AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

Tamanho: px
Começar a partir da página:

Download "AA-220 AERODINÂMICA NÃO ESTACIONÁRIA"

Transcrição

1 AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Soluções para flutuações prescritas do escoamento Prof. Roberto GIL Ramal:

2 Flutuações no escoamento Anteriormente assumimos o escoamento não perturbado. Agora assume-se que o escoamento a uma velocidade V ( ou U) possa variar de intensidade e direção no tempo, o que implicará em uma resposta aerodinâmica do corpos sujeito a estas novas condições de contorno: Ou seja, da mesma forma que se assume como condição de contorno uma variação das componentes normais ao aerofólio devido ao se movimento, pode-se assumir também que ele pode estar em estado estacionário, mas as velocidades normais induzidas pelas flutuação representaria uma nova condição de contorno para o problema. E, com certeza, a resposta aerodinâmica será diferente mesmo supondo padrões de movimento tanto do aerofólio como das componentes de velocidades associadas às flutuações de mesma natureza. 2

3 Rajadas do tipo senoidal O primeiro tipo de flutuação, ou também conhecida como rajada (inglês = gust) a ser investigado será por motivos lógicos aquela que apresenta um padrão senoidal de flutuação das componentes de velocidade. Ao invés do aerofólio se mover, agora o escoamento apresenta flutuações nas suas componentes de velocidade, diferentemente do que se assumiu anteriormente, o escoamento é estacionário e o corpo se move, tal como o problema de Thoedorsen. 3

4 Theodorsen e Sears Comparando: 4

5 Formulando o problema: Representando a rajada por: Ou em um sistema fixo no corpo: Podemos calcular pressão devido a rajada como: 5

6 Formulando o problema Da pressão podemos calcular sustentação e momento: Resultando em: 6

7 Função de Sears: Chega-se a uma nova versão de função de deficiência de sustentação conhecida como função de Sears: Condição de contorno: Sustentação: A função de Sears é também uma combinação de funções especiais de Bessel. 7

8 Função de Sears Mapeamento complexo: 8

9 S(k g ) e C(k) Sears e Theodorsen: 9

10 Sears e Wagner Carregamento decorrente da rajada senoidal: Carregamento devido a uma variação e α: De maneira análoga ao caso do aerofólio sujeito a uma súbita variação em ângulo de ataque, chegamos a resposta a uma rajada do tipo degrau aplicando transformadas de Fourier. 10

11 O problema da rajada degrau Küssner descreve o problema da entrada de um corpo (aerofólio) em uma rajada de canto vivo de intensidade w 0, que representa a velocidade vertical da rajada; O encontro do aerofólio com a rajada pode ser representado através da condição de contorno a pequenas perturbações, onde no caso, ao invés de uma velocidade nula sobre o aerofólio, existirá a velocidade w 0 =w g que está relacionada a condição de contorno que descreve o aerofólio como: za z + = = t x (,) (,) a V wa x t wg x t 11

12 Funções de Küssner e Sears Küssner e Schwartz (NACA-TM-991) tratam o problema do aerofólio em movimento, separando a velocidade normal induzida (downwash) em duas partes, uma devido a uma rajada de forma senoidal e a outra associada a uma rajada de canto vivo. (Na realidade este problema é conhecido como a solução geral de Küssner-Schwartz). Desta separação surgem duas funções, uma denominada k 2 (s) que corresponde à resposta indicial devido a uma onda unitária dada por: V0t H b a qual representa a penetração em uma rajada de canto vivo. A outra função corresponde a uma onda associada à velocidade normal senoidal que se desloca do bordo de ataque ao bordo de fuga: wg = x ( t kx) i w0e ω 12

13 Rajada de Canto Vivo (Degrau) Aplicando uma transformada de Fourier na expressão para o carregamento devido a uma rajada senoidal temos: f g (ω) é a transformada de Fourier de w g (t) Note que k no momento é um argumento distinto do tempo, e a transformada de Fourier só se aplica na função com dependência temporal. 13

