PR MINISTÉRIO DA EDUCAÇÃO

Tamanho: px
Começar a partir da página:

Download "PR MINISTÉRIO DA EDUCAÇÃO"

Transcrição

1 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR DEPARTAMENTO ACADÊMICO DE QUÍMICA E BIOLOGIA BACHARELADO EM QUÍMICA Práticas de Físico-Química QB75B ª Parte Experimento 6 Propriedades dos gases Pressão A pressão é definida como uma força normal exercida por um fluido por unidade de área. Só falamos de pressão quando lidamos com um gás ou um líquido. O equivalente da pressão nos sólidos é a tensão normal. A pressão real em determinada posição é chamada de pressão absoluta, e é medida com relação ao vácuo absoluto (ou seja, a pressão absoluta zero). A maioria dos dispositivos de medição da pressão, porém, é calibrado para ler zero na pressão atmosférica e, assim eles indicam a diferença entre a pressão absoluta e a pressão atmosférica local. Essa diferença de pressão é chamada de pressão manométrica. As pressões abaixo da pressão atmosférica são chamadas de pressões de vácuo e são medidas pelos medidores de vácuo que indicam a diferença entre a pressão atmosférica e a pressão absoluta. Os líquidos são substâncias essencialmente incompressíveis e, portanto, não há variação na densidade de um líquido com a profundidade, isto é, a variação é desprezível. Com isto, temos que a variação de pressão com a profundidade em um líquido é diretamente proporcional a altura (profundidade). Ou seja: p m = g h, onde p m é a pressão manométrica, a densidade do líquido, g a aceleração gravitacional local e h a altura (profundidade). Assim temos que uma mudança de altura (h) em um fluido em repouso corresponde a p m / ( g), o que sugere que uma coluna de fluido pode ser usada para medir diferenças de pressão. Um dispositivo que se baseia nesse princípio é chamado de manômetro de coluna, normalmente usado para medir diferenças de pressões pequenas e moderadas. Um manômetro de coluna consiste principalmente em um tubo em forma de U, de vidro ou de plástico, contendo um ou mais fluidos como mercúrio, água, álcool ou óleo. Para medir a pressão atmosférica é usado um dispositivo chamado barômetro. Dessa forma, a pressão atmosférica é chamada com frequência de pressão barométrica. O italiano Evangelista Torricelli (608-67) foi o primeiro a provar, de forma conclusiva, que a pressão atmosférica (p atm ) pode ser medida pela inversão de um tubo cheio de mercúrio em um recipiente de mercúrio aberto para a atmosfera. Mostrou que pelo equilíbrio das forças na direção vertical exercidas pela atmosfera e a coluna de mercúrio no tubo a pressão atmosférica resultaria em: p atm = g h, onde é a densidade do mercúrio, g a aceleração gravitacional e h a altura da coluna de mercúrio. Assim com estes dois dispositivos, manômetro e barômetros, temos condições de medir a pressão em que um fluido, gás ou líquido, se encontra. Temperatura Embora estejamos familiarizados com a temperatura como medida de calor ou frio, não é fácil apresentar uma definição exata para ela. Com base em nossas sensações fisiológicas, expressamos o nível de temperatura qualitativamente com palavras como frio de congelar, frio, ameno, quente e muito quente. Entretanto, não podemos atribuir valores a temperaturas com base apenas em nossas sensações. Felizmente, várias propriedades dos materiais mudam com a temperatura de maneira repetida e previsível, e isso cria a base para a medição da temperatura com exatidão. O comumente usado termômetro de bulbo de mercúrio, por exemplo, tem por base a expansão do mercúrio com a temperatura. A temperatura pode ser também medida usando várias outras propriedades dependentes da temperatura.

2 A Lei Zero da Termodinâmica declara que se dois corpos estão em equilíbrio térmico com um terceiro corpo, eles também estão em equilíbrio térmico entre si. Pode parecer tolice que um fato tão óbvio seja uma das leis básicas da termodinâmica. Entretanto, tal fato não pode ser concluído a partir das outras leis da termodinâmica, e serve como base para a validade da medição da temperatura. Ao substituir o terceiro corpo por um termômetro, a Lei Zero pode ser reescrita como dois corpos estão em equilíbrio térmico se ambos tiverem a mesma leitura de temperatura, mesmo que não estejam em contato. A Lei Zero foi formulada e batizada por R. H. Fowler, em 9. Como sugere o nome, seu valor como princípio físico fundamental foi reconhecido mais de meio século depois da formulação da primeira e segunda lei da termodinâmica. Ela foi denominada Lei Zero, já que deveria ter precedido a Primeira e Segunda Lei da Termodinâmica. As escalas de temperatura permitem usar uma base comum para as medições de temperatura, e várias foram criadas ao longo da história. Todas as escalas de temperatura se baseiam em alguns estados facilmente reprodutíveis, como os pontos de congelamento e de ebulição da água, os quais são chamados de ponto de gelo e ponto de vapor d água, respectivamente. Um das escalas de temperatura usadas até hoje é a escala celsius (anteriormente chamada de escala centígrada, e renomeada em 98 em homenagem ao astrônomo sueco A. Celsius, 70-7, que a criou). Na escala celsius, aos pontos de gelo e de vapor foram atribuídos originalmente os valores 0 C e 00 C, respectivamente. Em termodinâmica, é bastante desejável possuir uma escala de temperatura que seja independente das propriedades de qualquer substância. Tal escala de temperatura é chamada de escala termodinâmica, que normalmente vemos em conjunto com a Segunda Lei da Termodinâmica. A escala termodinâmica de temperatura no SI é a escala kelvin, assim chamada em homenagem a Lord Kelvin (8-907). A unidade de temperatura dessa escala é o kelvin, designado por K. A menor temperatura da escala kelvin é o zero absoluto, ou 0 K. Dessa forma, apenas um único ponto de referência diferente de zero precisa ser atribuído para estabelecer a inclinação dessa escala linear. Uma escala de temperatura quase idêntica à escala kelvin é a escala de temperatura do gás ideal. As temperaturas dessa escala são medidas usando-se um termômetro de gás a volume constante, basicamente um vaso rígido preenchido com um gás, em geral hidrogênio ou hélio, a baixa pressão. Esse termômetro tem por base o princípio de que em baixas temperaturas, a temperatura de um gás é proporcional à sua pressão a um volume constante. Ou seja, a temperatura de um volume fixo de gás varia linearmente com a pressão a pressões suficientemente baixas. Dessa forma, a relação entre a temperatura e a pressão do gás no vaso pode ser expressa como: T = a +b p, onde os valores das constantes a e b são determinados experimentalmente. Gás Ideal Os princípios que possibilitaram o entendimento do comportamento e aplicação dos gases, como no termômetro de gás, se devem principalmente aos trabalhos de Robert Boyle, Joseph Gay-Lussac e colaboradores. Robert Boyle (660) e seus colegas perceberam que os gases se comportavam como uma mola quando comprimidos e realizou experiências sobre a elasticidade do ar e seus efeitos. Ele observou que a coluna de mercúrio do barômetro diminuía de altura se o ar das vizinhanças fosse evacuado. Antes de publicar o seu livro Boyle tinha verificado que se a pressão aumentava o volume diminuía, proporcionalmente, quando eram mantidas constantes a quantidade de substância (n) e a temperatura (T). Em termos da matemática, isto equivale afirmar que p V = constante se n e T são constantes. Posteriormente, Joseph Gay-Lussac (80) fez as primeiras experiências detalhadas sobre a variação do volume com a temperatura. Ele verificou o efeito da temperatura sobre o volume dos gases, mantendo-se constantes a quantidade de substância e a pressão. Descobriu que, sob estas condições, o volume variava linearmente com a temperatura. Em termos matemáticos podemos expressar como: V = V 0 ( + 0 ), onde V é o volume, a temperatura em celsius, V 0 o volume do gás na temperatura = 0 C e 0 constante. Esta equação é conhecida como Lei de Gay-Lussac. As experiências mostraram que para n e p constantes o aumento relativo do volume por aumento de unidade de temperatura era o mesmo na condição p 0. Com os estudos de Keeson e de outros foi verificado

