Física Experimental II

Tamanho: px
Começar a partir da página:

Download "Física Experimental II"

Transcrição

1 UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA Física Experimental II Lucas Barboza Sarno da Silva Aluno: N USP: Curso: Professor:

2 SUMÁRIO 1. A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin O princípio de Pascal, utilizando água O empuxo, comprovação experimental O princípio de Arquimedes Tensão superficial de um líquido A queda em meio viscoso, a Lei de Stokes O calor, a temperatura e a capacidade do corpo de armazenar energia A determinação do coeficiente de dilatação linear Os meios de propagação de calor A determinação do calor específico de um sólido A determinação do calor latente do gelo A transformação isotérmica, a lei de Boyle-Mariotte Padrão de Relatório

3 Experimento 1 A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin FUNDAMENTAÇÃO TEÓRICA: A atmosfera e a pressão atmosférica A Terra se encontra envolvida por uma camada de gases, chamada atmosfera, que exerce sobre toda superfície terrestre uma pressão denominada pressão atmosférica (P atm ). O manômetro conhecido por barômetro A pressão pode ser medida por um instrumento chamado manômetro e o manômetro especial que mede a pressão atmosférica é denominado de barômetro. O manômetro de tubo aberto Nesta atividade, utilizaremos manômetros de tubo de vidro conhecidos por manômetros de tubo aberto. O manômetro de tubo aberto é basicamente um tubo de vidro em forma de U, com uma porção líquida no seu interior (trecho yy ). O prolongamento de um de seus ramos se encontra no interior do recipiente cuja pressão (P 1 ) se pretende medir enquanto que a outra fica livre e em contato com a camada atmosférica (P atm ). Como ler a pressão manométrica (não absoluta) no manômetro de tubo aberto No equilíbrio, o valor da pressão manométrica (P m ) que atua na superfície do líquido manométrico, do lado fechado y, é a mesma que atua no ponto P 1 no interior do recipiente e dada pela seguinte relação: P m gh P 1 µ = massa específica do líquido manométrico (líquido que o manômetro contém). g = aceleração gravitacional no local Δh = desnível no líquido manométrico (entre y e y ) Como utilizaremos água (µ = 1,00x10³ kg/m³, CNTP) no interior deste manômetro a pressão manométrica (diferença entre a pressão que atua no ponto a ser medido e a pressão atmosférica) será fornecida pela seguinte relação: P m N / m hm 9.806,65 ³ Observe que para cada milímetro de deslocamento Δh entre os pontos y e y corresponde uma pressão manométrica de (aproximadamente) 9,81 N/m² (neste manômetro), logo: P m 9,81h N / m² Δh = valor numérico do desnível, em milímetros. 3

4 Caso queira trabalhar com a pressão absoluta, some algebricamente a pressão atmosférica e a manométrica. P absoluta P atm P m A formação de meniscos Dentro de um manômetro podem existir diferentes líquidos manométricos: mercúrio, água, etc. Nestes casos, as moléculas da camada superficial ficarão sujeitas as ações de forças de coesão e adesão molecular que poderão alterar sua forma. A força de coesão molecular e a força de adesão molecular As moléculas que formam a camada superficial ficam sujeitas a ação da força de coesão molecular, que mantém as moléculas do líquido próximas entre si, e a força de adesão molecular, que tende a atrair as moléculas do líquido contra as moléculas das paredes do vaso. O menisco convexo Quando a força de coesão for maior do que a força de adesão o líquido não molha o sólido (parede do vaso) e a superfície líquida livre, toma a forma convexa, denominada menisco convexo. Portanto, ao verificar o nível de um menisco convexo, faça-o pela parte mais baixa. O menisco côncavo No caso da força de coesão ser menor do que a força de adesão o líquido molha o sólido (paredes do vaso) e a superfície líquida livre, toma a forma côncava denominada menisco côncavo. Ao verificar o nível de um menisco côncavo, faça-o pela sua parte mais alta. Posição do ponto de medição de pressão dentro do fluido usando manômetro de tubo aberto Com o aumento da pressão, conforme se introduz o manômetro de tubo aberto no interior de um fluido, a coluna do líquido irá entrar no tubo de prova para compensar tal deslocamento. Esse deslocamento precisa ser observado e considerado para que as medições possam ser feitas de forma correta. O deslocamento da coluna de ar é mostrado na Figura 1. 4

5 Figura 1 Deslocamento da coluna de ar. Para não ocorrerem discrepâncias entre o valor mostrado pelo manômetro e a profundidade em que a medição foi realizada, ao posicionar o tubo sonda, considere a interface B entre a água e o ar existente dentro do tubo sonda como sendo o ponto a ser posicionado. Sendo a água o fluido utilizado, tanto como líquido manométrico quanto no recipiente de teste, o deslocamento do líquido do manômetro Δh será idêntico ao valor Δh ABcopo. Observação: Esse efeito nada tem a ver com a lei de Boyle-Mariotte. O fenômeno da variação de volume de um gás ocorrerá em maiores pressões (maiores profundidades) e causará a compressão do gás contido no manômetro, apresentando então, valores inconsistentes. 1. HABILIDADE E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Reconhecer e operar um manômetro de tubo aberto, usando água como líquido manométrico; Reconhecer e utilizar, convenientemente, o conhecimento de que a pressão manométrica indicada num ponto situado a uma profundidade h, de um líquido em equilíbrio, é igual ao produto do peso específico pela profundidade do ponto : gh h ; P m Mencionar que a pressão num ponto situado a uma profundidade h, de um líquido em equilíbrio, é igual à pressão que atua sobre a superfície livre do líquido mais o produto do peso específico pela profundidade do ponto; Reconhecer que: Dois pontos situados no mesmo nível de um líquido em equilíbrio suportam pressões iguais ; Verificar o princípio fundamental da hidrostática (Stevin). 2. MATERIAL NECESSÁRIO 01 painel manométrico (Painel II) (6) 01 tampão (7) 01 escala submersível/tubo sonda (8) 01 tripé (13) 01 haste de sustentação (13) 01 seringa de 10 ml (11) 01 prolongador para a seringa (12) 01 copo de Becker de 250 ml 01 plataforma de elevação (14) 5

6 3. MONTAGEM Execute a montagem da Figura 1. Figura 1 Montagem do equipamento necessário para medidas de pressão. 4. ANDAMENTO DAS ATIVIDADES Observação: adicione uma gota de detergente na água a ser usada neste experimento, isto irá diminuir a tensão superficial da mesma, facilitando a acomodação do líquido e a leitura das escalas No painel II, use o tampão para fechar a extremidade superior do tubo E, mantendo as outras duas desobstruídas. Leia e anote as posições das superfícies y e y do líquido do manômetro (lados B3 e A3). Qual a pressão manométrica que atua neste caso, sobre a superfície aberta y do manômetro? Justifique sua resposta Supondo que a superfície y suba 5 mm, quantos milímetros deve descer a superfície y? Qual seria, neste caso, o desnível manométrico hy? 4.3. Supondo o tubo do manômetro sendo uniforme em seu interior, qual o desnível hy para uma ascensão de 40 mm para 60 mm na superfície y do líquido manométrico? 4.4. Comente as implicações da uniformidade ou não do tubo de vidro do manômetro, inclusive na região curvada. Atenção! 6

7 Opere fora da zona curvada do manômetro. Sempre observe se as superfícies y e y estão afastadas mais de 15 mm da zona curvada antes de considerar a leitura. Para determinar o hy faça a leitura da variação de posição sofrida pelas superfícies y e y, numericamente em milímetros. Para descobrir a pressão manométrica ( P m ) introduza o valor numérico do hy direto 2 na expressão P m 9,81hN m. Ao posicionar o tubo sonda, considere a interface B entre a água e o ar existente dentro do tubo sonda como sendo o ponto a ser posicionado Figura 2. Figura 2 Determinação do valor de Δh Regule a escala submersível posicionando o zero no início inferior do tubo sonda Coloque 200 ml de água no Becker e posicione-o sobre a plataforma. Eleve a plataforma até que a extremidade inferior do tubo sonda toque na superfície líquida. Não deixe o tubo mergulhar no líquido para evitar que as colunas y e y do manômetro se movimentem. Olhando através do Becker, torne a verificar se o zero da escala está nivelado com o extremo do tubo sonda do nanômetro. Sem tocar no equipamento, aguarde 30 segundos e anote a temperatura ambiente. Observação: é importante que a temperatura não varie durante a execução do experimento, o gás aprisionado no manômetro pode variar de volume interferindo nas medições. Por isso, não segure ou toque nos tubos do nanômetro. Verifique as posições de y e y ocupadas pelas superfícies manométricas e complete a primeira linha da Tabela 1. Profundidade h copo h 1 = 0 mm h 2 = 5 mm h 3 = 10 mm h 4 = 15 mm h 5 = 20 mm Tabela 1 Dados experimentais. Temperatura durante as medições = ºC Dados no manômetro y (mm) y' (mm) Δh y (mm) P m = 9,8. Δh (N/m²) 7

8 4.7. Subindo a mesa, varie a profundidade da extremidade do tubo E (h copo ) no copo de becker de 5 em 5 mm, de modo a completar a Tabela Com os dados da Tabela 1, faça o Gráfico da pressão manométrica P m versus a profundidade do ponto h copo. Utilize o software Origin para o gráfico. 5. A relação entre a pressão e a profundidade num líquido (o princípio de Stevin) 4.9. Existe uma relação entre a pressão (devida à massa líquida) em um ponto de um líquido em equilíbrio e a profundidade deste ponto? Represente matematicamente esta relação Como é denominada a constante? 6. A pressão no interior de um líquido depende de seu peso específico Determine o valor do peso específico do líquido contido no becker e qual a sua unidade de medida no SI sabendo que: P h pode ser expressa como P gh, ou seja, g Reconheça cada termo desta expressão. 7. A pressão no interior de um líquido depende da sua massa específica Observe que a pressão P gh nos informa a pressão exercida pelo líquido, de massa específica, num ponto a uma profundidade h. Como todos os corpos imersos na camada de ar terrestre sofrem a ação da pressão atmosférica P atm, o ponto submerso no líquido se encontrará a uma pressão real P abs P atm gh onde: P abs = pressão absoluta; P atm = pressão atmosférica; gh = pressão devida à massa líquida com representando a massa específica, e h a profundidade que o ponto submerso no líquido se encontrará submerso na massa líquida. Algumas vezes a superfície livre do líquido se encontra a uma pressão qualquer P 0, diferente da pressão atmosférica, quando isto acontece, a expressão acima toma a forma geral: P 0 P gh 8

