LABORATÓRIO INTEGRADO III

Tamanho: px
Começar a partir da página:

Download "LABORATÓRIO INTEGRADO III"

Transcrição

1 FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO III Experiência 03: Ensaio de Vazio e Curto em Transformadores Trifásicos Prof. Norberto Augusto Júnior

2 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 1 I) OBJETIVOS: Estudar e compreender os ensaios de vazio e curto circuito do transformador trifásico para a elaboração do respectivo modelo elétrico. II) INTRODUÇÃO TEÓRICA: Os fenômenos físicos que envolvem os transformadores trifásicos são semelhantes aos dos transformadores monofásicos. O modelo do transformador trifásico é apresentado apenas para uma das fases e para as outras duas fases o modelo é o mesmo, todavia com as correntes e tensões defasadas de 10º. Assim, os ensaios do transformador trifásico são realizados exatamente do mesmo modo que os transformadores monofásicos, considerando para o cálculo dos parâmetros as tensões e correntes de fase e as potências totais divididas por três. II.1 Transformador em vazio: O transformador está na condição de vazio quando as bobinas dos enrolamentos primário estiverem alimentadas com tensão C.A., trifásica e equilibrada e os enrolamentos do secundário estiverem sem carga, ou seja, corrente nula. Perdas no Ferro: O circuito magnético do transformador é construído com chapas magnéticas (ferro dopado de impurezas de a 4 % de silício), laminadas (espessura de 0, a 0,6 mm) e de baixas perdas. As perdas no ferro ou magnéticas situam-se entre 0,5 a,0% da potência nominal do transformador. As perdas no ferro são constituídas pelas perdas de histerese e pelas perdas por correntes parasitas ou de Foucault e ocorrem quando a bobina é alimentada com C.A. produzindo fluxo no núcleo também alternado. Perdas de Histerese: as perdas de histerese são aquelas provenientes da energia consumida pela estrutura cristalina do material ferromagnético para orientar os domínios, alternadamente, ora em determinado sentido ora em outro. Para um determinado núcleo já construído as perdas de histerese podem ser expressas por P H = K H. f. V ef1, onde K H é a constante que depende das características do material do núcleo e de suas dimensões geométricas. Perdas de Foucault: as perdas das correntes parasitas ou correntes de Foucault são aquelas geradas na massa do núcleo magnético devido ao fluxo alternado. Ressalte-se que o ferro é condutor (péssimo) elétrico e o núcleo comporta-se como infinitas espiras em curto circuito e percorridas por correntes induzidas (Lei de Lenz). Para um determinado núcleo construído as perdas de Foucault podem ser expressas por P FC = K FC. f. V ef1, onde K FC é a constante que depende das características do material do núcleo e de suas dimensões geométricas. Assim, as perdas no ferro podem ser expressas por: P FE = K H. f. V ef1 + K FC. f. V ef1 Se o transformador operar em freqüência constante, por exemplo, em 60 Hz, podemos escrever: P FE = K H. V ef1 + K FC. V ef1 se K P = K H + K FC, ou:

3 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. P FE = Kp. V ef1 = V ef1 / Rp com Kp = 1/ Rp As perdas no ferro são simuladas no modelo do transformador pela resistência fictícia R P. Notas 1: Observe que bobinas com núcleo de ferro e sendo percorridas com c.c. as perdas no ferro são nulas. As perdas no ferro, para uma determinada tensão de alimentação é constante e independe da carga. A potência absorvida pelo transformador em vazio (P O ) são as próprias perdas no ferro (P FE ). Ou, P O = P FE.Observe que para os transformadores trifásicos as perdas totais devem ser divididas por três, para efeito da determinação do parâmetro R P. Corrente de perdas no ferro: A corrente que circula na bobina e portadora das perdas no ferro é denominada de corrente de perdas no ferro e calculada por: I P = V ef1 / R P. Corrente de magnetização: a corrente que circula nos enrolamentos para produzir o fluxo magnético no núcleo é denominada de corrente de magnetização, I M. No modelo do transformador a corrente de magnetização circula pela reatância X M de magnetização e depende do estado de saturação do núcleo. Quanto maior a saturação maior a corrente I M e menor a reatância de magnetização X M. Corrente de vazio: Na bobina do primário do transformador circula as duas componentes de corrente I P e I M de modo que a corrente de vazio I O = I P + I M. Nos transformadores a corrente de vazio situa-se entre 1 a 5% da corrente primária nominal. No ensaio em vazio, as perdas medidas correspondem às perdas no cobre do enrolamento primário (normalmente desprezíveis na condição de vazio), das perdas no ferro. Nota : Para os transformadores ideais os valores de R P e X M são infinitos e as correntes I O, I P e I M são nulas. Diagrama de fasores das correntes de vazio e modelo do transformador em vazio, por fase; Ensaio de vazio: Com os valores de tensão, corrente e potência absorvida no ensaio, determina-se R p e X m e considerando que as perdas no ferro são a própria potência absorvida. Vef Fe = P0 e Rp P = R p V = P ef Fe

4 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 3 cos = P 0 φ 0, I P = I 0. cos φ 0, I M = I 0. sen φ 0 e V0 I 0 V X M = I ef M cosφ O Fator e potência da carga em vazio Característica de magnetização ou de vazio: é a curva que relaciona a tensão primária de vazio (V ef1 ) pela corrente de vazio (I o ), ou V ef1 x I o Essa característica é importante para conhecer o estado de saturação do núcleo do transformador na tensão nominal. II. Transformador em curto-circuito: no ensaio de curto-circuito do transformador, normalmente a tensão de alimentação para produzir as correntes nominais no primário e secundário, situam-se entre 5 a 10% da tensão nominal primária. Assim, as perdas no ferro são desprezíveis em virtude do fluxo principal ser muito baixo e, portanto, a potência absorvida durante o ensaio corresponde somente às perdas Joule nos enrolamentos do primário e do secundário (R.I ). Perdas no Cobre ou Perdas Joule: As perdas no cobre dos enrolamentos são compostas por duas componentes, uma devido às resistências ôhmicas dos enrolamentos e a outra devido as perdas adicionais (Aumento da resistência ôhmica dos enrolamentos devido efeito Skin, ou de adensamento de corrente e devido as perdas produzidas pelos fluxos dispersos nas estruturas de aço/ferro do transformador). Nota 3: No transformador do laboratório devido a sua pequena potência não serão consideradas e estudadas as perdas adicionais nos ensaios em vazio ou em curto circuito. Resistências ôhmicas: As resistências ôhmicas dos enrolamentos primário e secundário são representadas no modelo do transformador, respectivamente por R1 e R, causando as quedas de tensão internas V1 = R1. I 1 e V = R. I, bem como as respectivas perdas Joule, P CU1 = R1. I 1 e P CU = R. I No modelo do transformador, referido ao primário, as resistências dos enrolamentos são representadas respectivamente de R1 e R. Reatâncias de dispersão: no transformador as força magneto motrizes (N.I) do primário e secundário produzem fluxos que se fecham pelo ar e apenas com um dos enrolamentos, respectivamente primário e secundário. É importante observar que os fluxos de dispersão dependem fundamentalmente da disposição física e geométrica dos enrolamentos. Assim, o mesmo transformador poderá apresentar fluxos e reatâncias de dispersão diferentes, dependendo apenas de como são escolhidos os enrolamentos do primário e secundário. Quanto mais próximo o enrolamento primário estiver do enrolamento secundário, menor será a dispersão e menor as respectivas reatâncias. Esses fluxos influenciam nas quedas internas de tensão e reativos do transformador e são representados pelas reatâncias XD1 e X D. É possível demonstrar que os parâmetros do secundário R e XD podem ser referendados ao lado do primário por: R = a. R X D = a. XD onde a= V1/V