3 que este valor era o mesmo para a maioria dos gases e, praticamente, independente da pressão. Portanto o aumento relativo de volume a temperatura de 0 C, foi definido pela equação, α 0 = V 0 ( V θ ) p. A quantidade 0 ficou conhecida como expansividade térmica ou coeficiente de expansão térmica de um gás relativa ao zero celsius. O valor encontrado por eles foi α 0 = 7,5 C. Da mesma maneira define-se a compressibilidade térmica ou coeficiente de compressão térmica de um gás relativa ao zero celsius, isto é: β 0 = V 0( V. p )θ O sinal negativo é devido ao fato que o aumento da pressão diminui o volume. Em função do valor encontrado de 0, Kelvin estabeleceu a escala de temperatura em kelvin (a escala de temperatura do gás ideal), T, fazendo a seguinte relação com a escala em celsius: quando 0 = 0 C T 0 = 7,5 K e para qualquer outro valor T/K = 7,5 + / C. Assim sendo, trabalhando com a temperatura em kelvin a lei de Gay-Lussac será escrita por: V = (V 0 /T 0 ) T. Com a combinação das leis de Boyle, de Gay-Lussac e de Avogrado chegaremos à conhecida equação de estado do gás ideal, expressa da seguinte forma: V= n R T, onde R é a constante universal dos gases. p Assim temos que o gás que obedece rigorosamente às leis de Boyle e de Gay-Lussac é denominado gás ideal ou perfeito. Objetivos - Demonstrar as relações existentes entre pressão (p), volume (V) e temperatura (T) de uma mistura de gases, o ar atmosférico. - Comprovar as leis de Boyle - Mariotte, de Gay - Lussac e de Charles - Determinar os coeficientes de expansão térmica e de compressão térmica de um gás. Materiais e Reagentes - Barômetro - Termômetro - béquer de 50 ml - Banho termostatizado - Kit para experimentos de gás ideal Procedimento Experimental Este procedimento foi organizado de tal maneira que possibilite obter o máximo de informações com menor tempo de trabalho. Com o auxílio do professor proceda da seguinte maneira: Procedimento Relação entre o Volume e a pressão a temperatura constante - Após preencher o reservatório do banho termostatizato com água e com o banho devidamente conectado ao kit ligue-o e ajuste a temperatura em aproximadamente 5 C. - Espere o banho e o kit entrar em equilíbrio térmico. Anote a temperatura do gás, isto é, a temperatura no termômetro que está no kit. - Para verificar qual é o volume que o gás ocupa a esta temperatura e a pressão atmosférica, movimente a coluna de mercúrio para baixo ou para cima de forma que não haja desnível entre os dois meniscos de

4 mercúrio nos dois ramos do kit. O volume ocupado (V) pelo gás pode ser determinado pela medida do comprimento da coluna de ar no tubo (l), pois: V =V f + π ( d l, onde: d =, mm é o diâmetro interno do tubo. ) Encontre-o e anote. - Lembre-se que o volume do segmento do tubo de medida marcado em marrom (fechamento do tubo) é de V f =,0 cm, em primeira aproximação. - Agora movimentando a coluna de mercúrio para cima você aumentará a pressão sobre o gás. Assim você terá condições de variar a pressão e medir o volume que o gás ocupa a cada pressão ou o inverso. - Procure coletar no mínimo uns dez pontos. Organize estes dados em uma tabela. Procedimento Relação entre o Volume e a temperatura a pressão constante e a relação entre a pressão e a temperatura a volume constante - Agora que você sabe como medir a pressão e o volume do gás empregando o kit vamos, em um mesmo procedimento, medir o volume em diferentes temperaturas a pressão constante e a pressão em diferentes temperaturas a volume constante. - Volte a equilibrar os níveis de mercúrio e marque com uma caneta porosa o volume do gás na pressão atmosférica. Anote também a temperatura do gás. Este é o primeiro ponto. - Na sequência vá aumentando a temperatura mais ou menos de 5 em 5 K até cerca de 60 K, para não ultrapassar a temperatura de ebulição da água. - A cada temperatura, primeiro equilibre os níveis de mercúrio e meça o volume que o gás está ocupando a esta temperatura a pressão constante (pressão atmosférica) e em seguida movimente a coluna de mercúrio até que o volume do gás volte para a marcação da caneta porosa. - Feito isto, agora meça a altura da coluna de mercúrio e com isto a pressão que o gás tem nesta temperatura a volume constante. - Organize estes dados, de preferência, em duas tabelas, uma para pressão constante e outra para volume constante. Algumas orientações e questões para o relatório - Com os primeiros dados coletados no procedimento você pode fazer os seguintes gráficos (Isotermas) para a condição de temperatura constante: (i) da pressão (p) versus o volume (V) e (ii) da pressão (p) versus o inverso do volume (/V). Neste último, o gráfico da isoterma, é esperado que seja uma reta, que pode ser prolongada para cruzar a ordenada e atingir a abscissa. Com este gráfico podemos comprovar a lei de Boyle? Na extrapolação da reta o que se observa? Explique. - Com os dados coletados no procedimento você pode comprovar as leis de Gay-Lussac (o Volume é diretamente proporcional a Temperatura absoluta a Pressão constante) e de Charles (Pressão diretamente proporcional a Temperatura absoluta a volume constante). Mostre isto através dos gráficos apropriados. - Com os dados obtidos é possível determinar o coeficiente de expansão térmica e o coeficiente de compressão térmica relativos ao zero grau celsius. Demonstre como isto é possível e determine-os. - Também é possível determinar a quantidade de substância da mistura de gás (ar) contido no bulbo com os dados coletados. Determine esta quantidade e também o volume molar a zero grau celsius. - Discuta os resultados encontrados. Referência Y. A. Çengel e M. A. Boles, Termodinâmica, 5ª Ed. (tradução Katia Aparecida Roque), São Paulo, McGraw-Hill, 006. P. W., ATKINS,. Physical Chemistry, 6a Ed. (reimpressão), Oxford, Oxford University Press, 999. G. Castellan, Fundamentos de Físico-Química, ª Ed. (reimpressão), Rio de Janeiro, LTC, 996.