9 8. Aplicando os conhecimentos sobre a pressão num ponto de um líquido em equilíbrio Deslizando o copo Becker sobre a mesa com a extremidade do manômetro imersa em sua massa líquida, verifique a validade da seguinte afirmação: Dois pontos situados no mesmo nível de um líquido em equilíbrio suportam pressões iguais Justifique através da expressão P P 0 gh a validade da afirmação anterior. Usando a expressão geral, determine a pressão absoluta que deverá atuar num ponto a 15 metros de profundidade, na água, sabendo que a pressão que atua sobre a superfície livre é de 15 (N/m²). Qual a diferença de pressão sofrida por um mergulhador ao passar de um nível localizado a dois metros de profundidade para outro a cinco metros abaixo da superfície livre da água em que se encontra? 9. O princípio fundamental da hidrostática, o princípio de Stevin. As pressões totais, que atuam em dois pontos em diferentes profundidades h copo, foram P 2 e P 1, onde: P Patm 2 gh 2 P1 Patm gh e 1 Logo, a diferença de pressão entre P 2 e P 1 será: P2 P1 gh2 gh1 isto é, P2 P1 gh2 h1 ou P2 P1 gh P P h 2 1 onde: P2 P 1 = diferença de pressão entre dois pontos de um líquido em equilíbrio; gh h = produto do peso específico do líquido pela diferença de nível entre os dois pontos considerados. A expressão P2 P1 h traduz, matematicamente, o princípio de Stevin ou princípio fundamental da hidrostática. Enuncie o princípio de Stevin. 9

10 Experimento 2 O princípio de Pascal, utilizando água 1 - HABILIDADES E COMPETÊNCIAS Ao termino desta atividade o aluno deverá ter competências para: Mencionar que as pressões nos líquidos se transmitem integralmente em todas as direções Utilizar conhecimentos na resolução de problemas práticos Utilizar conhecimentos que levam à aplicação do princípio de Pascal. 2 - MATERIAL NECESSÁRIO 01 painel hidrostático 01 escala milimetrada acoplável ao painel 01 seringa com prolongador 01 copo de Becker de 250 ml contendo 20 ml de água 3 - MONTAGEM 3.1. Execute a montagem conforme a Figura Posicione a altura da artéria visor entorno dos 400 mm na escala da régua central Encha de água a seringa acoplada ao prolongador 3.4. Introduza o prolongador pela artéria visor e coloque água até o 0 da escala onde se encontra a artéria visor, de modo a preencher somente um trecho C e D. Como colocar água nos manômetros Utilize o prolongador na seringa para introduzir lentamente a água nos manômetros. Coloque 2 ml de água no manômetro 1. 10

11 3.5. Suba ou desça levemente a artéria com visor de modo a equilibrar as colunas manométricas A e B (água que você colocou nos manômetros). 4 - ANDAMENTO DAS ATIVIDADES 4.1. Anote na Tabela 1 as posições do líquido manométrico dos ramos A 1 e A 2 como sendo as posições iniciais A 01 e A 02. Tabela 1 posições do líquido nos manômetros Níveis dos referenciais (em mm) Manômetro 1 Manômetro 2 Posição h 0 da parte de baixo do suporte da artéria visor A 01 = A 02 = h 0 = 4.2. Suba a artéria visor de modo que a coluna manométrica 2 fique 5 mm abaixo do valor A 02. Ao subir a artéria visor você aumenta a pressão sobre a massa de ar entre os pontos A 1, A 2 e C (ar entre os manômetros e a mangueira). Descreva o ocorrido com o líquido manométrico no ramo A 2 (em relação ao referencial A 02 ) quando você aumentou a pressão sobre a coluna de ar presa. Qual o novo valor indicado pelo ramo A 2 do manômetro? Compare as indicações do líquido manométrico nos ramos A 1 e A 2 com os valores que indicavam antes do aumento de pressão Observe que a elevação de pressão sobre a massa de ar presa acarreta uma variação nas colunas manométricas em relação aos valores iniciais A 01 e A 02. Verifique que nos três extremos da câmara que contém a massa de ar presa, há tubos abertos com água (a mangueira também é um tubo aberto que contém água), portanto a contrapressão (exercida nos ramos B 1 e B 2 ), capaz de equilibrar o sistema, deve ser igual à pressão P H2O exercida pela diferença de níveis Δh H2O das colunas do líquido manométrico entre os pontos C e D. Este desnível pode ser controlado facilmente, bastando subir ou descer a artéria visor e a pressão pode ser calculada através da expressão: PH 2O H 2OhH 2O onde, hh 2 O é a diferença entre as alturas C e D das colunas d água na mangueira. Determine a pressão exercida pela coluna d água da artéria visor H O peso específico da água é, aproximadamente, 9,810 N/m³. Qual o desnível hh 2 O entre os dois ramos no manômetro 2? Qual a pressão manométrica no manômetro 2? P 2, sabendo que o 11

12 4.4. Procedendo como no item anterior, determine a pressão manométrica no manômetro Compare a pressão PH 2 O (exercida pela coluna d água da artéria visor sobre a massa de ar presa) com as contrapressões exercidas pelos desníveis das colunas nos manômetros 1 e 2. Embora trabalhando em pressões baixas, o que, praticamente garante a incompressibilidade dos líquidos utilizados, convém lembrar que a perfeita igualdade, entre a pressão exercida sobre um líquido e a transmissão integral desta pressão, só pode ser obtida em líquidos incompressíveis, pois neles a massa específica não varia com o aumento da pressão. O princípio de Pascal Discuta a validade da seguinte afirmação: Os líquidos incompressíveis transmitem integralmente as pressões que suportam A prensa hidráulica A Figura 2 representa a prensa hidráulica, uma das mais importantes aplicações do princípio de Pascal. Figura 2 Ao aplicar uma força F 1 sobre o êmbolo 1 (com a área A 1 ), comunicamos ao óleo hidráulico uma pressão P 1 = (F 1 / A 1 ). Pelo princípio de Pascal, o óleo hidráulico transmite integralmente esta pressão à base do cilindro 2, isto é: P 1 = P 2 o que implica que: (F 1 / A 1 ) = (F 2 / A 2 ) F 2 = F 1 (A 2 / A 1 ) Analise as implicações em relação à força F 2, aplicada pelo cilindro 2, para os seguintes casos: A 2 < A 1 A 2 = A 1 A 2 > A 1 12

13 Experimento 3 O empuxo, comprovação experimental 1 - HABILIDADES E COMPETÊNCIAS Ao termino desta atividade o aluno deverá ter competência para: Reconhecer a presença do empuxo em função da aparente diminuição da força peso de um corpo submerso num líquido. 2 - MATERIAL NECESSÁRIO 01 cilindro de Arquimedes 01 dinamômetro de 2 N 01 suporte com haste e tripé 01 seringa 01 copo com 250 ml de água 01 copo com 250 ml de água e sal 01 copo com 250 ml de álcool 3 ANDAMENTO DAS ATIVIDADES 3.1. Verifique o zero do dinamômetro e, caso necessário execute a correção Dependure o êmbolo na parte inferior do cilindro e ambos ao dinamômetro Ajuste a sustentação de modo que o êmbolo, quando dependurado, fique a uns três milímetros acima da mesa Pese o conjunto formado pelo cilindro com êmbolo. Anote o valor encontrado como PCFL peso do corpo fora do líquido Mergulhe totalmente o êmbolo no interior da massa líquida do copo Anote o valor lido como PACDL peso aparente do corpo dentro do líquido. Justifique a aparente diminuição ocorrida no peso do conjunto (êmbolo + cilindro) ao submergir o êmbolo na água (conhecido como peso aparente). Determine o módulo da força que provocou a aparente diminuição sofrida pelo peso do corpo (doravante denominada empuxo e representada por E). Quais são a direção e o sentido do empuxo E? Verifique a veracidade da seguinte afirmação: Todo corpo mergulhado em um fluido fica submetido à ação de uma força vertical, orientada de baixo para cima, denominada empuxo. 13

14 Determine o módulo do empuxo, no caso de submergimos somente a metade do êmbolo? Crie uma situação em que são fornecidas duas das três variáveis abordadas até o momento (peso do corpo fora do líquido PCFL, o peso aparente do corpo dentro do líquido PACDL e empuxo E) e determine a grandeza em falta. Justifique o motivo pelo qual usamos a expressão aparente diminuição sofrida pelo peso do corpo e não diminuição do peso do corpo Adicione sal à água do copo e refaça as medições, procurando justificar as diferenças Refaça a atividade usando álcool no lugar de água. Justifique as diferenças. CONHEÇA UM DINAMÔMETRO O dinamômetro é um medidor de forças que, conforme o modelo permite medi-las em qualquer direção. Cuidados: Nunca o utilize além da sua capacidade máxima. Nunca solte bruscamente um dinamômetro quando estendido. Antes de usá-lo sempre verifique se a parte frontal da capa está alinhada com o zero da escala, caso contrário, faça a ajustagem inicial (no zero). O ajuste do zero O ajuste do zero deve ser feito na posição em que o dinamômetro será utilizado, agindo da seguinte maneira: Solte o parafuso libertador da capa Movimente a capa para cima ou para baixo nivelando o primeiro traço da escala com a extremidade da capa (nível de referência) Ao utilizar o dinamômetro nas posições horizontal ou inclinada, execute pequenas batidas (com o dedo) na capa antes de fazer a leitura. Como ler na escala do dinamômetro tubular A escala dos dinamômetros foram projetadas com divisões de 1 mm. Cada divisão corresponde a 1/100 da capacidade da sua carga máxima (identificada no dinamômetro). Exemplo: Um dinamômetro de mola helicoidal com 2 N de capacidade máxima de carga, sob a ação de uma força, apresenta leitura de 20 pequenas divisões (ou 20 milímetros). Então, a força atuante pode ser expressa como: F = (2 N / 100 divisões) x (nº de divisões) F = (0,02 N) x (20) F = 0,40 N 14

15 Experimento 4 O princípio de Arquimedes 1 - HABILIDADES E COMPETÊNCIAS Ao termino desta atividade o aluno deverá ter competência para: Reconhecer a presença do empuxo em função da aparente diminuição da força peso de um corpo submerso num líquido. Reconhecer, experimentalmente, a dependência do empuxo em função do volume do líquido deslocado e da densidade do líquido. 2 - MATERIAL NECESSÁRIO 01 cilindro de Arquimedes 01 dinamômetro de 2 N 01 suporte com haste e tripé 01 seringa 01 copo com 250 ml de água Paquímetro 3 - ANDAMENTO DAS ATIVIDADES 3.1. Assim como na experiência sobre o empuxo, determine o empuxo sofrido pelo êmbolo quando completamente submerso (utilizando água) Mantendo o êmbolo submerso recolha, com a seringa, água do copo e encha o cilindro. Ao fazê-lo, observe a leitura do dinamômetro e descreva o ocorrido. Qual a leitura indicada pelo dinamômetro ao encher o cilindro com água? Compare o volume de água contida no cilindro com o volume do êmbolo. É certo afirmarmos que o volume deslocado pelo êmbolo, quando completamente submerso, é igual ao volume interno do cilindro? Justifique sua resposta. Com base em suas respostas anteriores, determine o peso do volume de água deslocada pelo êmbolo quando completamente submerso. Compare o peso do volume do líquido deslocado (pelo êmbolo submerso) com o valor do empuxo E (força orientada de baixo para cima, aplicada pelo líquido). Verifique a veracidade da seguinte afirmação: todo corpo mergulhado em um fluido fica submetido à ação de uma força vertical, orientada de baixo para cima, denominada empuxo, cujo valor modular é igual ao peso do volume do fluido deslocado. 15