5 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 4 Modelo do Transformador em Curto Circuito A resistência equivalente total dos dois enrolamentos, referido ao primário é definida por: R e1 = R1 + a.r = R1 +.R, com os valores de R1 e R medidos diretamente nos sobre os enrolamentos. A reatância equivalente referido ao primário é definida por: X e1 = XD1 + a.xd = XD1 +.XD Impedância de curto circuito: é definida por: Z CC1 = R e1 + j. X e1 ou em módulo Z CC1 = R e1 + X e1 Nota 4: A impedância de curto circuito é uma importante caraterística, pois os projetistas elétricos escolhem os cabos de energia bem como a corrente e potência disruptiva dos disjuntores. No momento da eventualidade do curto circuito no secundário, com plena tensão aplicada no transformador, a impedância que limita a corrente de curto circuito é a impedância de curto circuito do transformador acrescida da impedância dos cabos. Assim, no momento do curto, quanto maior a impedância de curto circuito, menor será a respectiva corrente.todavia, com o transformador operando nas condições normais, deseja-se a menor impedância de curto circuito, para reduzir as quedas internas de tensão, reduzir as perdas Joule e elevar o rendimento. Nos transformadores ideais a impedância de curto circuito é nula e a corrente de curto é infinita. Ensaio de curto circuito: Com os valores de tensão, corrente e no ensaio, determina-se Z CC1 e X e1. No ensaio de curto circuito as perdas no ferro são consideradas desprezíveis e a potência absorvida do ensaio são as próprias perdas joule dos enrolamentos. Cálculo de Z CC1 : Cálculo de X e1 : V Z CC1 = I CC1 CC1 X e1 = Z CC1 - R e1. Verifique que P CU = P CU1 + P CU = R1. I 1 + R. I = R e1. I 1

6 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 5 Como as bobinas dos enrolamentos são semelhantes podemos determinar as reatâncias de dispersão de cada enrolamento por: XD1 = a.xd = X e1 / sendo, XD1 = X e1 / e XD = X e1 / (. a ) Modelo do Transformador Trifásico, por fase, em carga, (todos os parâmetros, referidos ao primário) Z carga = a. Z carga III) MATERIAL UTILIZADO: Um Transformador Trifásico; Um Variac Trifásico de 3,3 kva; Uma Ponte de medir resistências ôhmicas Wheatstone ou Thompson Um Power Meter digital; Um amperímetro de alicate de 0 A Dois multímetros digitais. III) PROCEDIMENTO EXPERIMENTAL: IV.3) Procedimento: IV.3.1) Ensaio de Vazio (I =0): a) Medir a temperatura ambiente e as resistências ôhmicas por fase do primário e secundário. T = ºC R1= Ω R = Ω Observe as ligações da borneira do transformador trifásico e execute a montagem na ligação primário delta, e secundário estrela Y.

7 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 6 b) Com o secundário do transformador aberto, alimentar o primário com o Variac, através do instrumento digital de medição do painel Power Meter e medir tensão de linha VL1, a corrente IL1 e a potência trifásica absorvida. No secundário ligar voltímetro, também digital, para leitura da tensão secundária VL. Anote os valores das medidas das grandezas conforme a tabela: V L1O (V) Wo [W] I 1 =I 0 [A] V LO [V] a = K N = V FO1 / V FO = N 1 /N K T = V LO1 / V LO IV.3.) Ensaio em Curto Circuito (Vlcc=0) a) Com o secundário do transformador em curto circuito, alimentar o primário com o Variac, através do instrumento digital de medição do painel Power Meter e medir tensão de linha V Lcc1, a corrente I Lcc1 e a potência trifásica absorvida W cc1. No secundário ligar um amperímetro, também digital, para leitura da corrente secundária I l cc. b) Anote os valores das medidas das grandezas conforme a tabela: I L cc 1 [A] W cc1 [kw] V Lcc1 [V] I Lcc [A] a = I F cc / I F cc 1 = N 1 /N