14 Rajada de Canto Vivo (Degrau) E de forma inversa, agora sim podemos usar o fato que a função de Sears C g (k) (S(k g )) é sim dependente de uma frequência que será o argumento da relação integral que transforma a condição de contorno da frequência para o tempo: 14

15 Rajada de Canto Vivo (Degrau) Vamos empregar os conceitos de admitância indicial, supondo agira que exista um perfil de rajada do tipo degrau na forma: Que a meia corda á dado por: Aplicando a transformada de Fourier nesta nova condição de contorno temos: 15

16 Wagner e Küssner Fazendo o paralelo entre as transformadas de Fourier para os dois tipos de condição de contorno a degrau em a e a rajada de canto vivo pode-se notar que: Wagner Küssner 16

17 Função de Küssner Küssner: 17

18 Funções de Küssner e Sears A sustentação resultante desta velocidade normal senoidal à qual o aerofólio está submetido dada por: (solução de Schwartz) { } ( ωt) ( ) ( ) ( ) ( ) L = 2πρV w e C k J k ij k + J k i S 0 0 g 0 g 1 g 1 g Esta função ficou conhecida como função de Sears, pois a mesma foi tabelada no trabalho de Sears "Some Aspects of Non-stationary Airfoil Theory and its Pratical Applications", Journal of the Aeronautical Sciences, Vol. 8,1941, pp ( ) = ( ) 0 ( ) 1 ( ) + 1 ( ) g g g g g S k C k J k ij k J k O livro "The Theory of Aeroelasticity" de Y. C. Fung, páginas é uma boa referência para conhecer as derivações de Kussner-Schwartz e Sears 18

19 Relação entre Küssner e Sears O problema da rajada harmônica está relacionado ao problema da rajada de canto vivo, assim como o problema de Theodorsen está relacionado ao problema de Wagner, isto é, através de uma transformada de Fourier. Vamos supor que excita uma rajada com velocidade vertical w g, que: w g 0, x ' > 0 = w0, x ' < 0 Fazendo a transformação entre os sistema fixo na atmosfera e o sistema fixo no corpo temos: x ' = x + b V t x + b = x ' + V t 0 0 t = t ' t = t ' 19

20 Relação entre Küssner e Sears O encontro entre o bordo de ataque da rajada ocorre em t=t =0, ou seja, quando x = x+b. Assim, no sistema de coordenadas fixo no aerofólio temos: Portanto, se quisermos obter a transformada de Fourier da função que descreve a rajada temos: w g x + b 0, > t V0 = x + b w0, < t V0 ( ω) = (, ) i t w ω g wg x t e dt iωt w0 iωt = w 0 e dt = e = ( x+ b) / V0 iω w0 ( ) w 0 0 = e = e e iω iω iω x+ b / V ik ik x b ( x+ b) / V 0 20

21 Relação entre Küssner e Sears Mas lembre-se, o downwash responsável pelo carregamento aerodinâmico a ¼ da corda é função da velocidade de rajada por: E neste caso: za z + = = t x (,) (,) a V wa x t wg x t w =, = ω ωα ( ) α iω 0 ik ik x b wa e e wa i h i x ba V0 Todavia, existe uma solução para o carregamento devido a uma rajada harmônica, conhecida como função de Sears, já apresentada anteriormente: { } ( ωt) ( ) ( ) ( ) ( ) L = 2πρV w e C k J k ij k + J k i S 0 0 g 0 g 1 g 1 g 21

22 Relação entre Küssner e Sears O carregamento, reescrita no domínio da frequência é dada por: w L = 2πρV e e C k J k ij k + J k iω { ( ) ( ) ( ) ( )} 0 ik ik x b S 0 g 0 g 1 g 1 g Realizando agora transformada para o domínio do tempo teremos L(t): 1 iωt LS ( t) = L ( ω) e dω = 2π = ρ { C ( k ) ( ) ( ) ( )} g J0 kg ij1 k g + J1 kg ik iks V0bw 0 e e dk ik = 2πρV bw ψ = πρ ( s) 2 V bw k ( s)