16 Partindo do conceito de massa específica, demostre que a igualdade: E = P liq.deslocado pode ser escrita como: E = Vµg = V onde: V = volume do líquido deslocado µ = massa específica do líquido g = aceleração gravitacional = peso específico do líquido deslocado Utilizando um paquímetro, determine o volume do êmbolo. Determine o valor da massa específica e do peso específico do líquido Adicione sal à água do copo e refaça as medições, procurando justificar as diferenças Refaça a atividade usando álcool no lugar de água. Justifique as diferenças. 16

17 Experimento 5 Tensão superficial de um líquido FUNDAMENTOS TEÓRICOS: O tamanho da superfície livre de um líquido: Dentro das condições que lhe são impostas, um líquido tende a apresentar a menor superfície livre possível. Suponha que, devido à ação de um agente externo, a superfície de um líquido seja aumentada (estirada) de um infinitésimo da. Este acréscimo de superfície da é proporcional ao trabalho dw executado pelo agente externo. dw da A tensão superficial, uma propriedade da superfície liquida: A constante caracteriza uma propriedade da superfície do líquido denominada de tensão superficial. A unidade de tensão superficial no SI é o J/m² ou N/m. A força devida a tensão superficial: Para o anel preso ao tensiômetro se desprender do líquido é necessário exercer uma força F para vencer a tensão superficial. A expressão que calcula a força F (devido à tensão superficial) é dada por: F 2C = coeficiente de tensão superficial C = perímetro do anel 2 = fator que é introduzido por existirem duas películas de líquido em contato com o anel (uma na parte interna e outra na parte externa). O perímetro, comprimento da circunferência do anel, em contato com o líquido é dado por: 2C 2r ext 2r (I) int Desta forma o coeficiente de tensão superficial pode ser calculado pela expressão: F 2F F s s (II) 2C 2C C 1 - HABILIDADES E COMPETÊNCIAS: Ao término desta atividade o aluno deverá ter competência para: Reconhecer a tensão superficial de um líquido. Medir a tensão superficial da água. Comparar o coeficiente de tensão superficial medido a tensão superficial medido com o valor tabelado. Identificar fatores que influenciam na tensão superficial de um líquido. 17

18 2 - MATERIAL NECESSÁRIO Tripé com haste principal e braço Dinamômetro de 10 gf Corpo de prova em anel menor com sistema de suspensão Corpo de prova em anel maior com sistema de suspensão Plataforma de elevação pantográfica Bandeja Paquímetro 3 - ANDAMENTO DAS ATIVIDADES 3.1. Coloque água até a metade da bandeja Deposite a bandeja sobre a plataforma elevatória Verifique se o conjunto está bem nivelado Meça os diâmetros externo e interno do anel. Anote esses valores Meça o peso do conjunto formado pelo anel e sua sustentação Suspenda o anel pelo dinamômetro (tensiômetro) e baixe o conjunto até que o anel toque na superfície da água Verifique se o anel está paralelo à superfície da água Afunde o anel totalmente na água, cerca de 5 mm Desça lentamente a plataforma elevatória enquanto observa a indicação do dinamômetro Em dado momento o anel irá se desprender da água. Leia e anote a marcação do dinamômetro no instante em que o anel se desprendeu da água. Calcule: a) Por diferença, a força F necessária para destacar o anel da água. b) Com a expressão (I), o perímetro C do anel em contato com a água. c) Com a expressão (II), o coeficiente de tensão superficial da água. Compare o valor encontrado do coeficiente de tensão superficial da água com valores tabelados em livros Repita o experimento anterior utilizando o anel de 75 mm. Compare os valores encontrados para o coeficiente de tensão superficial da água com valores encontrados dos utilizando o anel maior e o anel menor Adicione 4 gotas de detergente à água e repita o experimento, com ambos os anéis. Anote os valores encontrados e justifique as diferenças (se houver). 18

19 Experimento 6 A queda em meio viscoso, a Lei de Stokes FUNDAMENTOS TEÓRICOS: As forças atuantes numa esfera em queda num meio viscoso Quando uma esfera se move verticalmente, com velocidade constante, no interior de um fluido viscoso em repouso, as seguintes forças atuam na esfera, Figura 1. P = força peso da esfera E = força de empuxo F D = força resistente (força de arrasto) Figura 1 onde: P = F D + E (I) A força peso da esfera O peso P de uma esfera de diâmetro D e densidade d é calculado pela expressão: P = V esfera d esfera g A força de empuxo atuante sobre uma esfera O princípio de Arquimedes: De acordo com o princípio de Arquimedes (sobre a flutuação dos corpos), uma força de empuxo atua sobre qualquer corpo imerso em um líquido é igual ao peso do volume de um líquido deslocado pelo corpo. O empuxo exercido sobre uma esfera completamente imersa em um líquido é calculado pela expressão: E 3 D 6d g líquido A força resistente (força de arrasto) atuante sobre a esfera. Isaac Newton desenvolveu a equação geral para força resistente, que deve atuar sobre uma esfera que se move através de um gás, enquanto investigava o movimento de uma bala de canhão. Newton estabeleceu teoricamente que a esfera deve empurrar um volume de gás igual à área projetada da esfera multiplicada pela sua velocidade. 19

20 A equação geral de Newton para a força resistente F D 2 8d D 2 v C (II) D líquido F D = força de arrasto (drag force) sobre a esfera. C D = coeficiente de arrasto (drag coefficient). D = diâmetro da esfera. v = velocidade relativa entre a esfera e o líquido. Através da análise das forças no movimento de queda, notamos a influência de grandezas facilmente mensuráveis como: Densidade do líquido Diâmetro da esfera Velocidade da esfera em queda Peso da esfera Densidade do líquido Se verificarmos mais especificamente o significado do coeficiente de arrasto C D, observamos sua dependência com a viscosidade. O coeficiente de arrasto C D é uma constante definida de acordo com: a forma do corpo o número de Reynolds (Re) O número de Reynolds O número de Reynolds é um parâmetro adimensional definido pela expressão: Re vd v = velocidade do corpo em cm/s; D = diâmetro da esfera em cm; = viscosidade cinemática em Stokes. Segundo Reynolds, o coeficiente de arrasto C D é dependente do número de Reynolds. Para a esfera esta função é mostrada no gráfico abaixo, Figura 2: Figura 2 20

21 Pode-se observar uma região de linearidade entre o coeficiente de arrasto e o número de Reynolds, quando Re < 1. Esta função linear é expressa pela equação: C D = 24 / Re = 24 / D v (III) Stokes Substituindo a equação (III) em (II) podemos calcular a força F D exercida pelo fluido sobre a esfera em queda. F D 3d vdv (IV) líquido A equação IV expressa a lei de Stokes. Verifique que a força resistente sobre a esfera depende também da viscosidade do fluido. Conhecendo a força resistente (força de arrasto) F D pela equação I, medindo o diâmetro D da esfera e medindo a velocidade v de queda, obteremos a viscosidade cinemática v. Ao longo do texto se utilizou o termo viscosidade cinemática (v). A seguir definiremos os diversos termos viscosidade que serão abordados nos experimentos. A viscosidade A viscosidade pode ser encarada como o atrito interno dos líquidos, isto é, o atrito que as várias camadas de um líquido encontram ao escoarem uma sobre as outras. Viscosidade absoluta (viscosidade dinâmica, ) Representa a força por unidade de superfície que se estabelece entre duas camadas paralelas de um fluido em movimento laminar, quando uma camada se move em relação à outra com velocidade unitária. A unidade usual da viscosidade absoluta ou dinâmica é o poise. poise = g.cm -1.s -1 A viscosidade cinemática (v) Representa viscosidade absoluta de um líquido relacionado à densidade d do líquido. É descrita pela equação: v = / d A unidade da viscosidade cinemática A unidade da viscosidade cinemática é o stokes (St). stokes = cm².s -1 A viscosidade relativa Representa a viscosidade de um líquido em relação a outro, normalmente a água destilada. A unidade da viscosidade relativa é o grau Engler. 21

22 O simbolismo empregado [unidades cgs] F D = força resistente ou força de arrasto [dina] = viscosidade absoluta (ou dinâmica) [poise] v = viscosidade cinemática [stokes] d = densidade [g/cm³] P = força peso [dina] D = diâmetro da esfera [cm] d esfera = densidade da esfera [g/cm³] V esfera = volume da esfera [cm³] g = aceleração da gravidade [cm/s²] E = força de empuxo [dina] d líquido = densidade do líquido [g/cm³] C D = coeficiente de arrasto [adimensional] v = velocidade da esfera [cm/s] Re = número de Reynolds [adimensional] 1 - HABILIDADES E COMPETÊNCIAS: Ao término desta atividade o aluno deverá ter competência para: Determinar experimentalmente o coeficiente de viscosidade de um fluido. Calcular, a partir dos dados tabelados, a viscosidade de um fluido. 2 - MATERIAL NECESSÁRIO Viscosímetro de Stokes Corpo de prova esférico Cronômetro microcontrolado Paquímetro Glicerina 3 - MONTAGEM 3.1. Coloque o sensor mais baixo próximo do final do tubo Posicione os demais sensores distanciados 100 mm um do outro a partir do sensor mais baixo Faça o alinhamento dos sensores. 4 - ANDAMENTO DAS ATIVIDADES O coeficiente de viscosidade cinemática. O coeficiente de viscosidade cinemática de um líquido pode ser obtido pela expressão da força de arrasto F D de Stokes: F D 3d Dv líquido 22

23 Isolando o coeficiente de viscosidade cinemática FD 3d Dv líquido O número de Reynolds É possível se utilizar a equação de Stokes quando o valor assumido pelo número de Reynolds (Re) for menor que 1, isto é (Re < 1), logo: Ao final do cálculo resultante de, verifique se o valor de Re do experimento satisfaz esta condição. Anote a massa m da esfera. m = g Anote o diâmetro da esfera. D = cm A determinação da densidade do líquido Calcule a densidade do líquido. d líquido = m / V líquido d líquido = g/cm³ O cálculo do volume da esfera Calcule o volume da esfera. V esfera = D³ / 6 = cm³ O cálculo do peso da esfera A partir da massa, calcule o peso P da esfera, considerando g = 980 cm s -2 P = m g = g cm s -2 [dina] O cálculo do empuxo atuante sobre a esfera Calcule o empuxe E que o líquido exerce sobre a esfera: E = d líquido V esfera g E = dina Cálculo da força de arrasto Calcule a força de arrasto F D que o líquido oferece sobre a esfera durante o seu movimento: F D = P E F D = dina Observe que pela lei de Stokes (II) se pode determinar o coeficiente de viscosidade cinemática, F D 3d Dv líquido bastando determinar a velocidade terminal de queda no líquido. 23