5 5 ª Parte Expansão Adiabática de Gases Em processos adiabáticos reversíveis os gases ideais obedecem à equação de estados especiais, envolvendo o coeficiente adiabático ( = C p /C v ), o qual assume o valor de,667 para gases ideais monoatômicos e,00 para gases ideais diatômicos. Esta equação é : p i V i = p f V f, onde p i e V i são pressão e volume iniciais e p f e V f a pressão e volume finais. Neste tipo de transformação a temperatura também muda, pois a expansão ocorre à custa da energia interna do gás, haja vista que o sistema não troca calor com a vizinhança. Clément e Désormes (8) desenvolveram um método para determinar o coeficiente adiabático de um gás, quando este é considerado gás ideal. O método consiste em introduzir o gás em um garrafão, com volume aproximado de 0 litros, provido de medidor de pressão e uma saída controlável. Esse gás é injetado até certa pressão maior que a atmosférica. Aguarda-se alguns instantes até que o gás entre em equilíbrio térmico com o garrafão e, em seguida, abre-se o sistema de forma que o gás escape rapidamente, para a pressão atmosférica. Essa expansão deve ser tão rápida que se possa considerá-la adiabática, provocando o consequente resfriamento do gás. Ao se considerar um tempo maior, o gás aquece até atingir a temperatura original. Logo, como o registro controlável está fechado, a pressão aumenta até um valor superior à externa. Esta transformação ( ) pode ser dividida em duas etapas, uma adiabática e uma isovolumétrica, a qual pode ser representada pelo seguinte diagrama p versus V. p p p Etapa Isotérmica p Etapa Adiabática V V T T Etapa Isovolumétrica V Na primeira etapa ( ), adiabática, temos que p /p = (V /V ) e na segunda etapa ( ), isovolumétrica, p /p = T /T. A mesma transformação ( ) pode ser imaginada ocorrendo de forma isotérmica (isto é, durante a transformação o gás troca calor com o meio de forma que sua temperatura permanece constante), assim p /p = V /V. Substituindo a última equação na primeira temos que (p /p ) = (p /p ) ou = ln(p /p )/ln(p /p ). Assim medindo-se p, p e p têm-se condições de determinar o coeficiente de expansão adiabática de um gás. Objetivo - Reconhecer uma transformação adiabática; - Determinar o coeficiente de expansão adiabática de um gás. Materiais e Reagentes - Kit para experimentos de expansão adiabática - Barômetro e manômetro - sílica-gel

6 6 Procedimento Experimental - Meça a temperatura e a pressão ambiente. - Introduza o gás (ar) no garrafão, contendo sílica-gel, através da pêra de borracha e feche a torneira do tubo quando o sistema atingir uma pressão adequada (uma coluna de +/- 0 cm). - Espere algum tempo (+/- min) para que o sistema alcance o equilíbrio. - Após o equilíbrio faça a leitura da pressão (p ) no manômetro. - Faça a expansão adiabática do gás (ar), desarrolhando o reservatório momentaneamente, e arrolhando-o logo em seguida. A pressão do ar cai então para p (pressão atmosférica), com uma rapidez que não permite trocas de calor, consequentemente há uma diminuição da temperatura. - Após o fechamento do reservatório, inicia-se a etapa isovolumétrica. A massa de ar no reservatório absorve calor do ambiente, e uma nova pressão p pode ser lida após o sistema atingir o equilíbrio (após minutos). - Use os três valores de pressão obtidos anteriormente, e calcule : - Repita este procedimento umas dez vezes. Algumas orientações e questões para o relatório - Quais as possíveis fontes de erros que podem ter ocorrido durante os experimentos? Você tem ideia de como evitá-los? Calcule o erro percentual. - Qual é o valor esperado para o coeficiente de expansão adiabática do ar? Lembre-se que o ar é constituído em sua maior parte de nitrogênio e oxigênio, dois gases diatômicos. - Se a umidade do ar estiver alta, e não tiver sílica-gel no garrafão, o coeficiente de expansão térmica muda? Justifique. - Explique o que acontece com o ramo do manômetro ligado ao garrafão logo após a expansão adiabática. Referência G. Castellan, Fundamentos de Físico-Química, ª Ed. (reimpressão), Rio de Janeiro, LTC, 996. SHOEMAKER, D. P.; GARLAND, C. W., Experiments in physical chemistry, New York, MacGraw-Hill, 96. SOUZA, Nereu J. Mello de MARTINS FILHO, H. P., Experimentos em Físico-Química, Ed. Universitária Paranaense, 99.