23 Relação entre Küssner e Sears Onde ψ ( ) { C ( k ) ( ) ( ) ( )} g J0 kg ij1 k g + J1 kg ik( s 1) 1 s = e dk 2π ik É a função de Küssner, que pode ser escrita também como: ψ ( ) ( ) ( 1) 1 S k g ik s s = e dk 2π ik Análoga à expressão ara a função de Wagner: φ ( s) ( ) 1 C k = 2π ik iks e dk 23

24 Funções de Küssner e Sears Enquanto que a dedução para a parcela referente a rajada de canto vivo é apresentada por Küssner em 1936, e a sustentação resultante é dada por: ( ) L = 2πρV w k s s V t b 0 = Da mesma forma que a função de Wagner, a função de Küssner não pode ser escrita atrás de uma forma algébrica explícita. Portanto, ele também pode ser aproximada por: ( ) k2 s = e s 0.500e Representa o quanto a rajada penetra no aerofólio E as transformadas de Laplace das funções de Küssner e Sears, estão relacionas entre si da mesma forma que as funções de Wagner e de Theodorsen estão. s 24

25 Funções de Küssner e Sears Também se pode obter uma resposta geral ao carregamento devido a uma rajada arbitrária, através de uma integral de Duhamel: ( ) ( 0) ( ) ( σ ) dw πρ ψ ψ ( σ ) σ dσ s g L s = bv0 wg s + s d 0 De onde se pode obter a resposta a uma turbulência, por exemplo, construída através da superposição de rajadas do tipo canto vivo (degraus). 25

26 Resumo (mudamos de s -> t ) Movimentos arbitrários: ( t ') ( t σ ) ' 1 πρ α α 2 πρ ' 0 ( σ ) σ, φ ( 0) = dt ' 2 t ' 2 dφ l = b h V0 ba + + bv0 Q( t ) φ ( ) + Q d 0 1 dφ l ( s ) = 2 πρbv0 + L Q( s ) t ' = V0t b 2 dt ' s = sb V 1 2 ( ) = 2πρbV + s φ ( s ) φ ( 0) Q( s ) = 2πρbV s φ ( s ) Q( s ) l s φ ( s ) s s s ( ) ( s ) l s Q s s = 2πρbV0 2 s s

27 Significado físico: De uma sucessão de degraus unitários pode-se construir a resposta a uma movimento arbitrário, usando a integral de Duhamel, que representa a soma de vários degraus de amplitude infinitesimal e são somados ao longo do tempo. 27

28 E quanto as rajadas: Küssner e Sears: ( σ ) s dwg L( t ') = πρbv0 wg ( 0 ) ψ ( t ') + ψ ( t ' σ ) dσ 0 dσ ψ ( s ) + s + 1 s ψ ( ) ( ) = ( ) ( ) ( ) ( ) S k C k J k ij k J k g g g g g g De onde se obtêm a resposta a uma rajada qualquer. ( ) ( 1) 1 S k g ik s s = e dk 2π ik 28

29 Significado físico: Não é o aerofólio que se move, mas sim ocorre uma perturbação no escoamento médio de forma conhecida: Sears - senóide Küssner degrau Podemos generalizar da mesma forma que fizemos com Wagner, usando uma integral de Duhamel 29

30 Flutuações da direção do escoamento não perturbado Assume-se que exista uma velocidade de perturbação, agora alinhada com a direção do escoamento não perturbado: Ref: Principles of Helicopter Aerodynamics J.G. Leishman, 2 nd Ed., Cap. 8. Esta flutuação modificará a distribuição de vorticidade na esteira, que será não mais convectada a uma velocidade uniforme. 30

31 Flutuações da direção do escoamento não perturbado O efeito da velocidade de convecção da esteira não uniforme pode ser modelado aproximadamente através de uma integração de Duhamel, onde: É o coeficiente de sustentação resultante no domínio do tempo, assumindo um movimento arbitrário o qual inclui a dependência da velocidade do escoamento alinhado com a corda com o tempo. Exemplo: onde λ é um coeficiente de proporcionalidade que representa a fração entre a velocidade de perturbação e a não perturbada. 31