24 A determinação da velocidade terminal da esfera num líquido Determine o valor da posição inicial y 1 ocupada pelo primeiro sensor de acordo com a escala do painel. y 1 = cm Determine a posição final y 2, ocupada pelo segundo sensor. y 2 = cm Determine o módulo do deslocamento h (distância de queda) que o móvel sofrerá quando se mover de y 1 até y 2 : h = Δy 1,2 = y 2 y 1 = cm De maneira semelhante, determine o módulo deslocamento que o móvel sofrerá entre os sensores 2 e 3, entre os sensores 3 e 4 e por fim, entre os sensores 4 e 5, preenchendo a Tabela. Módulo de deslocamento h 1 h 2 h 3 h Prepare o cronômetro Abandone a esfera no interior do líquido e cronometre o tempo Repita a operação de queda por 5 vezes, completando a Tabela. Medida Δt 1 Δt 2 Δt 3 Δt Média 4.4. Para cada intervalo de tempo médio, calcule a velocidade v m dividindo a distância percorrida do intervalo (espaçamento entre os sensores) pela média do tempo gasto em percorrê-la, completando a Tabela. Velocidade v 1 v 2 v 3 v 4 V m = h / Δt Monte um gráfico: velocidade em função do tempo. Verifique se a velocidade dos dois últimos intervalos se manteve constante. Lembre que para ser válida a análise de forças mostrada na Figura 1, a velocidade da esfera deve ser constante (aceleração = 0). 24

25 A determinação da viscosidade do líquido em estudo Utilizando a expressão desenvolvida por Stokes, calcule a viscosidade do líquido em estudo. F D F 3Dv D 3Dv poise Compare o valor obtido experimentalmente com o valor tabelado. Comente os resultados. Calcule o número de Reynolds e verifique se o valor de Re está no regime de escoamento laminar (Re < 1). Comente. 25

26 Experimento 7 O calor, a temperatura e a capacidade do corpo de armazenar energia 1. HABILIDADES E COMPETÊNCIAS Ao termino desta atividade o aluno deverá ter competência para: Definir calor e temperatura Diferenciar as grandezas calor e temperatura 2. MATERIAL NECESSÁRIO Tripé e haste de sustentação Mufa com pinça, fio, argola e gancho Termômetro (-10 a 110ºC) Corpo de prova de alumínio (25 g) Corpo de prova de latão (25 g) Corpo de prova de aço (25 g) 03 copos de Becker 250 ml 01 proveta graduada de 100 ml Cronômetro Fonte térmica Agitador 3. ANDAMENTO DAS ATIVIDADES 3.1. Aqueça 100 g de água Agitando e anotando, de 2 em 2 minutos a temperatura da água até se atinja a sua temperatura de ebulição. Com os dados tabelados, faça um gráfico Temperatura vs. Tempo das 100 g de água aquecida Sem alterar a potência do aquecedor, aqueça 200 g de água Agitando e anotando, de 2 em 2 minutos a temperatura da água até se atinja a sua temperatura de ebulição. Com os dados tabelados, faça um gráfico Temperatura vs. Tempo da amostra de 200 g com o da amostra de 200 g de água (colocar na mesma folha milimetrada que o gráfico da amostra de 100 g de água). Considerando amostras de mesmo material e constante os agentes externos (temperatura ambiente e temperatura do aquecedor), compare a sua resposta com a validade da seguinte afirmação: O intervalo de tempo de aquecimento é inversamente proporcional à massa da amostra Coloque em banho-maria, no copo de Becker, três corpos de prova alumínio (25 g), aço (25 g) e latão (25 g) com cordão para transporte. 26

27 3.4. Aqueça o conjunto até a ebulição Anote a temperatura de ebulição da água Prepare três copos de Becker com 75 g de água a temperatura ambiente (cada um). Anote a temperatura inicial da água destes copos Depois de 10 min em banho-maria (contando a partir do momento em que se atingiu a temperatura de ebulição da água), retire o corpo de prova de alumínio da água aquecida e mergulhe-o no copo com água à temperatura ambiente. Agite e determine a temperatura de equilíbrio térmico (observe durante aproximadamente 10 min, para que se alcance o equilíbrio térmico, e anote o maior valor da temperatura lida pelo termômetro) Retire o corpo de prova de aço da água aquecida e mergulhe-o no copo com água à temperatura ambiente. Agite e determine a temperatura de equilíbrio térmico (observe durante aproximadamente 10 min, para que se alcance o equilíbrio térmico, e anote o maior valor de temperatura lida pelo termômetro) Retire o outro corpo de prova de latão da água aquecida e mergulhe-o no copo com água à temperatura ambiente. Agite e determine a temperatura de equilíbrio térmico (observe durante aproximadamente 10 min, para que se alcance o equilíbrio térmico, e anote o maior valor de temperatura lida pelo termômetro) Com os dados obtidos, complete a Tabela. Material do corpo de prova 25 g (alumínio) 25 g (aço) 25 g (latão) Temperatura inicial do corpo de prova Temperatura inicial dos 100 g de água (ambiente) Temperatura final de equilíbrio térmico Considerando os valores da Tabela, discuta a validade da seguinte afirmação: Massas iguais, de materiais diferentes, a uma mesma temperatura, armazenam diferentes quantidades de calor. 27

28 Experimento 8 A determinação do coeficiente de dilatação linear 1 - HABILIDADES E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Relacionar a variação no comprimento do latão em função do comprimento inicial e da variação de temperatura; Determinar o coeficiente de dilatação linear do corpo de prova. 2 - MATERIAL NECESSÁRIO Dilatômetro 02 termômetros (10 a 110ºC) Batente móvel fim de curso Gerador de vapor Bandeja Corpo de prova em latão Corpo de prova em cobre Corpo de prova em aço 3 - A DILATAÇÃO DO LATÃO EM FUNÇÃO DO COMPRIMENTO INICIAL, SOB MESMA VARIAÇÃO DA TEMPERATURA Determine o comprimento inicial do corpo de prova (L 0 ). Determine a temperatura inicial 0 do sistema Ligue a fonte de calor e aguarde para que o corpo de prova atinja a temperatura máxima e gere vapor d água. Após o equilíbrio térmico, determine as temperaturas nos pontos de entrada e saída dos vapores. Coincidem estas temperaturas? Justifique sua resposta. Calcule a temperatura média final do corpo de prova. Calcule a variação de temperatura Δ sofrida pelo corpo de prova. Meça a variação de comprimento ΔL sofrida pelo corpo de prova Remova o corpo de prova e o esfrie Transfira o guia mufa para o orifício na marca dos 400 mm diminuindo, deste modo, o comprimento inicial L 0 do corpo de prova. 28

29 3.4. Refaça a atividade anterior medindo o novo ΔL sofrido pelo corpo de prova, agora com um L 0 igual a 400 mm Repita o procedimento com L 0 igual a 350 e 300 mm e complete a tabela. Comprimento inicial da haste (mm) Temperatura inicial (ºC) Temperatura final (ºC) Variação de temperatura Δ (ºC) Variação de comprimento sofrido pelo corpo de prova ΔL (mm) Comprimento inicial L 0, exato Com os dados obtidos, faça o gráfico ΔL versus L 0 deste corpo de prova. Represente matematicamente a relação existente entre ΔL e L 0 (para uma mesma variação de temperatura) identificando cada termo da mesma. Verifique a validade da afirmação: A variação de comprimento sofrida por um material (sob a mesma variação de temperatura) é diretamente proporcional ao seu comprimento inicial Isto é: L L A DETERMINAÇÃO DO COEFICIENTE DE DILATAÇÃO LINEAR Com base em suas respostas anteriores determine o coeficiente de dilação linear do corpo de prova utilizado. Mostre que a equação L 0 L pode ser escrita como 1 L. L 0 Identifique cada termo de da expressão: L 1 L 0 Determine o coeficiente de dilatação linear do aço. Determine o coeficiente de dilação linear do cobre. 29

30 Experimento 9 Os meios de propagação de calor HABILIDADES E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Identificar, comparar e classificar as formas de propagação do calor; Reconhecer que o calor, para se propagar, necessita de uma diferença de temperatura entre as regiões de escoamento; Mencionar que o fluxo térmico sempre se verifica no sentido das temperaturas decrescentes. 1. A PROPAGAÇÃO DO CALOR DE MOLÉCULAS À MOLÉCULA, SEM DESLOCAMENTO DE MATÉRIA MATERIAL NECESSÁRIO Base principal Corpos de prova esféricos de aço; Lâmina suporte em aço inoxidável; Biombo protetor e canalizador Lamparina Vela Caixa de fósforos MONTAGEM Nesta atividade você manterá a lâmpada desligada e utilizará como fonte térmica uma lamparina Prenda os corpos de prova esféricos com cera de vela sobre as marcas existentes na lâmina (use o mínimo possível de parafina) Fixe a lâmina com os corpos de prova virados para baixo, 20 mm acima do pavio da lamparina ANDAMENTO DAS ATIVIDADES Acenda a lamparina e aqueça a extremidade livre da lâmina. 30

31 Justifique o fato da energia térmica penetrar no extremo da lâmina com as esferas se desprenderem sucessivamente, nos pontos 1, 2, 3, 4 e 5. Qual a função da cera e das esferas utilizadas no experimento? Pode a esfera 2 cair antes da esfera 1? Justifique a sua resposta. Como é denominada esta maneira do calor se propagar e qual sua principal característica? 2. A PROPAGAÇÃO DO CALOR DE MOLÉCULA À MOLÉCULA, COM DESLOCAMENTO DE MATÉRIA MATERIAL NECESSÁRIO Base principal Fonte irradiante de feixe direcional Ventoinha de alumínio com 8 hélices Biombo protetor Pivô em aço inoxidável ANDAMENTO DAS ATIVIDADES Ligue a lâmpada Aguarde alguns minutos e comente o observado. O que acontece à molécula de ar frio que se encontra próxima da lâmpada aquecida? Com base no princípio de Arquimedes, justifique o movimento de subida da molécula aquecida de ar. Justifique o movimento da ventoinha. Como se denomina esta maneira do calor se propagar e qual a sua principal característica? 3. A PROPAGAÇÃO DO CALOR POR ONDA ELETROMAGNÉTICA, SEM NECESSIDADE DE UM MEIO MATERIAL MATERIAL NECESSÁRIO Base principal Fonte de irradiante de feixe direcional Biombo protetor e canalizador Termômetro com escala de -10 a 110ºC Cronômetro 31

32 3.2 - ANDAMENTO DAS ATIVIDADES Meça a temperatura inicial indicada pelo termômetro Ligue a lâmpada por cinco minutos (cronometrados), anotando a temperatura final Desligue a lâmpada. De onde veio à energia térmica capaz de provocar a elevação da temperatura indicada no termômetro? A energia térmica cruza o espaço, inclusive o gás rarefeito do interior da lâmpada até atingir o bulbo do termômetro. Justifique o fato da propagação do calor por irradiação não necessitar de um meio para se propagar. Como é denominada esta maneira de o calor se propagar e qual a sua principal característica? Procure justificar a função da superfície espelhada existente na parte traseira da lâmpada. 4. A INFLUÊNCIA DA COR E DA SUBSTÂNCIA EM ISOLAMENTOS TÉRMICOS, O CORPO NEGRO MATERIAL NECESSÁRIO Base principal Fonte irradiante de feixe direcional Biombo protetor e canalizador Elásticos ortodônticos Termômetro com escala de -10 a 110 ºC Retângulo de papel branco 15x25 mm Retângulo de papel carbono preto 15x25 mm Cronômetro MONTAGEM Cubra o termômetro com o pequeno pedaço de papel branco Prenda o papel com os dois elásticos ortodônticos ANDAMENTO DAS ATIVIDADES Meça a temperatura inicial Ligue a lâmpada por cinco minutos (cronometrados). Meça a temperatura final Retire o papel branco do termômetro Esfrie o termômetro com pano úmido Repita os mesmos procedimentos anteriores, agora cobrindo o bulbo do termômetro com o papel carbono preto. Qual a cor de tecido é mais recomendada para vestuários em zonas de temperatura elevada? Justifique sua resposta. 32

