujas matrizes dos coeficientes se encontram nas duas penúltimas linhas do programa. Trocando estas matrizes você habilita o programa para calcular produtos de dois outros polinômios. Referências [1] MacLane, S e BirkhoffAlgebra
ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO
6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
Somatórias e produtórias
Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +
N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.
1 N1Q1 Solução a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. b) Há várias formas de se cobrir o tabuleiro com peças dos tipos A e B, com pelo
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
Análise Combinatória. Prof. Thiago Figueiredo
Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
Estrutura de Dados Básica
Estrutura de Dados Básica Professor: Osvaldo Kotaro Takai. Aula 7: Recursividade O objetivo desta aula é apresentar o conceito de recursão para solução de problemas. A recursão é uma técnica de programação
2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( )
Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Matriz ( ) Conjunto de elementos dispostos em linhas e colunas. Ex.: 0 1 é uma matriz com 2 linhas e 3 colunas. 2 Definição
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)
Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)
Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco
1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação
XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)
Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo
MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.
Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade
Introdução à Programação Aula 11 Mais sobre ciclos e iteração
Introdução à Programação Aula 11 Mais sobre ciclos e iteração Pedro Vasconcelos DCC/FCUP 2014 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 11 Mais sobre ciclos e iteração 2014 1 / 26 Nesta
Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO
151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da
CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Indicadores de aprendizagem Verifica se sabes: Identificar o conjunto dos números inteiros.
CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Identificar o conjunto dos números inteiros. Representar na recta numérica os números inteiros. Indicar o valor absoluto e o simétrico de um número. Comparar
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras
ficha 3 espaços lineares
Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo
Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?
Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em
Algoritmos e Estrutura de Dados. Introdução a Linguagem Python (Parte I) Prof. Tiago A. E. Ferreira
Algoritmos e Estrutura de Dados Aula 1 Introdução a Linguagem Python (Parte I) Prof. Tiago A. E. Ferreira Linguagem a ser Utilizada? Nossa disciplina é de Algoritmos e Estrutura de Dados, e não de linguagem
Prova Final de Matemática
PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.
Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução
A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.
INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,
FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.
FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8
Revisão para a Bimestral 8º ano
Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)
O problema do jogo dos discos 1
O problema do jogo dos discos 1 1 Introdução Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar Temos aplicado o problema do jogo dos discos em classes de estudantes de Licenciatura em Matemática
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)
ELIPSES INSCRITAS NUM TRIÂNGULO
ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.
UNIVERSIDADE FEDERAL DE SANTA MARIA
1 UNIVERSIDADE FEDERAL DE SANTA MARIA Disciplina de Algoritmos e Programação Profa: Juliana Kaizer Vizzotto Lista de Exercícios Vetores Para a implementação de programas que solucionem os problemas a seguir
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
BIMESTRAL - MANHÃ MATEMÁTICA CÁLCULOS TESTES. Nome: Nº: Data: / /2007 Série: 6ª/Ano: 7º Bimestre: 1º NOTA: Prova: Disciplina:
Nome: Nº: Disciplina: MATEMÁTICA Prova: BIMESTRAL - MANHÃ Data: / /2007 Série: 6ª/Ano: 7º Bimestre: 1º NOTA: Orientações para a prova: A prova é um instrumento de avaliação e aprendizagem. 1 - Leia cada
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 02 ATIVIDADE 01 Para poupar esforço de digitação, você pode usar o tradicional
Python Condicionais e Loops. Introdução à Programação SI1
Python Condicionais e Loops Introdução à Programação SI1 Conteúdo Comando de Decisão Comandos de Repetição Exercícios 13/06/2013 2 Condicional Controle de fluxo É muito comum em um programa que certos
Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS
FÓRMULAS DO EXCEL QUE SALVARAM MEU EMPREGO
10 CARA DO EXCEL FÓRMULAS DO EXCEL QUE SALVARAM MEU EMPREGO O que você vai aprender neste ebook? 1. SOMA 2. CONT.NÚM 3. CONT.VALORES 4. NÚM.CARACT 5. ARRUMAR 6. DIREITA, ESQUERDA, EXT.TEXTO 7. PROCV 8.
PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS
A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Microsoft Office Excel 2007
1 Microsoft Office Excel 2007 O Excel é um programa dedicado a criação de planilhas de cálculos, além de fornecer gráficos, função de banco de dados e outros. 1. Layout do Excel 2007 O Microsoft Excel
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.
Applets no Geogebra. Acesse os endereços dados a seguir e conheça exemplos de Applets. http://206.110.20.132/~dhabecker/geogebrahtml/index.