7 7 Apêndice A: Dados coletados no experimento 6 Grupo ª Parte: Propriedades dos Gases. Data: Tabela : Dependência do volume (V) com a pressão (p) quando a quantidade de substância (n) e a temperatura (T) são constantes T = med. V / m p / Pa 0 Tabela : Dependência do volume com a temperatura a pressão constante. p = med. T / K V / m Tabela : Dependência da pressão com a temperatura a volume constante. V = med. T / K p / Pa

8 8 ª Parte: Propriedades dos Gases. Temperatura ambiente (T ) = Tabela : Pressões medidas nos três estados do gás de acordo com o experimento desenvolvido por Clément e Désormes. med. p / Pa p / Pa p / Pa γ Valor médio de = - Se o V é 9,00 dm, qual o valor de V? - Qual a quantidade de ar está aprisionada quando o sistema está no estado? - Calcule a quantidade de trabalho realizado na expansão adiabática.

Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP

Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Pressão, temperatura, volume, coeficiente de expansão térmica, coeficiente de compressibilidade,

Leia mais

Professora : Elisângela Moraes

Professora : Elisângela Moraes UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA -EEL Professora : Elisângela Moraes 02/03/2012 PROGRAMA RESUMIDO 1. Gases Ideais; 2. Gases Reais; 3. Termodinâmica; 4. Termoquímica; 5. Entropia;

Leia mais

2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica

2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica 2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica 2.1 Temperatura empírica: medidas de temperatura Termômetro: Sistema com uma propriedade mensurável que varia com a temperatura (propriedade

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Temperatura Lucy V. C. Assali Física II 2016 - IO Temperatura Não confiável Por exemplo: metal e papel tirados do congelador, sentimos o metal mais frio, mas é só porque ele é um melhor condutor

Leia mais

Termodinâmica 7. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 7. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 7 Alexandre Diehl Departamento de Física - UFPel Robert Boyle (1627-1691) Experimentos com tubo manométrico mercúrio 2 Robert Boyle (1627-1691) Experimentos com tubo manométrico 3 Robert

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016 Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer

Leia mais

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE)

GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) GASES: DETEMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR À TEMPERATURA CONSTANTE (LEI DE BOYLE) 1. Introdução 1.1) Lei de Boyle: à temperatura constante, o volume ocupado por uma determinada

Leia mais

Experimento N 3 DETERMINAÇÃO EXPERIMENTAL DA MASSA MOLAR DO GÁS BUTANO E DO MAGNÉSIO

Experimento N 3 DETERMINAÇÃO EXPERIMENTAL DA MASSA MOLAR DO GÁS BUTANO E DO MAGNÉSIO Experimento N 3 DETERMINAÇÃO EXPERIMENTAL DA MASSA MOLAR DO GÁS BUTANO E DO MAGNÉSIO 1) INTRODUÇÃO A maioria dos gases reais mostra um comportamento aproximado ao de um gás ideal, especialmente se a pressão

Leia mais

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2 Propriedades Moleculares dos Gases Estado Gasoso Dentre os três estados de agregação, apenas o estado gasosos

Leia mais

TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE

TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE TRABALHO PRÁTICO 2 GASES: DETERMINAÇÃO DA RELAÇÃO DO VOLUME COM A PRESSÃO DE UMA AMOSTRA DE AR EM TEMPERATURA CONSTANTE VERIFICAÇÃO DA LEI DE BOYLE 1. Introdução A Lei de Boyle, verificada experimentalmente,

Leia mais

QUÍMICA I Gases

QUÍMICA I Gases QUÍMICA I 106201 Gases Características dos gases Os gases são altamente compressíveis e ocupam o volume total de seus recipientes. Quando um gás é submetido à pressão, seu volume diminui. Os gases sempre

Leia mais

Módulo V Equações de Estado, Fator de Compressibilidade e Modelo de Gás Ideal.

Módulo V Equações de Estado, Fator de Compressibilidade e Modelo de Gás Ideal. Módulo V Equações de Estado, Fator de Compressibilidade e Modelo de Gás Ideal. Equações de Estado Não é fácil trabalhar com as tabelas termodinâmicas. A dificuldade está associada ao volume delas e a possibilidade

Leia mais

GASES IDEAIS INTRODUÇÃO

GASES IDEAIS INTRODUÇÃO GASES IDEAIS INTRODUÇÃO O estado de uma certa quantidade de um gás fica determinado quando se especificam sua temperatura Kelvin T, sua pressão p e seu volume V. Um gás diz-se ideal quando essas grandezas

Leia mais

EXPERIÊNCIA 2 DETERMINAÇÃO DA MASSA MOLECULAR DE UM GÁS EFEITO DA PRESSÃO NO PONTO DE EBULIÇÃO

EXPERIÊNCIA 2 DETERMINAÇÃO DA MASSA MOLECULAR DE UM GÁS EFEITO DA PRESSÃO NO PONTO DE EBULIÇÃO 1. OBJETIVOS No final desta experiência o aluno deverá ser capaz de: Interpretar as leis que regem o comportamento dos gases ideais. Utilizar a equação da lei do gás ideal, PV = nrt Medir o volume e a

Leia mais

2. Conceitos e Definições

2. Conceitos e Definições 2. Conceitos e Definições Sistema e Volume de Controle Sistema Termodinâmico: região do espaço delimitada fisicamente por superfícies geométricas arbitrárias reais ou imaginárias, que podem ser fixas ou

Leia mais

Físico-Química I. Profa. Dra. Carla Dalmolin. Gases. Gás perfeito (equações de estado e lei dos gases) Gases reais

Físico-Química I. Profa. Dra. Carla Dalmolin. Gases. Gás perfeito (equações de estado e lei dos gases) Gases reais Físico-Química I Profa. Dra. Carla Dalmolin Gases Gás perfeito (equações de estado e lei dos gases) Gases reais Gás Estado mais simples da matéria Uma forma da matéria que ocupa o volume total de qualquer

Leia mais

PRÁTICA: DETERMINAÇÃO DA RAZÃO Cp/Cv

PRÁTICA: DETERMINAÇÃO DA RAZÃO Cp/Cv PRÁTICA: DETERMINAÇÃO DA RAZÃO Cp/Cv 1. Introdução A medida do quociente entre as capacidades caloríficas a pressão constante e a volume constante de um gás (Cp/Cv = ) pode ser realizada mediante um processo

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Gases Ideais Física II 2016 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P, V, T) uma relação funcional

Leia mais

Física Experimental II. Exercícios

Física Experimental II. Exercícios Física Experimental II Lista de exercícios e problema preparatório para a Prova P2 Exercícios 1) Foi realizado um experimento para determinar o tipo de movimento de um corpo. Mediu-se a posição deste corpo

Leia mais

Fenômenos Térmicos : primeiro conjunto de problemas

Fenômenos Térmicos : primeiro conjunto de problemas Fenômenos Térmicos - 2014: primeiro conjunto de problemas Termômetros, temperatura e escalas de temperatura 1. Suponha que em uma escala linear de temperatura X, a água ferva a 81.5 o X e congele a-190

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II A pressão num ponto de um líquido em equilíbrio 1- Objetivos Gerais: Calibrar um manômetro de tubo aberto: Usar o manômetro calibrado para medir a pressão em pontos de um fluido de densidade desconhecida.