33 Experimento 10 A determinação do calor específico de um sólido HABILIDADES E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Mencionar as trocas de calor envolvidas no processo Determinar o equivalente em água de um calorímetro Determinar o calor específico de corpos sólidos 1. A DETERMINAÇÃO DO EQUIVALENTE EM ÁGUA DE UM CALORÍMETRO MATERIAL NECESSÁRIO Calorímetro de água com agitador Termômetro 10 a 110 ºC 100 ml de água gelada 100 ml de água a temperatura ambiente Fonte térmica Copo Becker de 250 ml Proveta graduada de 100 ml 1.2 FUNDAMENTOS TEÓRICOS O equivalente em água de um calorímetro é a massa de água equivalente, em efeito térmico, ao conjunto de componentes do calorímetro (vaso, tampa, agitador, termômetro, etc). O equivalente em água do calorímetro é uma de suas características mais importante. O calorímetro experimenta todas as trocas de calor necessárias para atingir o equilíbrio térmico, logo, ele intervem e deve ser considerado nos cálculos pertinentes à estas trocas. 1.3 MONTAGEM Coloque no calorímetro 50 ml de água fria com temperatura em torno de 10 ºC abaixo da temperatura ambiente Tampe o conjunto e introduza o termômetro no calorímetro 1.4 ANDAMENTO DAS ATIVIDADES Prepare num copo de becker vazio 50 ml de água morna com temperatura em torno de 10 ºC acima da temperatura ambiente. Meça a temperatura inicial oaf do calorímetro com água fria (ela pode ter variado). oaf = ºC Meça a temperatura da água morna do copo (ela pode ter variado). oaq = ºC 33

34 Derrame água morna no calorímetro Tampe o calorímetro Introduza o termômetro no calorímetro pelo orifício da tampa Agite leve e constantemente a mistura. Anote a máxima temperatura alcançada (temperatura de equilíbrio térmico entre o calorímetro e a mistura). e = ºC Com os dados obtidos calcule a massa total de água utilizada. Determine o equivalente em água m e do calorímetro, sabendo que: onde: m aq c a Calor perdido = Calor ganho m c m c oaq m aq = massa de água morna c a = calor específico da água = temperatura inicial da água morna oaq e = temperatura de equilíbrio térmico m = equivalente em água do calorímetro m e af oaf = massa de água fria = temperatura inicial da água fria e e a af a e oaf Equivalente em água: m e = g 2. A DETERMINAÇÃO DO CALOR ESPECÍFICO DE UM SÓLIDO MATERIAL NECESSÁRIO Calorímetro com agitador e equivalente em água conhecido Termômetro -10 a 110 ºC Sistema com haste e mufa Corpo de prova de alumínio Corpo de prova de aço Proveta graduada de 100 ml Agitador Cronômetro Fonte térmica Copo de becker ANDAMENTO DAS ATIVIDADES Coloque 100 ml de água a temperatura ambiente, no interior do calorímetro Tampe o conjunto e introduza o termômetro no calorímetro. Anote a massa m Al do corpo de prova de alumínio m Al = g Coloque o corpo de prova de alumínio no interior de um copo becker com 100 ml de água à temperatura ambiente. 34

35 Aqueça o conjunto até a ebulição Após a ebulição, desligue o sistema de aquecimento Aguarde 3 minutos, sempre agitando levemente o corpo de prova no interior da água. Leia e anote a temperatura inicial do alumínio. 0Al = C Anote a temperatura ambiente (temperatura inicial do calorímetro com água). a = C Transporte o corpo de prova de alumínio pelo fio, colocando-o dentro do calorímetro Tampe o calorímetro e introduza o termômetro no orifício da tampa Agite leve e constantemente a mistura. Leia e anote a temperatura máxima alcançada (temperatura de equilíbrio térmico do calorímetro). e = C O calor específico (c Al ) da substância que compõe o corpo de prova pode ser obtido pela equação: onde: Q cedido (corpo de prova de Al) = Q recebido (calorímetro) + Q recebido (água) m Al c Al m m c 0 Al m Al = massa do corpo de prova de Al c = calor específico do alumínio Al 0 Al = temperatura inicial do corpo de prova (Al) = temperatura de equilíbrio térmico do sistema e m = equivalente em água do calorímetro e = temperatura inicial da água no calorímetro a m = massa de água que foi colocada no calorímetro a c = calor específico da água a e e e a a a e a Com os dados obtidos, determine o calor específico do alumínio Repita o mesmo procedimento utilizado para determinar o calor específico do alumínio, para determinar o calor específico do aço. 35

36 Experimento 11 A determinação do calor latente do gelo HABILIDADES E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Mencionar as trocas de calor envolvidas no processo Determinar o equivalente em água de um calorímetro Determinar o calor latente de fusão do gelo 1. A DETERMINAÇÃO DO EQUIVALENTE EM ÁGUA DE UM CALORÍMETRO MATERIAL NECESSÁRIO Calorímetro de água com agitador Termômetro 10 a 110 ºC 100 ml de água gelada 100 ml de água a temperatura ambiente Fonte térmica Copo Becker de 250 ml Proveta graduada de 100 ml 1.2 FUNDAMENTOS TEÓRICOS O equivalente em água de um calorímetro é a massa de água equivalente, em efeito térmico, ao conjunto de componentes do calorímetro (vaso, tampa, agitador, termômetro, etc). O equivalente em água do calorímetro é uma de suas características mais importante. O calorímetro experimenta todas as trocas de calor necessárias para atingir o equilíbrio térmico, logo, ele intervem e deve ser considerado nos cálculos pertinentes à estas trocas. 1.3 MONTAGEM Coloque no calorímetro 50 ml de água fria com temperatura em torno de 10 ºC abaixo da temperatura ambiente Tampe o conjunto e introduza o termômetro no calorímetro 1.4 ANDAMENTO DAS ATIVIDADES Prepare num copo de becker vazio 50 ml de água morna com temperatura em torno de 10 ºC acima da temperatura ambiente. Meça a temperatura inicial oaf do calorímetro com água fria (ela pode ter variado). oaf = ºC Meça a temperatura da água morna do copo (ela pode ter variado). 36

37 oaq = ºC Derrame água morna no calorímetro Tampe o calorímetro Introduza o termômetro no calorímetro pelo orifício da tampa Agite leve e constantemente a mistura. Anote a máxima temperatura alcançada (temperatura de equilíbrio térmico entre o calorímetro e a mistura). e = ºC Com os dados obtidos calcule a massa total de água utilizada. Determine o equivalente em água m e do calorímetro, sabendo que: onde: m aq c a Calor perdido = Calor ganho m c m c oaq m aq = massa de água morna c a = calor específico da água = temperatura inicial da água morna oaq e = temperatura de equilíbrio térmico m = equivalente em água do calorímetro m e af oaf = massa de água fria = temperatura inicial da água fria e e a af a e oaf Equivalente em água: m e = g 2. A DETERMINAÇÃO DO CALOR LATENTE DO GELO MATERIAL NECESSÁRIO Calorímetro com agitador e equivalente em água conhecido Termômetro -10 a 110 ºC Cubos de gelo Proveta graduada de 100 ml Agitador Cronômetro Fonte térmica Copo de becker ANDAMENTO DAS ATIVIDADES Meça a temperatura ambiente a. a = C Coloque 100 ml de água quente no copo de becker. Calcule a massa de água quente, lembrado que 100 ml de água equivalem a 100 g. m água quente = g Meça a temperatura inicial 0aq da água quente. 0aq = C 37

38 Coloque o cubo de gelo e a água quente no calorímetro, o mais rápido e seguro possível Aguarde a fusão completa do gelo. Anote a temperatura final de equilíbrio térmico t e da mistura de água morna resultante no calorímetro. t e = C Determine a massa da água morna m água morna resultante no calorímetro. m água morna = g Conhecendo a variação de massa, determine a massa do gelo inicial. m água morna = g Como as quantidades de calor envolvidas obedecem à equação: Q gelo + Q água do gelo + Q água quente + Q calorímetro = 0 onde: Q m gelo gelo L Q m c 0 água do gelo f gelo Qágua quente mágua quentec e 0aq Q calorímetro e e e m c a Calcule o calor latente de fusão do gelo L f. L f = cal/g Compare o valor obtido para o calor latente de fusão do gelo com o valor tabelado de 80 cal/g. 38

39 Experimento 12 A transformação isotérmica, a lei de Boyle-Mariotte HABILIDADES E COMPETÊNCIAS Ao término desta atividade o aluno deverá ter competência para: Reconhecer o comportamento do volume de um gás em função da pressão, mantendose constante a temperatura; Construir o gráfico que relaciona a pressão de um gás versus o volume ocupado por ele; Construir o gráfico que relaciona a pressão de um gás versus o inverso do volume por ele ocupado; Reconhecer a validade da lei de Boyle e Mariotte para a transformação isotérmica de uma massa gasosa. 1 - MATERIAL NECESSÁRIO Aparelho gaseológico 2 FUNDAMENTOS O volume inicial do gás confinado O volume inicial de gás (ar) é aquele contido no interior do manômetro, seringa, tubo de conexão, etc. Para determinar o volume inicial basta utilizar a seguinte expressão: V 0 V 0 P p p Sendo: V = decremento do volume p = incremento da pressão manométrica P 0 = pressão atmosférica A pressão absoluta Para se obter a pressão absoluta, a pressão manométrica lida deve ser acrescida do valor da pressão atmosférica no local. 3 ANDAMENTO DAS ATIVIDADES Pressão atmosférica do local (1,0149 kgf/cm 2, em Lorena) Abra a válvula Eleve o êmbolo Feche a válvula confinando um volume V 0 de ar no interior da câmara. Qual a pressão total que o volume inicial V 0 se encontra submetido neste momento (em kpa)? 39

40 3.4. Dê quatro voltas no manípulo. * A cada volta do manípulo você irá reduzir o volume inicial V 0 de uma variação V = 0,45 ml/volta. *Cuidado com a folga na válvula. Determine V para estas 4 voltas. Meça a variação da pressão manométrica p atuante sobre o novo volume ocupado pelo gás. Determine o volume inicial V 0 da amostra de gás deste experimento. Calcule a pressão total que atua sobre a amostra. Dê mais 2 voltas no manípulo e determine V 1. * Lembre que V 1 = [V 0 (2 voltas x 0,45 ml / volta)] ml Complete a linha 1 da tabela 1. Procedendo de maneira semelhante, a cada 2 voltas do manípulo, determine e calcule os elementos necessários para completar linha após linha a Tabela 1. * Decremento V para cada volta = 0,45 ml Medida N = Com os dados da coluna 5 e da coluna 1 da tabela 1, construa o gráfico da pressão versus volume. Com os dados da coluna 5 e da coluna 2 da tabela 1, construa o gráfico da pressão versus inverso do volume. Calcule e interprete fisicamente o valor da inclinação da curva obtida no gráfico P versus (1/V). Extrapole o valor de 1/V para uma tendência a zero e tire conclusões. Tabela Volume Inverso do Pressão Pressão Pressão total P NT. V N V N volume manométrica atmosférica P NT (ml) 1/V N P N (kgf/cm 2 ) P 0 (kgf/cm 2 ) (kgf/cm 2 ) 40