AE AEROELASTICIDADE

AE AEROELASTICIDADE AE-249 - AEROELASTICIDADE Aerodinâmica Não Estacionária Movimentos arbitrários e resposta aerodinâmica Instituto Tecnológico de Aeronáutica ITA/IEA 1 Modelo de Wagner Wagner, Herbert: Über die Entstehung

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-0 AERODINÂMICA NÃO ESTACIONÁRIA Soluções para movimentos prescritos de um aerofólio Prof. Roberto GIL Email: gil@ita.br Ramal: 648 1 Admitância Indicial Ao se aplicar uma entrada degrau a um sistema

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA- AERODINÂMICA NÃO ESTACIONÁRIA Modelo Aerodinâmico de Theodorsen Prof. Roberto GIL Email: gil@ita.br Ramal: 648 1 Modelo de Theodorsen Theodorsen em 1934 apresenta um modelo aerodinâmico não estacionário

Leia mais

EST-55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria

EST-55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria EST-55 - AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria 1 Hierarquia das Equações de dinâmica dos fluidos Aerodinâmica não linear Equações de Navier-Stokes (NS)

Leia mais

Métodos de elementos discretos em aeroelasticidade Instituto Tecnológico de Aeronáutica ITA/IEA

Métodos de elementos discretos em aeroelasticidade Instituto Tecnológico de Aeronáutica ITA/IEA AE-249 - AEROELASTICIDADE Métodos de elementos discretos em aeroelasticidade Instituto Tecnológico de Aeronáutica ITA/IEA Modelo aerodinâmico Uma classe de modelos aerodinâmicos não-estacionários, bastante

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Soluções elementares Equação do Potencial Aerodinâmico Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 em regime supersônico 1 Equação do potencial aerodinâmico Equação

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Teoria das Faixas Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Teoria das Faixas Técnica para resolver um problema tridimensional empregando soluções bidimensionais

Leia mais

AE AEROELASTICIDADE

AE AEROELASTICIDADE AE-49 - AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria Instituto Tecnológico de Aeronáutica ITA/IEA 1 Hierarquia das Equações de dinâmica dos fluidos Aerodinâmica

Leia mais

EST-55 - AEROELASTICIDADE. Modelo Aeroelástico na Base Modal

EST-55 - AEROELASTICIDADE. Modelo Aeroelástico na Base Modal EST-55 - AEROELASTICIDADE Modelo Aeroelástico na Base Modal Modelo aerodinâmico Uma classe de modelos aerodinâmicos não-estacionários, bastante utilizado em estudos de aeroelasticidade, são aqueles baseados

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-22 AERODINÂMICA NÃO ESTACIONÁRIA Aerodinâmica Linearizada Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Linearização da Equação do Potencial Completo - proposta ( φ φ) 2 2 1 φ φ ( φ φ) φ 2 + + =

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Escoamentos Potenciais Compressíveis Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Equação do potencial aerodinâmico Equação do potencial, agora considerando a

Leia mais

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aeroelasticidade - Introdução 1 Um Modelo Dinâmico Diferente... Equações de movimento de um sistema dinâmico: {,,, } [ ]{ (,,, )} [ ] ( ) M u x y z t

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA- AERODINÂMICA NÃO ESTACIONÁRIA Prof. Roberto GIL Email: gil@ita.br Ramal: 648 O Método de Superfícies de Sustentação, Não-Estacionários Compressíveis e 3D 1 Proposta Desenvolver solução elementar da

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Aerofólio fino em regime incompressível não estacionário (baseado nas Notas de Aula do Prof Donizeti de Andrade) Prof. Roberto GIL Email: gil@ita.br Ramal: 6482 1 Relembrando

Leia mais

Modelo Aeroelástico na Base Modal Instituto Tecnológico de Aeronáutica ITA/IEA

Modelo Aeroelástico na Base Modal Instituto Tecnológico de Aeronáutica ITA/IEA AE-249 - AEROELASTICIDADE Modelo Aeroelástico na Base Modal Instituto Tecnológico de Aeronáutica ITA/IEA Modelo Aeroelástico Equações de movimento de um sistema aeroelástico geral: { s, s, s, } + [ ]{