Leia mais

Avenida Lourival Alfredo, 176, Poeira, Marechal Deodoro, Alagoas, Brasil,

Avenida Lourival Alfredo, 176, Poeira, Marechal Deodoro, Alagoas, Brasil, 1 ESTUDO DOS GASES 1 INTRODUÇÃO Vários processos que ocorrem na natureza e nos organismos vivos são fenômenos pertinentes aos gases, como, por exemplo: o metabolismo nos animais exige a presença de oxigênio,

Leia mais

Gases. 1) Assinale a alternativa CORRETA.

Gases. 1) Assinale a alternativa CORRETA. Gases 1) Assinale a alternativa CORRETA. (A) Uma determinada massa de gás ideal, ocupando um volume constante, tem sua pressão inversamente proporcional à sua temperatura absoluta. (B) Em uma transformação

Leia mais

Hidrostática e Calorimetria PROF. BENFICA

Hidrostática e Calorimetria PROF. BENFICA Hidrostática e Calorimetria PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 1 Conceitos Iniciais/Hidrostática 1) Calcular o peso específico, o volume específico e a massa específica de

Leia mais

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Gases Ideais Física II 2015 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P,V,T) uma relação funcional

Leia mais

c) qual o lado do cubo que ele teria que ocupar com essas bolinhas, de modo a representar 1cm 3 de gás? A) 1km B) 10km C) 100km D) 1000km E) 10000km

c) qual o lado do cubo que ele teria que ocupar com essas bolinhas, de modo a representar 1cm 3 de gás? A) 1km B) 10km C) 100km D) 1000km E) 10000km 1- Imagine que, na impossibilidade de reduzir seus alunos ao tamanho das moléculas de um gás, um professor resolva trazer as moléculas para o tamanho de seus alunos. Usa, para isso, bolinhas de gude, de

Leia mais

Questão 4. Questão 5

Questão 4. Questão 5 Questão 1 Um mol de gás ideal sofre transformação AëBëC indicada no diafragma pressão x volume da figura a seguir. a) qual é a temperatura do gás no estado A? b) Qual é o trabalho realizado pelo gás na

Leia mais

3º Trimestre Sala de estudo Química Data: 26/03/19 Ensino Médio 3º ano classe: A_B Profª Danusa Nome: nº

3º Trimestre Sala de estudo Química Data: 26/03/19 Ensino Médio 3º ano classe: A_B Profª Danusa Nome: nº 3º Trimestre Sala de estudo Química Data: 26/03/19 Ensino Médio 3º ano classe: A_B Profª Danusa Nome: nº Conteúdo: Gases (equação geral dos gases) Questão 01 - (Mackenzie SP/2018) Certa massa fixa de um

Leia mais

FÍSICA TÉRMICA. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1

FÍSICA TÉRMICA. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1 FÍSICA TÉRMICA Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1 Domínio da Física Térmica Como pode água aprisionada ser ejetada

Leia mais

DINÂMICA N, é correto afirmar que o peso do bloco B, em

DINÂMICA N, é correto afirmar que o peso do bloco B, em DINÂMICA 7. Uma barra metálica homogênea, de,0 m de comprimento e 10 N de peso, está presa por um cabo resistente. A barra mantém dois blocos em equilíbrio, conforme mostra a figura abaixo. Sendo d 0,5

Leia mais

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace GASES Professor Hugo B. Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Pressão Atmosférica A pressão é a força atuando em um objeto por

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Definição de Substância Pura Equilíbrio de Fases Líquido-Vapor de uma Substância Pura Diagrama de Temperatura versus Volume Específico Título de uma Substância com Fases Líquida

Leia mais

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana ESTUDO DOS GASES Prof. Patricia Caldana Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo

Leia mais

GASES. QUIMICA II a Unidade

GASES. QUIMICA II a Unidade GASES QUIMICA II a Unidade Estado Físico de uma Substância sólido > líquido > gasoso Aumento do volume O estado de agregação da matéria varia com a distância entre as partículas que compõem a substância

Leia mais

O ESTADO GASOSO - CARACTERÍSTICAS GERAIS

O ESTADO GASOSO - CARACTERÍSTICAS GERAIS Estado Gasoso O ESTADO GASOSO - CARACTERÍSTICAS GERAIS Os gases sempre tendem a ocupar todo o volume do recipiente que os contém (capacidade de expansão) Os gases têm massa (Volumes iguais de gases diferentes

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Apresentação da Termodinâmica Sistemas Termodinâmicos e Volume de Controle Estado e Propriedades de uma Substância Processos Termodinâmicos e Ciclos Conceitos e Unidades Lei

Leia mais

ESTÁTICA DOS FLUIDOS

ESTÁTICA DOS FLUIDOS ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Fenômenos de Transporte PROF. BENFICA

Fenômenos de Transporte PROF. BENFICA Fenômenos de Transporte PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar

Leia mais

Atividades experimentais Temperatura e Calor

Atividades experimentais Temperatura e Calor Atividades experimentais Temperatura e Calor Os conceitos de temperatura e calor são constantemente confundidos, contudo, apresentam grandes diferenças. A proposta abaixo consiste em um roteiro para a

Leia mais

Prática 05 Determinação Da Massa Molar Do Magnésio

Prática 05 Determinação Da Massa Molar Do Magnésio UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE QUÍMICA DQMC Disciplina: Química Geral Experimental QEX0002 Prática 05 Determinação Da Massa Molar Do Magnésio

Leia mais

Estudo Físico-Químico dos Gases

Estudo Físico-Químico dos Gases Estudo Físico-Químico dos Gases Prof. Alex Fabiano C. Campos Fases de Agregação da Matéria Sublimação (sólido em gás ou gás em sólido) Gás Evaporação (líquido em gás) Condensação (gás em líquido) Sólido