41 Conjunto gaseológico 41

42 42

43 Padrão de relatório 43

44 UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL Nome: Nº Nome: Nº Nome: Nº Nome: Nº Experimento Nº: Física Experimental II Título: Objetivo: Materiais utilizados: Procedimento experimental e esquema do aparato experimental:

A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin

A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin Física Experimental II 2º Semestre de 2012 Prof. Marcelo Rodrigues de Holanda Experimento 1 (03/08) A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin 1. Habilidade e competências Ao

Leia mais

A queda em meio viscoso, a Lei de Stokes

A queda em meio viscoso, a Lei de Stokes ísica Experimental II A queda em meio viscoso, a Lei de Stokes UNAMENTOS TEÓRICOS: As forças atuantes numa esfera em queda num meio viscoso Quando uma esfera se move verticalmente, com velocidade constante,

Leia mais

HIDROSTÁTICA PRIMEIRA AVALIAÇÃO

HIDROSTÁTICA PRIMEIRA AVALIAÇÃO UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE FÍSICA DF DISCIPLINA LABORATÓRIO DE ÓPTICA, ONDAS E FLUIDOS PRIMEIRA AVALIAÇÃO HIDROSTÁTICA

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Comprovação Experimental do Princípio de Arquimedes e Comprovação do Empuxo 1 Objetivos Gerais: 2 - Experimentos: Verificar a presença do empuxo em função da aparente diminuição da força peso de um corpo

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 - Objetivos Gerais: Viscosidade Estudo da velocidade terminal de uma esfera num líquido; Determinação da viscosidade do líquido em estudo; *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

Hidrostática REVISÃO ENEM O QUE É UM FLUIDO? O QUE É MASSA ESPECÍFICA? OBSERVAÇÕES

Hidrostática REVISÃO ENEM O QUE É UM FLUIDO? O QUE É MASSA ESPECÍFICA? OBSERVAÇÕES REVISÃO ENEM Hidrostática O QUE É UM FLUIDO? Fluido é denominação genérica dada a qualquer substância que flui isto é, escoa e não apresenta forma própria, pois adquire a forma do recipiente que o contém.

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II A pressão num ponto de um líquido em equilíbrio 1- Objetivos Gerais: Calibrar um manômetro de tubo aberto: Usar o manômetro calibrado para medir a pressão em pontos de um fluido de densidade desconhecida.

Leia mais

ESTÁTICA DOS FLUIDOS

ESTÁTICA DOS FLUIDOS ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Fenômenos de Transporte PROF. BENFICA

Fenômenos de Transporte PROF. BENFICA Fenômenos de Transporte PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 1 Conceitos Iniciais 1) Faça as seguintes conversões de unidades: a) 45 km/h em m/s. b) 100 m/s em km/h. c) 600

Leia mais

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES

DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES Rodrigo Ernesto Andrade Silva; Arthur Vinicius Ribeiro de Freitas Azevedo; Allan Giuseppe de Araújo Caldas;

Leia mais

Hidrostática e Calorimetria PROF. BENFICA

Hidrostática e Calorimetria PROF. BENFICA Hidrostática e Calorimetria PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 1 Conceitos Iniciais/Hidrostática 1) Calcular o peso específico, o volume específico e a massa específica de

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS PROF.: KAIO DUTRA O que é um Fluido um fluido ao contrário de um sólido, é uma substância que pode escoar, os fluidos assumem a forma dos recipientes

Leia mais

Hidrostática Prof: Edson Rizzo. Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo

Hidrostática Prof: Edson Rizzo. Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo Hidrostática Prof: Edson Rizzo Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo DENSIDADE Consideremos um corpo de massa m e volume V. A densidade (d) do corpo é definida por: d = m V No

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica

Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica Universidade Federal do Pampa UNIPAMPA Fluidos Hidrostática e Hidrodinâmica SUMÁRIO Fluido Força do fluido Pressão Lei de Stevin Sistemas de vasos comunicantes Princípio de Pascal Medições de pressão Princípio

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Física I 2010/2011. Aula 18. Mecânica de Fluidos I

Física I 2010/2011. Aula 18. Mecânica de Fluidos I Física I 2010/2011 Aula 18 Mecânica de Fluidos I Sumário Capítulo 14: Fluidos 14-1 O que é um Fluido? 14-2 Densidade e Pressão 14-3 Fluidos em Repouso 14-4 A Medida da pressão 14-5 O Princípio de Pascal

Leia mais

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 1 o semestre de 2014

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 1 o semestre de 2014 4310256 Laboratório de Física I Experiência 3 Determinação do coeficiente de viscosidade de líquidos 1 o semestre de 2014 5 de fevereiro de 2014 3. Determinação do coeficiente de viscosidade de líquidos

Leia mais

A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin

A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin Física Experimental II 2º Semestre de 2012 Prof. Marcelo Rodrigues de Holanda Experimento 1 (03/08) A pressão num ponto de um líquido em equilíbrio - Princípio de Stevin Como medir a pressão em manômetro

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial n.º 3 (1.ª parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A. Prof. Dr. Felipe Corrêa V dos Santos

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A. Prof. Dr. Felipe Corrêa V dos Santos PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A Prof. Dr. Felipe Corrêa V dos Santos Goiânia, 2018 Exercícios de Hidrostática - Pressões e Medidores

Leia mais

HIDROSTÁTICA PARTE I

HIDROSTÁTICA PARTE I HIDROSTÁTICA PARTE I CONSIDERAÇÕES INICIAIS Características gerais de fluidos para este capítulo É uma substância que pode fluir, ou seja, se conforma segundo as limitações do recipiente Comportam-se desta

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Fluidos Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O significado de densidade de um material e da densidade média de um corpo;

Leia mais

Tensão Superficial INTRODUÇÃO

Tensão Superficial INTRODUÇÃO Tensão Superficial INTRODUÇÃO enômenos de superfície têm interesse multidisciplinar e são importantes tanto para a ísica quanto para a Química, a Biologia e as Engenharias. Além disso, há vários efeitos

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel. Fluidos. Disciplina: Física Professor: Carlos Alberto

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel. Fluidos. Disciplina: Física Professor: Carlos Alberto INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel Fluidos Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá:

Leia mais

DINÂMICA N, é correto afirmar que o peso do bloco B, em

DINÂMICA N, é correto afirmar que o peso do bloco B, em DINÂMICA 7. Uma barra metálica homogênea, de,0 m de comprimento e 10 N de peso, está presa por um cabo resistente. A barra mantém dois blocos em equilíbrio, conforme mostra a figura abaixo. Sendo d 0,5

Leia mais

Universidade Estácio de Sá Prof. Robson Lourenço Cavalcante DISCIPLINA: FÍSICA TEÓRICA II Lista 1 Fluidos parte A ESTÁTICA DOS FLUIDOS

Universidade Estácio de Sá Prof. Robson Lourenço Cavalcante DISCIPLINA: FÍSICA TEÓRICA II Lista 1 Fluidos parte A ESTÁTICA DOS FLUIDOS 1)Uma janela de escritório tem dimensões de 3,4 m de largura por 2,1 m de altura. A passagem de uma tempestade a pressão atmosférica no exterior baixa para 0,96 atm. No escritório a pressão mantém-se a

Leia mais

Prática 05 Determinação Da Massa Molar Do Magnésio

Prática 05 Determinação Da Massa Molar Do Magnésio UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE QUÍMICA DQMC Disciplina: Química Geral Experimental QEX0002 Prática 05 Determinação Da Massa Molar Do Magnésio

Leia mais

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE)

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) 1. Introdução 1.1) Lei de Boyle: à temperatura constante, o volume ocupado por uma determinada

Leia mais

Fenômenos de Transporte PROF. BENFICA

Fenômenos de Transporte PROF. BENFICA Fenômenos de Transporte PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial nº. 3 (1ª. parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

Fluidos - Estática. Estudo: Densidade de corpos e fluidos Pressão em um fluido estático Força que um fluido exerce sobre um corpo submerso

Fluidos - Estática. Estudo: Densidade de corpos e fluidos Pressão em um fluido estático Força que um fluido exerce sobre um corpo submerso Fluidos - Estática Estudo: Densidade de corpos e fluidos Pressão em um fluido estático Força que um fluido exerce sobre um corpo submerso Densidade Uma importante propriedade de um material é a sua densidade,

Leia mais

Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.

Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo. 84 10.3 Experimento 3: Segunda Lei de Newton 10.3.1 Objetivo Verificar que a aceleração adquirida por um corpo sob a ação de uma força constante é inversamente proporcional à massa, ou ao peso do corpo.

Leia mais

Apresentação: Movimento unidimensional

Apresentação: Movimento unidimensional Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo

Leia mais

Lei de Arquimedes. Teorema de Arquimedes. O que é empuxo?

Lei de Arquimedes. Teorema de Arquimedes. O que é empuxo? Lei de Arquimedes Teorema de Arquimedes Um corpo total ou parcialmente mergulhado em um fluido em equilíbrio recebe dele uma força (chamada empuxo) vertical, de baixo para cima, de módulo igual ao módulo

Leia mais

FÍSICA 2 PROVA 2 TEMA 1 HIDROSTÁTICA E HIDRODINÂMICA PROF. LEANDRO NECKEL

FÍSICA 2 PROVA 2 TEMA 1 HIDROSTÁTICA E HIDRODINÂMICA PROF. LEANDRO NECKEL FÍSICA 2 PROVA 2 TEMA 1 HIDROSTÁTICA E HIDRODINÂMICA PROF. LEANDRO NECKEL HIDROSTÁTICA PARTE I CONSIDERAÇÕES INICIAIS Características gerais de fluidos para este capítulo É uma substância que pode fluir,

Leia mais

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies Hidráulica Revisão de alguns conceitos Propriedades Físicas dos Fluidos Forças, esforços e pressão (tensão) As forças que atuam em um meio contínuo: Forças de massa ou de corpo: distribuídas de maneira

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VESTIBULAR UFPE UFRPE / 1998 2ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: FÍSICA 1 VALORES DE ALGUMAS GRANDEZAS FÍSICAS Aceleração da gravidade : 10 m/s 2 Número de Avogadro : 6,0 x 10 23 /mol Constante

Leia mais

CEUNSP -Laboratório de Física 1 - Mecânica Experiência 1: Mesa de Força 1 Dr. Cláudio S. Sartori

CEUNSP -Laboratório de Física 1 - Mecânica Experiência 1: Mesa de Força 1 Dr. Cláudio S. Sartori CEUNSP -Laboratório de Física - Mecânica Experiência : Mesa de Força LABORATÓRIO DE FÍSICA I: Experiência : MESA DE FORÇA tripés (5). alinhador para dinamômetro (6). perfil universal com fixador (7). 6