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 214 Preparo: Diego Oliveira Aula 26 Transformada de Fourier da Equação de Onda Nós vimos que, em uma dimensão, a equação de onda é dada por 2 A i

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA-0 AERODINÂMICA NÃO ESTACIONÁRIA O Método Doublet Lattice Prof. Roberto GIL Email: gil@ita.br Ramal: 648 Proposta Métodos de elementos discretos são aproximações que permitem tratar numericamente a integral

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aeroelasticidade Estática Asas Enflechadas 1 O efeito do enflechamento Aeroelasticidade estática de asas enflechadas. Objetivo Determinar como a flexão,

Leia mais

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE

DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aerodinâmica Não Estacionária em Aeroelasticidade 1 Hierarquia das Equações de dinâmica dos fluidos Aerodinâmica não linear q instável estável transonic

Leia mais

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS TE053-Ondas Eletromagnéticas ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS BÁSICOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Conceitos básicos sobre

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 9 de Julho de 6 Nome : Hora : 4: Número: Duração : horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros

Leia mais

Solução do problema aeroelástico Instituto Tecnológico de Aeronáutica ITA/IEA

Solução do problema aeroelástico Instituto Tecnológico de Aeronáutica ITA/IEA AE-249 - AEROELASTICIDADE Solução do problema aeroelástico Instituto Tecnológico de Aeronáutica ITA/IEA Interconexão Fluido-Estrutura [ G] Modelo em elementos finitos Modelo em paineis (DLM) { ( )} [ ]

Leia mais

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq.

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq. Notas sobre Funções de Green FMA 43 Prof. Luís Raul Weber Abramo Departamento de Física Matemática Instituto de Física USP Introdução geral às funções de Green A função de Green (G. Green, c. 828) é uma

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

Ondas e Óptica 2008 Universidade de Coimbra Notas Soltas

Ondas e Óptica 2008 Universidade de Coimbra Notas Soltas Ondas e Óptica 008 Universidade de Coimbra Notas Soltas 1 grupos de ondas Vamos fazer esta discussão a uma dimensão por ser mais simples e isso não representar perda de generalidade da argumentação utilizada.

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

Introdução às Medidas em Física 11 a Aula *

Introdução às Medidas em Física 11 a Aula * Introdução às Medidas em Física 11 a Aula * http://fge.if.usp.br/~takagui/4300152_2011/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 2006 sala 216 ramal 6811 1 Cordas vibrantes Parte 1! Objetivos:

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 212/13 Exame de 2ª época, 2 de Fevereiro de 213 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Teoria de elementos de pá em voo horizontal

Teoria de elementos de pá em voo horizontal Teoria de elementos de pá em voo horizontal Modelar o voo horizontal utilizando a teoria de elementos de pá é extremamente difícil. No entanto, com algumas simplificações, pode-se obter os termos importantes

Leia mais

MVO-11: Dinâmica de Veículos Aeroespaciais

MVO-11: Dinâmica de Veículos Aeroespaciais (carga horária: 64 horas) Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica Instituto Tecnológico de Aeronáutica 2014 PARTE II Modelo Aerodinâmico resultante aerodinâmica sustentação velocidade

Leia mais

Ondas. Lucy V. C. Assali. Física II IO

Ondas. Lucy V. C. Assali. Física II IO Ondas Física II 2015 - IO Não é possível exibir esta imagem no momento. O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte

Leia mais

Arrasto e sustentação

Arrasto e sustentação Arrasto e sustentação J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Arrasto e sustentação 1 / 16 Sumário 1 Noção de camada limite 2 Separação do escoamento e esteira

Leia mais

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. 16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:

Leia mais

Forças e Momentos Aerodinâmicos

Forças e Momentos Aerodinâmicos João Oliveira Departamento de Engenharia Mecânica, ACMAA Instituto Superior Técnico, MEAero (Versão de 20 de Setembro de 2011) Planta da asa c: corda (chord) b: envergadura (span) A: alongamento (aspect

Leia mais

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros /

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros / Eixos de referência do rotor Até agora utilizamos sempre os mesmos eixos: Z alinhado com o veio do rotor Y perpendicular com Z e ao longo da pá (no plano do rotor). X no plano do rotor e perpendicular

Leia mais

Complementos de Fluidos

Complementos de Fluidos Complementos de Fluidos A consequência mais visível da viscosidade de um fluido é o seu perfil de velocidades no interior de um tubo: Ver nota 1 A equação de Bernoulli é, então, substituída pela expressão:

Leia mais

ANÁLISE DE SINAIS DINÂMICOS

ANÁLISE DE SINAIS DINÂMICOS ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos

Leia mais

EST-55 - AEROELASTICIDADE. Aeroelasticidade Dinâmica - Flutter

EST-55 - AEROELASTICIDADE. Aeroelasticidade Dinâmica - Flutter EST-55 - AEROELASTICIDADE Aeroelasticidade Dinâmica - Flutter O que precisamos da aerodinâmica não estacionária para flutter? Theodorsen: ( 0.5 ) ( 1 8 ) ( 0.5 ) ( ) α ( 0.5 ) ( ) ( 0.5 ) Ck = πρ + α α

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Introdução às Medidas em Física 11 a Aula *

Introdução às Medidas em Física 11 a Aula * Introdução às Medidas em Física 11 a Aula * http://fge.if.usp.br/~takagui/fap0152_2010/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 2006 sala 216 ramal 6811 1 Cordas vibrantes Parte 1! Objetivos:

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DOS PAINÉIS PARA O ESTUDO DE PROPRIEDADES AERODINÂMICAS DE AEROFÓLIOS

IMPLEMENTAÇÃO DO MÉTODO DOS PAINÉIS PARA O ESTUDO DE PROPRIEDADES AERODINÂMICAS DE AEROFÓLIOS IMPLEMENTAÇÃO DO MÉTODO DOS PAINÉIS PARA O ESTUDO DE PROPRIEDADES AERODINÂMICAS DE AEROFÓLIOS João de Sá Brasil Lima joaobrasil.lima@gmail.com Resumo. Este artigo trata da implementação computacional do

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S

Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S ( P) σ Aerodinâmica I [ ln( r( P, q) )] σ ( q) ds + ( V ) + γ ov np = vwp + Γ S π np O método dos paineis transforma a equação integral de Fredholm da segunda espécie num sistema de equações algébrico,

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

2 Propagação de ondas elásticas em cilindros

2 Propagação de ondas elásticas em cilindros 2 Propagação de ondas elásticas em cilindros 2.1 Elastodinâmica Linear As equações que governam o movimento de um corpo sólido, elástico e isotrópico são: τ ij,j + ρf i = ρ ü i (2-1) τ ij = λ ε kk δ ij

Leia mais

EST-55 AEROELASTICIDADE. Aeroelasticidade Estática ASAS ENFLECHADAS

EST-55 AEROELASTICIDADE. Aeroelasticidade Estática ASAS ENFLECHADAS EST-55 AEROELASTICIDADE Aeroelasticidade Estática ASAS ENFLECHADAS O efeito do enflechamento Aeroelasticidade estática de asas Objetivo enflechadas. Determinar como a flexão, não somente a torção como

Leia mais

Fuja do Nabo: Física II P Rogério Motisuki Ondulatória Exercícios

Fuja do Nabo: Física II P Rogério Motisuki Ondulatória Exercícios Fuja do Nabo: Física II P1 014 Rogério Motisuki Ondulatória Exercícios P 01) a) Basta observar o gráfico e visualmente perceber que há dois comprimentos de onda em 1m, ou seja: λ = 0,5m Fazendo o mesmo

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 015 Preparo: Diego Oliveira Aula 3 Equação da Onda e Meios Condutores Vamos considerar a equação de onda para casos em que existam correntes de condução