Leia mais

Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução

Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução Fisica do Calor (4300159) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01 Introdução Data Programa do curso agosto 9 agosto 12 agosto 16 agosto 19 agosto 23 agosto 26 Temperatura

Leia mais

2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F

2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F 1. Considere um bloco de gelo de massa 300g encontra-se a 0 C. Para que todo gelo se derreta, obtendo água a 0 C são necessárias 24.000 cal. Determine o calor latente de fusão do gelo. 2. Considere um

Leia mais

BC Fenômenos Térmicos

BC Fenômenos Térmicos BC 0205 - Fenômenos Térmicos Experimento 1 Roteiro Calibração de um termistor Professor: Data: / /2016 Turma: Turno: login Tidia: Proposta Compreender o uso de um transdutor eletrônico para temperatura

Leia mais

LISTA DE EXERCÍCIOS. Questão 1. Responda as questões abaixo:

LISTA DE EXERCÍCIOS. Questão 1. Responda as questões abaixo: LISTA DE EXERCÍCIOS Questão 1. Responda as questões abaixo: 1. Que tipo de forças atuam nos fluidos estáticos. 2. Quando um elemento de fluido encontra-se em repouso. 3. Qual o significado de pressão.

Leia mais

LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON. PROF : José Lucas

LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON. PROF : José Lucas LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON PROF : José Lucas 1) Um gás ideal ocupa 6 litros em um recipiente, a pressão dentro do frasco é de 3 atm. Suponha que

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Turma: 2201 Turno: Manhã Professor: Douglas Baroni

Turma: 2201 Turno: Manhã Professor: Douglas Baroni Colégio Zaccaria TELEFAX: (0 XX 21) 3235-9400 www.zaccaria.g12.br Lista de exercícios Física II (Recuperação) 1º Período 2014 Aluno(a): N.º Turma: 2201 Turno: Manhã Professor: Douglas Baroni QUESTÃO 1

Leia mais

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 01. Física Geral e Experimental III 2012/1. Experimento: Calibração de um Termômetro

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 01. Física Geral e Experimental III 2012/1. Experimento: Calibração de um Termômetro Diretoria de Ciências Exatas Laboratório de Física Roteiro 01 Física Geral e Experimental III 2012/1 Experimento: Calibração de um Termômetro 1. Calibração de um Termômetro Nesta tarefa será abordado o

Leia mais

Temperatura. Escalas de Temperatura. Aula 8 Termodinâmica por Luiz Otávio Limurci. Lei zero da termodinâmica. Conversão de Temperaturas

Temperatura. Escalas de Temperatura. Aula 8 Termodinâmica por Luiz Otávio Limurci. Lei zero da termodinâmica. Conversão de Temperaturas Física Aula 8 Termodinâmica por Luiz Otávio Limurci Temperatura A primeira noção que se tem de temperatura é a sensação de frio ou quente, verificada ao tocar um corpo. Porém, isso não pode ser considerado

Leia mais

Física I 2010/2011. Aula 18. Mecânica de Fluidos I

Física I 2010/2011. Aula 18. Mecânica de Fluidos I Física I 2010/2011 Aula 18 Mecânica de Fluidos I Sumário Capítulo 14: Fluidos 14-1 O que é um Fluido? 14-2 Densidade e Pressão 14-3 Fluidos em Repouso 14-4 A Medida da pressão 14-5 O Princípio de Pascal

Leia mais

HIDROSTÁTICA PRIMEIRA AVALIAÇÃO

HIDROSTÁTICA PRIMEIRA AVALIAÇÃO UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE FÍSICA DF DISCIPLINA LABORATÓRIO DE ÓPTICA, ONDAS E FLUIDOS PRIMEIRA AVALIAÇÃO HIDROSTÁTICA

Leia mais

Lei fundamental da hidrostática

Lei fundamental da hidrostática Sumário Unidade I MECÂNICA 3- de fluidos - Lei fundamental da hidrostática ou Lei de Stevin. - Vasos comunicantes Equilíbrio de dois líquidos não miscíveis. - Relação entre as pressões de dois pontos,

Leia mais

A) 2,5 B) 4 C) 5 D) 7,5 E) 10

A) 2,5 B) 4 C) 5 D) 7,5 E) 10 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica e passa para o estado B. A

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais

Mecânica dos Fluidos

Mecânica dos Fluidos Mecânica dos Fluidos Estática dos Fluidos Prof. Universidade Federal do Pampa BA000200 Campus Bagé 12 e 13 de março de 2017 Estática dos Fluidos 1 / 28 Introdução Estática dos Fluidos 2 / 28 Introdução

Leia mais

Termometria. Temperatura

Termometria. Temperatura Termometria Termometria Temperatura A Física Térmica, também conhecida como Termologia, é a área da Física que investiga os fenômenos relacionados à energia térmica. Dentre esses fenômenos, podemos citar

Leia mais

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace GASES Professor Hugo B. Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Pressão Atmosférica A pressão é a força atuando em um objeto por

Leia mais

Prática 03 Determinação do Zero Absoluto

Prática 03 Determinação do Zero Absoluto UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE QUÍMICA DQMC Disciplina: Química Geral Experimental QEX0002 Prática 03 Determinação do Zero Absoluto 1. Introdução

Leia mais

(* Preparado por C.A. Bertulani para o projeto de Ensino de Física a Distância)

(* Preparado por C.A. Bertulani para o projeto de Ensino de Física a Distância) 1 of 9 18/8/2003 10:00 Temperatura (* Preparado por C.A. Bertulani para o projeto de Ensino de Física a Distância) O que é temperatura? De forma qualitativa, podemos descrever a temperatura de um objeto

Leia mais

Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1

Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1 Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1 Questão 1. Uma máquina térmica utiliza o calor fornecido por uma fonte para realizar trabalho. Nos motores de automóvel a mistura gasolina-ar atua como

Leia mais

ENERGIA INTERNA, CALOR, TEMPERATURA...