Leia mais

Biofísica Bacharelado em Biologia

Biofísica Bacharelado em Biologia Biofísica Bacharelado em Biologia Prof. Dr. Sergio Pilling PARTE A Capítulo 5 Fluidos. Introdução a hidrostática e hidrodinâmica. Objetivos: Nesta aula abordaremos o estudo dos fluidos. Faremos uma introdução

Leia mais

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016 Caderno de Questões Avaliação Experimental Instruções 1. Este caderno de questões contém DEZ folhas, incluindo esta com as instruções e rascunhos. Confira antes de começar a resolver a prova. 2. A prova

Leia mais

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas CONTEÚDOS DA PROVA DE RECUPERAÇÃO FINAL: Hidrostática, Velocidade Escalar Média, Gravitação Universal, 1ª e 2ª Leis de Kepler, Aceleração Escalar, Equações do Movimento Retilíneo Uniformemente Variado

Leia mais

COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III - 2ª SÉRIE/ EM 2010 FÍSICA LISTA DE EXERCÍCIOS: HIDROSTÁTICA

COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III - 2ª SÉRIE/ EM 2010 FÍSICA LISTA DE EXERCÍCIOS: HIDROSTÁTICA COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III - 2ª SÉRIE/ EM 2010 FÍSICA LISTA DE EXERCÍCIOS: HIDROSTÁTICA 1. A razão entre a massa e o volume de uma substância, ou seja, a sua massa específica, depende

Leia mais

HIDROSTÁTICA. Manual de Instruções e Guia de Experimentos

HIDROSTÁTICA. Manual de Instruções e Guia de Experimentos Manual de Instruções e Guia de Experimentos HIDROSTÁTICA OBSERVAÇÃO SOBRE OS DIREITOS AUTORAIS Este manual é protegido pelas leis de direitos autorais e todos os direitos são reservados. Entretanto é permitida

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 047 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 3 ROTEIRO Tópicos da aula 3:

Leia mais

AULA 3 CALORIMETRIA - SÉRIE AULA

AULA 3 CALORIMETRIA - SÉRIE AULA 018 APOSTILA TURMAS DE MEDICINA VESPERTINO 1º SEMESTRE Prof. Fred Lana AULA CALORIMETRIA - SÉRIE AULA Resposta da questão 1: [A] Resposta da questão : [E] Resposta da questão : [E] Resposta da questão

Leia mais

Mecânica dos Fluidos 1ª parte

Mecânica dos Fluidos 1ª parte Mecânica dos Fluidos 1ª parte Introdução à Mecânica dos Fluidos Prof. Luís Perna 2010/11 Noção de Fluido Fluido é toda a substância que macroscopicamente apresenta a propriedade de escoar. Essa maior ou

Leia mais

2.1.6 Teorema de Stevin

2.1.6 Teorema de Stevin Parte 3 2.1.6 Teorema de Stevin (Lei Fundamental da Hidrostática) Os pontos A e B estão no interior de um fluido de densidade. p A =. g. h A p B =. g. h B Fazendo p B p A, temos: p B p A =. g. h B. g.

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 17 (pág. 78) AD TM TC. Aula 18 (pág. 80) AD TM TC. Aula 19 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 17 (pág. 78) AD TM TC. Aula 18 (pág. 80) AD TM TC. Aula 19 (pág. Física Setor A rof.: Índice-controle de Estudo Aula 17 (pág. 78) AD TM TC Aula 18 (pág. 80) AD TM TC Aula 19 (pág. 81) AD TM TC Aula 20 (pág. 83) AD TM TC Aula 21 (pág. 84) AD TM TC Aula 22 (pág. 84) AD

Leia mais

Interface entre Líquido e Sólido

Interface entre Líquido e Sólido Interface entre íquido e Sólido Vamos considerar as condições na interface entre um líquido e um sólido. A forma tomada pelo líquido é determinada pela relação entre as seguintes forças que atuam nas suas

Leia mais

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica

LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Departamento de Física - ICE/UFJF Laboratório de Física II Prática : Elementos de Hidroestática e Hidrodinâmica: Princípio de Arquimedes e Equação de Bernoulli OBJETIVOS -. Determinação experimental do

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais Mecânica dos Fluidos Física II Prof. Roberto Claudino Ferreira ÍNDICE ) - Introdução; ) - Densidade; 3) - Pressão;

Leia mais

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo. 74 9.4 Experiência 4: Deformações Elásticas e Pêndulo Simples 9.4.1 Objetivos Interpretar o gráfico força x elongação; Enunciar e verificar a validade da lei de Hooke; Verificar as equações para a constante

Leia mais

Viscosimetria. Anselmo E. de Oliveira. Instituto de Química, UFG, , Goiânia, GO

Viscosimetria. Anselmo E. de Oliveira. Instituto de Química, UFG, , Goiânia, GO Viscosimetria Anselmo E. de Oliveira Instituto de Química, UFG, 74690-900, Goiânia, GO Resumo Essa aula prática tem como objetivo avaliar as variações da viscosidade de soluções hidroalcoólicas. 1. Viscosidade

Leia mais

Densidade relativa é a razão entre a densidade do fluido e a densidade da água:

Densidade relativa é a razão entre a densidade do fluido e a densidade da água: MECÂNICA DOS FLUIDOS 1.0 Hidrostática 1.1 Definições O tempo que determinada substância leva para mudar sua forma em resposta a uma força externa determina como tratamos a substância, se como um sólido,

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Introdução a Fenômenos de Transporte Prof. Dr. Felipe Corrêa Introdução a Fenômenos de Transporte Fenômenos de Transporte Refere-se ao estudo sistemático e unificado da transferência

Leia mais

3.2 Hidrostática Material Necessário Objetivo Procedimentos Primeira Procedimento. 01 Balança. 01 barbante.

3.2 Hidrostática Material Necessário Objetivo Procedimentos Primeira Procedimento. 01 Balança. 01 barbante. 3.2. HIDROSTÁTICA 63 3.2 Hidrostática 3.2.1 Material Necessário 01 Balança. 01 barbante. 01 Régua milimetrada. 01 Dinamômetro. 02 Proveta de 250 ml. 01 Densímetro. 01 Tripé. 01 Haste de sustentação. 01

Leia mais

Noções Básicas de Física Arquitectura Paisagística PRINCÍPIO DE ARQUIMEDES (1)

Noções Básicas de Física Arquitectura Paisagística PRINCÍPIO DE ARQUIMEDES (1) INTRODUÇÃO Força de impulsão PRINCÍPIO DE ARQUIMEDES O desenho da Figura 1a mostra um corpo de densidade ρ, submerso num líquido de densidade ρ líquido. As setas representam as forças que actuam nas diferentes

Leia mais

Olimpíada Brasileira de Física ª Fase

Olimpíada Brasileira de Física ª Fase Olimpíada Brasileira de Física 2001 3ª Fase 3º Ano Leia com atenção todas as instruções seguintes. Este exame é destinado exclusivamente aos alunos do 3º ano, sendo constituído por 8 questões. Todas as

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016 Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer

Leia mais

TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE

TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE 1. Introdução A Lei de Boyle, verificada experimentalmente,

Leia mais

Hidrostática - II PRESSÃO ATMOSFÉRICA. O ar, como qualquer substância próxima à Terra é atraído por ela o ar tem peso

Hidrostática - II PRESSÃO ATMOSFÉRICA. O ar, como qualquer substância próxima à Terra é atraído por ela o ar tem peso Hidrostática - II Renato Akio Ikeoka PRESSÃO ATMOSFÉRICA O ar, como qualquer substância próxima à Terra é atraído por ela o ar tem peso A camada atmosférica que envolve a Terra exerce uma pressão sobre

Leia mais

COMPLEMENTOS DE FLUIDOS. Uma grandeza muito importante para o estudo dos fluidos é a pressão (unidade SI - Pascal):

COMPLEMENTOS DE FLUIDOS. Uma grandeza muito importante para o estudo dos fluidos é a pressão (unidade SI - Pascal): luidos COMLEMENTOS DE LUIDOS ALICAÇÕES DA HIDROSTÁTICA AO CORO HUMANO Uma grandeza muito importante para o estudo dos fluidos é a pressão (unidade SI - ascal): Não apresentam forma própria odem ser líquidos

Leia mais

FÍSICA - A ª SÉRIE P02-2º. Trimestre

FÍSICA - A ª SÉRIE P02-2º. Trimestre LISTA DE EXERCÍCIOS COMPLEMENTARES FÍSICA - A - 2011 2ª SÉRIE P02-2º. Trimestre ALUNO: Assunto(s): Unidade 04 Pressão e Unidade 05 Teorema de Arquimedes. Exercícios do Livro para Estudar - Página 30 números

Leia mais

FÍSICA:TERMODINÂMICA, ONDAS E ÓPTICA

FÍSICA:TERMODINÂMICA, ONDAS E ÓPTICA FÍSICA:TERMODINÂMICA, ONDAS E ÓPTICA RESUMO UNIDADE 1 Hidrostática Professora: Olivia Ortiz John INTRODUÇÃ A HIDROSTÁTICA A Hidrostática é a área da Física que estuda os fluidos em repouso. Mas o que é

Leia mais

LISTA DE EXERCÍCIOS. 1) A figura abaixo mostra, de forma simplificada, o sistema de freios a disco de um

LISTA DE EXERCÍCIOS. 1) A figura abaixo mostra, de forma simplificada, o sistema de freios a disco de um LISTA DE EXERCÍCIOS 1) A figura abaixo mostra, de forma simplificada, o sistema de freios a disco de um automóvel. Ao se pressionar o pedal do freio, este empurra o êmbolo de um primeiro pistão que, por

Leia mais

Capitulo 1 Propriedades fundamentais da água

Capitulo 1 Propriedades fundamentais da água Capitulo 1 Propriedades fundamentais da água slide 1 Propriedades fundamentais da água A palavra hidráulica vem de duas palavras gregas: hydor (que significa água ) e aulos (que significa tubo ). É importante

Leia mais

Física Experimental II. Exercícios

Física Experimental II. Exercícios Física Experimental II Lista de exercícios e problema preparatório para a Prova P2 Exercícios 1) Foi realizado um experimento para determinar o tipo de movimento de um corpo. Mediu-se a posição deste corpo

Leia mais

EXPERIÊNCIA 4 DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO

EXPERIÊNCIA 4 DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT Departamento de Ciências Básicas e Sociais - DCBS Disciplina Química Experimental QEX Prof. Sivaldo Leite Correia EXPERIÊNCIA 4 DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO

Leia mais

NOME: N O : TURMA: PROFESSOR: Glênon Dutra

NOME: N O : TURMA: PROFESSOR: Glênon Dutra Apostila de Revisão n 3 DISCIPLINA: Física NOME: N O : TURMA: PROFESSOR: Glênon Dutra DATA: Mecânica - 3. FLUIDOS 1. Densidade: Razão entre a massa de um corpo e o seu volume. massa densidade = volume

Leia mais

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Experiência 08 ESTUDO DOS FLUIDOS EM EQUILÍBRIO 1. OBJETIVOS Ao término da experiência o aluno

Leia mais

RELATÓRIO DA PRÁTICA 06: PRINCÍPIO DE ARQUIMEDES E DENSIMETRIA

RELATÓRIO DA PRÁTICA 06: PRINCÍPIO DE ARQUIMEDES E DENSIMETRIA UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS RUSSAS CENTRO DE TECNOLOGIA LABORATÓRIO DE FÍSICA FÍSICA EXPERIMENTAL PARA ENGENHARIA RELATÓRIO DA PRÁTICA 06: PRINCÍPIO DE ARQUIMEDES E DENSIMETRIA ALUNO: ANTÔNIO

Leia mais

PRINCÍPIO DE ARQUIMEDES

PRINCÍPIO DE ARQUIMEDES NTRODUÇÃO Força de impulsão RNCÍO DE ARQUMEDES O desenho da Figura 1a mostra um corpo de densidade ρ, submerso num de densidade ρ. As setas representam as forças que actuam nas diferentes partes do corpo;

Leia mais

!"#$%&'()*+,-'#&*'!-./0+-+*'11! '728'9/:/*.0/;!