Applets no Geogebra Sonia Regina Soares Ferreira UFBA Applet é um software aplicativo que é executado no contexto de outro programa. Os applets geralmente tem algum tipo de interface de usuário, ou fazem
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum
x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?
Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões
Projeção ortográfica da figura plana
A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar
1. Tipos de simetria no plano
1. Tipos de simetria no plano 1.1. Translações Sobre a mesa estão um cartão e um acetato, ambos com a seguinte fila de imagens. Sobrepõe as duas filas - a do cartão e a do acetato. Consegues deslocar o
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira
Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é
1. (Espce- 01) A figura a seguir apresenta o gráfico de um polinômio P() do º grau no intervalo 0,5. O número de raízes reais da equação a) 0 b) 1 c) d) e) P 1 0 no intervalo 0,5 é. (Ufrn 01) Considere,
Representação de Algoritmos - Linguagens de Programação
Representação de Algoritmos - Linguagens de Programação A representação de algoritmos em uma pseudo-linguagem mais próxima às pessoas é bastante útil principalmente quando o problema a ser tratado envolve
PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO
DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números
e à Linguagem de Programação Python
Introdução a Algoritmos, Computação Algébrica e à Linguagem de Programação Python Curso de Números Inteiros e Criptografia Prof. Luis Menasché Schechter Departamento de Ciência da Computação UFRJ Agosto
Aplicações de Combinatória e Geometria na Teoria dos Números
Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como
O coeficiente angular
A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares
CIÊNCIA DA COMPUTAÇÃO I Excel. Núm1, núm2,... são argumentos de 1 a 255 cuja soma ou valor total você deseja obter.
SOMA Retorna a soma de todos os números na lista de argumentos. Sintaxe SOMA(núm;núm;...) Núm, núm,... são argumentos de a 55 cuja soma ou valor total você deseja obter. Comentários Os números, valores
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS
FICHA N.º1:Isometrias: Reflexão, rotação e translação ISOMETRIAS
FICHA N.º1:Isometrias: Reflexão, rotação e translação Matemática 8º Ano Aluno: Data: / /2013 Nº Ano/Turma: 8º ISOMETRIAS Uma ISOMETRIA (iso = igual, metria = medição) é uma transformação geométrica que
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
Será exibido um painel de opções com 3 possibilidades: Cadastrar Cliente, Listagem de Cliente e Gerar Chave de Instalação.
ATIVAÇÃO DA LICENÇA A partir do momento em que a revenda torna-se parceira comercial do produto ela pode efetuar compras de licenças no site e ativar essas licenças em seus usuários. O UNICO até pode ser
Notas de Cálculo Numérico
Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo
Tanto neste nosso jogo de ler e escrever, leitor amigo, como em qualquer outro jogo, o melhor é sempre obedecer às regras.
Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?
cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos
Informática no Ensino da Matemática
Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 2 ATIVIDADE 1 Para poupar esforço de digitação, você pode usar o tradicional sistema
ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do
Mudança de planos 1- Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos de projecção. Caso contrário as projecções
Princípio da Casa dos Pombos I
Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,
Construção de tabelas verdades
Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais
CAPOTRASTE ou BRAÇADEIRA VOCÊ SABE COMO USAR?
CAPOTRASTE ou BRAÇADEIRA VOCÊ SABE COMO USAR? MARCAS - FABRICANTES As Fotos mostram alguns modelos mais usados de Capotraste. Teoricamente o capotraste ou braçadeira, uma vez adaptado ao braço do violão,
Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto
Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de
ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003
ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;
QUADRADO MÁGICO - ORDEM 4
CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores
ESCOLA BÁSICA VASCO DA GAMA - SINES
ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala
QUESTÃO 17 Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 A piscina da casa de Roberto vai ser decorada com
UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA
UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UTILIZANDO O EDITOR DE EQUAÇÕES MICROSOFT EQUATION, NO MICROSOFT WORD Juliane Sbaraine
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea
2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.
1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1
FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1
13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau
MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
ESCALAS. Escala numérica objeto. é a razão entre a dimensão gráfica e a dimensão real de um determinado. d/d = 1/Q
ESCLS Importância da escala: O uso de uma escala é indispensável quando se faz necessário representar um objeto graficamente mantendo a proporção entre suas partes ou em relação a outros objetos. Escala
Python: Comandos Básicos. Claudio Esperança
Python: Comandos Básicos Claudio Esperança Primeiros passos em programação Até agora só vimos como computar algumas expressões simples Expressões são escritas e computadas imediatamente Variáveis podem
Estruturas de Repetição
Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados
01) 48 02) 96 03) 144 04) 240 05) 336. Os três anéis de cores diferentes poderão ser colocados em 3 de 8 dedos das mãos da senhora, logo
PROVA FINAL DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 0 - (FGV-Adaptada)