Leia mais

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6 ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6.1. Introdução Até agora foram analisados escoamentos bidiemensionais. Os escoamentos em torno dos corpos e perfis dos capítulos anteriores envolvem apenas duas

Leia mais

0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) (20 cm) 4,0 cm 2π. (10 s)

0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) (20 cm) 4,0 cm 2π. (10 s) ± π 2 y(0, t) 0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) + π 2 y x, t = A cos(kx ωt + φ) y 0, t = A cos( ωt + φ) 2π (20 cm) 4,0 cm 2π (10 s) y x, t = (4,0 cm) cos 2π 2π x (20 cm) (10 s) t + π 2 v =

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais

Equação de Schrödinger

Equação de Schrödinger Maria Inês Barbosa de Carvalho Equação de Schrödinger Apontamentos para a disciplina Física dos Estados da Matéria 00/0 Licenciatura em Engenharia Electrotécnica e de Computadores Faculdade de Engenharia

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019 Física III - 43303 Escola Politécnica - 019 GABARITO DA P3 13 de junho de 019 Questão 1 Considere um fio infinito transportando uma corrente elétrica I(t = I 0 cos(ωt ao longo do eixo x e uma espira quadrada

Leia mais

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana Ondas transversas: pulsos numa corda, mola, etc. Ondas longitudinais: mola, som, etc. Diferentes tipos

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

4 SOLUÇÕES ANALÍTICAS

4 SOLUÇÕES ANALÍTICAS 4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,

Leia mais

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor A Equação de Calor Uma das EDP s clássica da FísicaF sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor em um corpo sólido. s E uma aplicação mais recente é a que descreve

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 3ª época, 19 de Julho de 2013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 05/6 Exame de ª época, 5 de Janeiro de 06 Nome : Hora : :30 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada

Leia mais

II. MODELAGEM MATEMÁTICA (cont.)

II. MODELAGEM MATEMÁTICA (cont.) INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS II. MODELAGEM MATEMÁTICA (cont.) Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais

Exercícios-Desafio de AMIV

Exercícios-Desafio de AMIV Exercícios-Desafio de AMIV Nota Importante: Não é recomendável e é altamente desaconselhado o investimento de tempo na tentativa de resolução destes exercícios por quem ainda não tenha resolvido com sucesso

Leia mais

Aula 11. Revisão de Fasores e Introdução a Laplace

Aula 11. Revisão de Fasores e Introdução a Laplace Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância

Leia mais

Física 3. Cap 21 Superposição

Física 3. Cap 21 Superposição Física 3 Cap 21 Superposição Interferência entre ondas Duas ou mais ondas se combinam formando uma única onda resultante cujo deslocamento é dado pelo princípio da superposição: Dres = D1 + D2 + = Σi Di

Leia mais

Entender o Princípio da Superposição;

Entender o Princípio da Superposição; Page 1 of 7 Princípio da Superposição Guia de Estudo: Após o estudo deste tópico você deve ser capaz de: Entender o Princípio da Superposição; Reconhecer os efeitos da Interferência das ondas; Distinguir

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

Convecção natural em cavidades triangulares: aspectos computacionais

Convecção natural em cavidades triangulares: aspectos computacionais CBPF-NF-28/4 Convecção natural em cavidades triangulares: aspectos computacionais L. G. Ferreira Filho en.g.dec.leite UERJ - Faculdade de Tecnologia - Resende, RJ Resumo The analysis is carried out for

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem

Leia mais

O MÉTODO DOS PAINÉIS COM DISTRIBUIÇÃO DE VÓRTICES

O MÉTODO DOS PAINÉIS COM DISTRIBUIÇÃO DE VÓRTICES O MÉTODO DOS PAINÉIS COM DISTRIBUIÇÃO DE VÓRTICES Felipe Bezerra de Lima Lopes felipe.bllopes@gmail.com Resumo. Este artigo consiste em descrever a implementação do método dos painéis com o objetivo de