ENERGIA INTERNA, CALOR, TEMPERATURA... ENERGIA INTERNA, CALOR, TEMPERATURA... ENERGIA INTERNA As moléculas 1 de um corpo estão em constante agitação. Essa agitação pode ser maior ou menor dependendo tanto da temperatura quanto do estado físico

Leia mais

SUMÁRIO FÍSICA TEMPERATURA E CALOR 3 CELSIUS E FAHRENHEIT 5 KELVIN E CELSIUS 6 EXERCÍCIOS DE COMBATE 8 GABARITO 13

SUMÁRIO FÍSICA TEMPERATURA E CALOR 3 CELSIUS E FAHRENHEIT 5 KELVIN E CELSIUS 6 EXERCÍCIOS DE COMBATE 8 GABARITO 13 SUMÁRIO TEMPERATURA E CALOR 3 CELSIUS E FAHRENHEIT 5 KELVIN E CELSIUS 6 EXERCÍCIOS DE COMBATE 8 GABARITO 13 2 TEMPERATURA E CALOR Vamos iniciar nossos estudos com a diferenciação dessas duas grandezas

Leia mais

Dados. = 1, W/m 2 v som ar = 343 m/s v luz vácuo = c = m/s k B. = 1, J/mol K u massa

Dados. = 1, W/m 2 v som ar = 343 m/s v luz vácuo = c = m/s k B. = 1, J/mol K u massa Física 3 1 a prova 04/06/2016 A Atenção: Leia as recomendações antes de fazer a prova. 1 Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2 Leia os enunciados com atenção. 3 Analise sua

Leia mais

2. HIDROSTÁTICA CONCEITOS BÁSICOSB

2. HIDROSTÁTICA CONCEITOS BÁSICOSB HIDROSTÁTICA TICA CONCEITOS BÁSICOSB 2. HIDROSTÁTICA TICA É a parte da Hidráulica que estuda os líquidos em repouso, bem como as forças que podem ser aplicadas em corpos neles submersos. 1 Conceito de

Leia mais

BC0205. Fenômenos Térmicos Gustavo M. Dalpian Terceiro Trimestre/2009. Aula 2 Dalpian

BC0205. Fenômenos Térmicos Gustavo M. Dalpian Terceiro Trimestre/2009. Aula 2 Dalpian BC0205 Fenômenos Térmicos Gustavo M. Dalpian Terceiro Trimestre/2009 Fenômenos Térmicos? Ementa: Temperatura e calor. Sistemas termodinâmicos. Variáveis termodinâmicas e sua natureza macroscópica. Teoria

Leia mais

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS Prof. MSc. Danilo Cândido CONCEITOS DE GASES Um gás representa a forma mais simples da matéria, de baixa densidade e que ocupa o volume total de qualquer recipiente

Leia mais

Hidrostática Prof: Edson Rizzo. Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo

Hidrostática Prof: Edson Rizzo. Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo Hidrostática Prof: Edson Rizzo Pressões: Mecânica, Hidrostática, Atmosférica e Absoluta. Empuxo DENSIDADE Consideremos um corpo de massa m e volume V. A densidade (d) do corpo é definida por: d = m V No

Leia mais

GASES. Maira Gazzi Manfro e Giseli Menegat

GASES. Maira Gazzi Manfro e Giseli Menegat GASES Maira Gazzi Manfro e Giseli Menegat maira.manfro@caxias.ifrs.edu.br giseli.menegat@caxias.ifrs.edu.br Características dos Gases São menos densos que os sólidos e os líquidos; Sempre se misturam entre

Leia mais

Gases. 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação?

Gases. 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação? Capítulo 2 Gases 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação? Van der Waals verificou que o fato do gás real não se comportar como o gás ideal é

Leia mais

Fenômenos de Transporte PROF. BENFICA

Fenômenos de Transporte PROF. BENFICA Fenômenos de Transporte PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 1 Conceitos Iniciais 1) Faça as seguintes conversões de unidades: a) 45 km/h em m/s. b) 100 m/s em km/h. c) 600

Leia mais

Equação Geral dos Gases

Equação Geral dos Gases Equação Geral dos Gases EXERCÍCIOS DE APLICAÇÃO 01 (EEM-SP) Uma determinada massa gasosa, confinada em um recipiente de volume igual a 6,0 L, está submetida a uma pressão de 2,5 atm e sob temperatura de

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 3: lei zero da Termodinâmica; expansão térmica

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 3: lei zero da Termodinâmica; expansão térmica UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 3: lei zero da Termodinâmica; expansão térmica Introdução Vamos iniciar o estudo de uma nova área da física, a TERMODINÂMICA, que lida com fenômenos associados

Leia mais

FUNDAMENTOS FÍSICOS DO AR COMPRIMIDO

FUNDAMENTOS FÍSICOS DO AR COMPRIMIDO DEFINIÇÃO: O ar é incolor, insípido e é uma mistura de diversos gases. Composição percentual do ar seco padrão: (ISO 2533). Elementos Percentual em volume Percentual em massa Nitrogênio 78,08 75,52 Oxigênio

Leia mais

Lista Básica Transformações Gasosas

Lista Básica Transformações Gasosas 1. (Pucrj 2017) Uma certa quantidade de gás ideal ocupa inicialmente um volume 0 com pressão P 0. Se sobre esse gás se realiza um processo isotérmico dobrando sua pressão para 2 P 0. qual será o volume

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

2. Procedimento Experimental

2. Procedimento Experimental 1. Introdução O próximo avanço significativo no estudo dos gases, após a Lei de Boyle, veio no começo de 1800 na França. Os balões de ar quente eram extremamente populares na época, e os cientistas estavam

Leia mais

5 - TERMOLOGIA = = (b) θ = θ 2 +(θ 1 -θ 2 ) (c) θ = θ 1 + (θ 2 - θ 1 )

5 - TERMOLOGIA = = (b) θ = θ 2 +(θ 1 -θ 2 ) (c) θ = θ 1 + (θ 2 - θ 1 ) 5 - TERMOLOGIA 1 2313 - Se dois corpos A e B estiverem em equilíbrio térmico com um terceiro C, conclui-se que: (a) os três corpos acham-se em repouso (b) os corpos A o B estão em equilíbrio térmico entro

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Nome: Colégio FAAT Ensino Fundamental e Médio Exercícios de Física-Recuperação N.: 2ª série - Ensino Médio / / Conteúdo : transmissão de calor, gases, diagrama de fases e termodinâmica 1)Assinale a alternativa