!#$%&'()*+,-'#&*'!-./0+-+*'11! '728'9/:/*.0/;! !"#$%&'()*+,-'#&*'!-./0+-+*'11! 234252346'728'9/:/*.0/;! A'CD9'!AEBF1A19'11! Programa! "#!$%&'()*+,-.!&()!/012&()!!3.10.)!4567!!!!!!! 8'9)):(!! ;9&%

Leia mais

Fluídos e Termodinâmica Experimental. Curso de Licenciatura em Física. Prof. Marcia Muller

Fluídos e Termodinâmica Experimental. Curso de Licenciatura em Física. Prof. Marcia Muller Fluídos e Termodinâmica Experimental Curso de Licenciatura em Física Prof. Marcia Muller 2017 1 Índice geral Prática I: Princípio de Arquimedes e densimetria 1- Medida da densidade absoluta de líquidos

Leia mais

HIDROSTÁTICA. Densidade. Densidade. Aprofundamento de Estudos - ENEM. Escola Estadual João XXIII Profª Marilene Carvalho 1

HIDROSTÁTICA. Densidade. Densidade. Aprofundamento de Estudos - ENEM. Escola Estadual João XXIII Profª Marilene Carvalho 1 ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! APROFUNDAMENTO DE ESTUDOS - ENEM FÍSICA HIDROSTÁTICA PROFESSORA: MARILENE MARIA DE CARVALHO Densidade Densidade Ex.1) Um

Leia mais

Estudo da Física. Prof. Railander Borges

Estudo da Física. Prof. Railander Borges Estudo da Física Prof. Railander Borges Fale com o Professor: Email: rayllander.silva.borges@gmail.com Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: HIDROSTÁTICA 1. Uma pedra cujo peso

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto EXPERIMENTO Nº 8 PRINCÍPIO DE ARQUIMEDES E APLICAÇÕES Discentes: Camila

Leia mais

EQUIVALENTE ELÉCTRICO DO CALOR

EQUIVALENTE ELÉCTRICO DO CALOR EQUIVALENTE ELÉCTRICO DO CALOR 1. Resumo Neste trabalho, considerando que qualquer tipo de energia se pode transformar noutro, coloca-se em evidência que o calor é uma forma de energia estabelecendo uma

Leia mais

FÍSICA - 2 o ANO MÓDULO 05 HIDROSTÁTICA REVISÃO GERAL

FÍSICA - 2 o ANO MÓDULO 05 HIDROSTÁTICA REVISÃO GERAL FÍSICA - 2 o ANO MÓDULO 05 HIDROSTÁTICA REVISÃO GERAL Fixação 1) A figura ao lado representa um cilindro constituído por três partes de volumes iguais a V. A parte de baixo é de ferro maciço e homogêneo,

Leia mais

2. HIDROSTÁTICA CONCEITOS BÁSICOSB

2. HIDROSTÁTICA CONCEITOS BÁSICOSB HIDROSTÁTICA TICA CONCEITOS BÁSICOSB 2. HIDROSTÁTICA TICA É a parte da Hidráulica que estuda os líquidos em repouso, bem como as forças que podem ser aplicadas em corpos neles submersos. 1 Conceito de

Leia mais

MÁQUINAS HIDRÁULICAS AT-087

MÁQUINAS HIDRÁULICAS AT-087 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br DEFINIÇÃO: Um fluído consiste numa substância não sólida

Leia mais

FLUIDOS. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco

FLUIDOS. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco FLUIDOS Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1 Cristalino Sólido Amorfo Estados da Matéria Líquido Fluidos Coleção de

Leia mais

Experiência 05 - DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO

Experiência 05 - DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO DETERMINAÇÃO DA MASSA ATÔMICA DO MAGNÉSIO 1 Objetivos No final dessa experiência o aluno deverá ser capaz de: Determinar a massa atômica do magnésio através do volume de gás desprendido na sua reação com

Leia mais

Departamento de Física - Faculdade de Ciências da Universidade de Lisboa, Licenciatura em Ciências da Saúde. Trabalho 4: Fluidos

Departamento de Física - Faculdade de Ciências da Universidade de Lisboa, Licenciatura em Ciências da Saúde. Trabalho 4: Fluidos Licenciatura em Ciências da Saúde Trabalho 4: Fluidos Objetivos Caracterização dos fluidos em compressíveis e incompressíveis. Variação da pressão com a profundidade num fluido em equilíbrio. Verificação

Leia mais

ORIENTAÇÃO DE ESTUDOS

ORIENTAÇÃO DE ESTUDOS ORIENTÇÃO DE ESTUDOS RECUPERÇÃO SEMESTRL 2º no do Ensino Médio Disciplina: Física 1. figura representa dois corpos suspensos por uma haste de peso desprezível, em equilíbrio. Sendo a massa do corpo igual

Leia mais

GASES IDEAIS INTRODUÇÃO

GASES IDEAIS INTRODUÇÃO GASES IDEAIS INTRODUÇÃO O estado de uma certa quantidade de um gás fica determinado quando se especificam sua temperatura Kelvin T, sua pressão p e seu volume V. Um gás diz-se ideal quando essas grandezas

Leia mais

DETERMINAÇÃO DO CALOR ESPECÍFICO DO COBRE (Cu), DO CHUMBO (Pb), E DO VIDRO UTILIZANDO UM CALORÍMETRO

DETERMINAÇÃO DO CALOR ESPECÍFICO DO COBRE (Cu), DO CHUMBO (Pb), E DO VIDRO UTILIZANDO UM CALORÍMETRO DETERMINAÇÃO DO CALOR ESPECÍFICO DO COBRE (Cu), DO CHUMBO (Pb), E DO VIDRO UTILIZANDO UM CALORÍMETRO 1. TEORIA A quantidade de calor Q que é absorvida ou libertada quando um corpo é aquecido ou arrefecido

Leia mais

Ensino Médio Unidade Parque Atheneu Professor: Júnior Condez Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA II

Ensino Médio Unidade Parque Atheneu Professor: Júnior Condez Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA II Ensino Médio Unidade Parque Atheneu Professor: Júnior Condez Aluno (a): Série: 3ª Data: / / 2015. LISTA DE FÍSICA II 1) Como podemos explicar a dilatação dos corpos ao serem aquecidos? 2) Responda os itens

Leia mais

g 10 m s. A pressão exercida pelo paralelepípedo sobre a (p 2), (p 1),

g 10 m s. A pressão exercida pelo paralelepípedo sobre a (p 2), (p 1), 1. Um paralelepípedo de dimensões 510 0 cm e massa igual a kg será colocado sobre uma mesa, num local onde mesa, quando apoiado sobre sua base de menor área quando apoiado sobre a base de maior área a)

Leia mais

PROVA PARA ALUNOS DO 1 E 2 ANO

PROVA PARA ALUNOS DO 1 E 2 ANO LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: a 3 FASE o o PROVA PARA ALUNOS DO 1 E 2 ANO 1 Essa prova destina-se exclusivamente aos alunos do 1 o e 2 o ano e contém vinte (20) questões. 2 Os alunos do 1 o ano

Leia mais

EXERCÍCIOS DE AULA. Exercícios de Hidrostática. 1. O corpo da figura abaixo pode ser apoiado nas faces A, B e C.

EXERCÍCIOS DE AULA. Exercícios de Hidrostática. 1. O corpo da figura abaixo pode ser apoiado nas faces A, B e C. Exercícios de Hidrostática EXERCÍCIOS DE AULA 1. O corpo da figura abaixo pode ser apoiado nas faces A, B e C. Com relação à pressão exercida sobre o plano de apoio, pode-se afirmar que é: a) maior, se

Leia mais

EXERCICIOS PARA A LISTA 1 CAPITULO 15 FLUIDOS E ELASTICIDADE

EXERCICIOS PARA A LISTA 1 CAPITULO 15 FLUIDOS E ELASTICIDADE Conceituais QUESTÃO 1. Enuncie o príncipio de Arquimedes. Em quais condições um objeto irá flutuar ou afundar num fluido? Descreva como o conceito de empuxo pode ser utilizado para determinar a densidade

Leia mais

FENÔMENO DE TRANSPORTE I AULA 3 CONTINUAÇÃO CONCEITOS E PROPRIEDADES FUNDAMENTAIS

FENÔMENO DE TRANSPORTE I AULA 3 CONTINUAÇÃO CONCEITOS E PROPRIEDADES FUNDAMENTAIS FENÔMENO DE TRANSPORTE I AULA 3 CONTINUAÇÃO CONCEITOS E PROPRIEDADES FUNDAMENTAIS DEFINIÇÃO DE CONTÍNUO Na nossa definição de fluido, nenhuma menção foi feita à estrutura molecular da matéria. Todos os

Leia mais

Aula 10 DILATAÇÃO DOS LÍQUIDOS. Menilton Menezes. META Aplicar a lei da dilatação volumétrica de líquidos (AV).

Aula 10 DILATAÇÃO DOS LÍQUIDOS. Menilton Menezes. META Aplicar a lei da dilatação volumétrica de líquidos (AV). Aula 10 DILATAÇÃO DOS LÍQUIDOS META Aplicar a lei da dilatação volumétrica de líquidos (AV). OBJETIVOS Ao final desta aula, o aluno deverá: Calcular o coeficiente de dilatação linear de sólidos a; calcular

Leia mais

Experiência 9 Transferência de Calor

Experiência 9 Transferência de Calor Roteiro de Física Experimental II 39 Experiência 9 Transferência de Calor OBJETIVO O objetivo desta aula é estudar os processos de transferência de calor entre dois corpos, na situação em que nenhum deles

Leia mais

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 18 Exercícios Complementares Tópicos Abordados Nesta Aula. Exercícios Complementares. 1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) FÍSICA MATÉRIA A SER ESTUDADA VOLUME CAPÍTULO ASSUNTO 5 16 Hidrostática II 5 18 Introdução à termometria 5 18 Dilatação térmica dos sólidos 6 20 Calorimetria

Leia mais