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I PROF.: KAIO DUTRA Tipos de Ondas As ondas podem ser de três tipos principais: Ondas Mecânicas: São governadas pelas leis de Newton e existem apenas

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

Óptica Coerência e interferência. Princípio da superposição:

Óptica Coerência e interferência. Princípio da superposição: Princípio da superposição: ET () r = E1() r + E() r + E3()... r - Equações de Maxwell são lineares - Em certos meios o princípio falha meios não-lineares Princípio da superposição: caso de duas ondas planas

Leia mais

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal: Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente

Leia mais

Aeroelasticidade Dinâmica Métodos de Cálculo de Flutter Instituto Tecnológico de Aeronáutica ITA/IEA

Aeroelasticidade Dinâmica Métodos de Cálculo de Flutter Instituto Tecnológico de Aeronáutica ITA/IEA AE-71 - AEROELASTICIDADE Aeroelasticidade Dinâmica Métodos de Cálculo de Flutter Instituto Tecnológico de Aeronáutica ITA/IEA Aerodinâmica não estacionária A proposta é estudar o problema da seção típica

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Introdução ao Método de Hartree-Fock

Introdução ao Método de Hartree-Fock Introdução ao Método de Hartree-Fock CF352 - Fundamentos de Física Atômica e Molecular Departamento de Física Universidade Federal do Paraná M. H. F. Bettega (UFPR) CF352 1 / 24 Preliminares Aproximação

Leia mais

x Fica claro que este trecho de corda de massa m, comprimento l, permanece em repouso.

x Fica claro que este trecho de corda de massa m, comprimento l, permanece em repouso. Ondas em uma corda Tomemos uma corda es.cada: Subme.da a tensões em suas etremidades, iguais em módulo, opostas em direção T 1 Fica claro que este trecho de corda de massa m, comprimento l, permanece em

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS SONORAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS SONORAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS SONORAS Prof. Bruno Farias Ondas Sonoras De todas as ondas mecânicas da natureza,

Leia mais

(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2

(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2 Universidade Federal do Rio de Janeiro Instituto de Física Segunda Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 12/11/2018 Seção 1: Múltipla Escolha (7 0,7 = 4,9 pontos) 1. No circuito mostrado

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 3 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Resolver

Leia mais

Ondas. Lucy V. C. Assali. Física II IO

Ondas. Lucy V. C. Assali. Física II IO Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Unidimensionais Equação de Unidimensionais Harmônicas em cordas Roteiro Unidimensionais Equação

Leia mais

Transformada Z. Transformada Z

Transformada Z. Transformada Z Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela

Leia mais

Controle. Transformada Laplace básico

Controle. Transformada Laplace básico Controle Transformada Laplace básico REQUISITOS Para perfeita compreensão do conteúdo desta aula é desejável o entendimento dos seguintes assuntos (eventualmente disponíveis em outros vídeos neste canal):

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENO OSCILAÓRIO Força proporcional ao deslocamento Movimento periódico ou oscilatório Conservação da energia mecânica Movimento harmónico simples MOVIMENO HARMÓNICO SIMPLES (MHS) Um movimento diz-se

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO

A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES. (UFG) RESUMO A TRANSFORMADA DE LAPLACE E ALGUMAS APLICAÇÕES Fernando Ricardo Moreira 1, Esdras Teixeira Costa 2, Marcio Koetz 3, Samanta Andressa Santos Dumke Teixeira 4, Henrique Bernardes da Silva 5 1 Professor Mestre

Leia mais

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por:

Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por: 1 a Série de exercícios Aeroelasticidade Estática Prof. Gil 2º semestre 2009 1ª Questão: Estude o problema de um modelo de uma bomba cuja geometria é axissimétrica, a ser testado em túnel de vento. Os

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Estabilidade Lateral-Direccional

Estabilidade Lateral-Direccional Estabilidade Lateral-Direccional João Oliveira Departamento de Engenharia Mecânica, ACMAA Instituto Superior Técnico Estabilidade de Voo, MEAero (Versão de 26 de Outubro de 2010) João Oliveira (ACMAA,

Leia mais