Leia mais

1 a Lei da Termodinâmica e Expansão Térmica

1 a Lei da Termodinâmica e Expansão Térmica 1 a Lei da Termodinâmica e Expansão Térmica Anselmo E. de Oliveira Instituto de Química, UFG, 74690-900, Goiânia, GO, Brazil Resumo Essa aula prática tem como objetivo o estudo do processo termodinâmico

Leia mais

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: Turma: ESTUDO DOS GASES

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: Turma: ESTUDO DOS GASES 1º EM E.M. FÍSICA Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: Turma: Resumão com exercícios: ESTUDO DOS GASES INTRODUÇÃO O estudo dos gases é de grande importância na compreensão de fatos que

Leia mais

Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães Física II FEP 11 (4300110) 1º Semestre de 01 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdir.guimaraes@usp.br Fone: 3091-7104(05) Aula 1 Temperatura e Teoria

Leia mais

2 BIMESTRE. Pressão absoluta e pressão manométrica

2 BIMESTRE. Pressão absoluta e pressão manométrica 2 BIMESTRE Pressão absoluta e pressão manométrica Para algumas grandezas em hidrostática, tais como em algumas grandezas em Mecânica, muitas vezes o que tem importância é a variação de uma grandeza, ou

Leia mais

Equipamento experimental para determinação de dados pvt para sistemas gasosos

Equipamento experimental para determinação de dados pvt para sistemas gasosos Revista Brasileira de Ensino de Física, v. 27, n. 3, p. 363-367, (2005 www.sbfisica.org.br Equipamento experimental para determinação de dados pvt para sistemas gasosos (Experimental equipment for obtaining

Leia mais

PQI 3103 Conservação de Massa e Energia

PQI 3103 Conservação de Massa e Energia Pesquisa em Processos Oxidativos Avançados Research in Advanced Oxidation Processes PQI 3103 Conservação de Massa e Energia Aula 2 Variáveis de Processo. Medição. Sistemas de Unidades Prof. Antonio Carlos

Leia mais

Fís. Fís. Monitor: Leonardo Veras

Fís. Fís. Monitor: Leonardo Veras Professor: Leonardo Gomes Monitor: Leonardo Veras Exercícios de dilatação dos líquidos 28 fev RESUMO Dilatação volumétrica aparente Um recipiente contendo um líquido, ao ser aquecido, vai provocar uma

Leia mais

Questão 04) Questão 01)

Questão 04) Questão 01) Questão 01) O valor da temperatura de uma amostra de gás perfeito é consequência: a) da radiação emitida por suas moléculas. b) da energia potencial total de suas moléculas. c) da energia potencial média

Leia mais

Estática dos Fluidos

Estática dos Fluidos Estática dos Fluidos Pressão 1 bar = 10 5 Pa 1 atm = 101.325 Pa Pressão em um Ponto A pressão parece ser um vetor, entretanto, a pressão em qualquer ponto de um fluido é igual em todas as direções. Ou

Leia mais

Apostila de Química 01 Estudo dos Gases

Apostila de Química 01 Estudo dos Gases Apostila de Química 01 Estudo dos Gases 1.0 Conceitos Pressão: Número de choques de suas moléculas contra as paredes do recipiente. 1atm = 760mHg = 760torr 105Pa (pascal) = 1bar. Volume 1m³ = 1000L. Temperatura:

Leia mais

Hidrostática REVISÃO ENEM O QUE É UM FLUIDO? O QUE É MASSA ESPECÍFICA? OBSERVAÇÕES

Hidrostática REVISÃO ENEM O QUE É UM FLUIDO? O QUE É MASSA ESPECÍFICA? OBSERVAÇÕES REVISÃO ENEM Hidrostática O QUE É UM FLUIDO? Fluido é denominação genérica dada a qualquer substância que flui isto é, escoa e não apresenta forma própria, pois adquire a forma do recipiente que o contém.

Leia mais

T constante 0 1 X 1. líquido. Líquido + vapor. vapor X 1

T constante 0 1 X 1. líquido. Líquido + vapor. vapor X 1 1 PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR DEPARTAMENTO ACADÊMICO DE QUÍMICA E BIOLOGIA BACHARELADO EM QUÍMICA / LICENCIATURA

Leia mais

ESTUDOS DOS GASES. * Um dos estados físicos da matéria, com mais energia.

ESTUDOS DOS GASES. * Um dos estados físicos da matéria, com mais energia. ESTUDOS DOS GASES O QUE É UM GÁS??? * Um dos estados físicos da matéria, com mais energia. * Não possui forma nem volume definido. * Apresenta uma estrutura desorganizada. * É considerado um fluido por

Leia mais

Capítulo 21 Temperatura

Capítulo 21 Temperatura Capítulo 21 Temperatura 21.1 Temperatura e equilíbrio térmico Mecânica: lida com partículas. Variáveis microscópicas: posição, velocidade, etc. Termodinâmica: lida com sistemas de muitas partículas. Variáveis

Leia mais

EXERCÍCIOS DE FIXAÇÃO QUÍMICA GASES I

EXERCÍCIOS DE FIXAÇÃO QUÍMICA GASES I Aluno (a): Profº: RICARDO Série: Data: / / Disc: QUÍMICA EXERCÍCIOS DE FIXAÇÃO QUÍMICA GASES I 1. Uma Massa fixa de um gás ideal foi submetida a uma série de transformações isotérmicas e alguns dos valores

Leia mais

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei:

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei: Lei Zero da Termodinâmica 4300259 Termo- estatística REVISÃO DE TERMODINÂMICA Se dois sistema estão em equilíbrio térmico com um terceiro sistema, então eles também estão em equilíbrio entre si. Alguns

Leia mais

1,0 atm; 3,0 atm; 3,3 atm; 3,9 atm; 4,0 atm.

1,0 atm; 3,0 atm; 3,3 atm; 3,9 atm; 4,0 atm. 1. Um tubo cilíndrico de oxigênio de um mergulhador contém 3,2 kg de O 2. Antes de mergulhar, verificou-se que a temperatura e a pressão no interior do cilindro valiam, respectivamente, 27 C e 1,5 atm.

Leia mais

4. Propriedades dos gases experimentos e modelo microscópico simples para a temperatura

4. Propriedades dos gases experimentos e modelo microscópico simples para a temperatura PV T = nr, onde R é um número (a constante dos gases). Repare que esta é uma lei universal para qualquer gás em pressão e temperatura próxima da atmosférica: não aparece nenhuma dependência de características

Leia mais