8 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 7 V) CONCLUSÕES: Relatório 1- Os valores de placa do transformador. - Os valores das resistências ôhmicas do primário e secundário (R1 e R) 3- A relação do número de espiras (K N = a ). A relação de transformação K T 4- Gráfico da Característica de Magnetização do transformador (V 0 x I 0 ). Justifique o aspecto do gráfico. 5- Por que a característica de magnetização apresenta aspecto diferente para valores crescentes e decrescentes? 6) Gráfico das perdas no ferro pela tensão primária de alimentação (P Fe x V 0 ) Justifique o aspecto do gráfico 7) Calcular os valores dos parâmetros R P e X M para a tensão nominal de 0 V; 8) Gráfico da característica de curto circuito ( V CC1 x I CC1 ) Justifique o aspecto do gráfico. 9) Gráfico das perdas no cobre pela corrente primária de alimentação (P cc1 x I CC1 ). Justifique o aspecto do gráfico 10) Calcular os valores dos parâmetros Z CC1, X D1 e X D para a corrente nominal; Apresentar o modelo do transformador com todos os parâmetros referidos ao primário, na tensão nominal primária de 0 V. 11) Apresentar os valores de z CC1 (%), z CC1 (p.u.), r E1 (%), r E1 p.u.), x E1 (%) e x E1 p.u.)

9 USJT FTCE Laboratório Integrado III Trafos Trif. Ensaios de Vazio/Curto Prof. Norberto Augusto Jr. 8 Questões 1) O que são valores nominais ou de placa do transformador? ) Quais os parâmetros que e como são determinados no ensaio em vazio? Quais perdas que ocorrem no ensaio de vazio? Como são determinadas? 3) O que são perdas no ferro? Explique fisicamente como ocorrem? Do que dependem as perdas no ferro? Como variam com a carga? 4) O que é característica de vazio do transformador? Qual a sua importância? Como pode ser determinada? 5) Quais os parâmetros que e como são determinados no ensaio em curto circuito? Quais perdas que ocorrem no ensaio de curto circuito? Como são determinadas? 6) O que são perdas Joule dos enrolamentos? Explique fisicamente como ocorrem? Do que depende a perda Joule? Como variam com a carga? 7) Calcule as perdas Joule quando transformador estiver com 75º C e com 50% e 100% de carga. 8) O que é característica de curto circuito do transformador? O que é impedância de curto circuito? Qual a sua importância? 9) O que ocorre para um transformador que inicialmente foi projetado para o Brasil na freqüência de 60 Hz e agora será instalado na Argentina, que possui freqüência de 50 Hz, todavia com as mesmas tensões nominais. Discuta as perdas no ferro, as correntes de perdas no ferro, o fluxo do transformador, a corrente de magnetização e as reatâncias de dispersão. 10) Duas bobinas idênticas estão enroladas no mesmo núcleo. Cada uma possui uma resistência ôhmica de Ohms e indutância de 0,05 Henry. Determinar: a) A corrente nas bobinas quando estiverem ligadas em série, com a polaridade correta, e alimentadas com a tensão de V = 100 V c.c. b) Idem item a) todavia com as polaridades invertidas. c) A corrente nas bobinas quando estiverem ligadas em série, com a polaridade correta, e alimentadas com a tensão alternada v(t) = 141.cos (377.t + 30º) V. d) Idem item c) todavia com as polaridades invertidas. 11) Um No Break possui um transformador trifásico de potência de 5 kva, tensão primária de 0 V e tensão secundária de 380 V. A concessionária de energia elétrica durante o dia fornece a tensão de 35 V e a noite de 05 V. Comente os efeitos das perdas no ferro, correntes de perdas no ferro e corrente de magnetização pelo efeito dessa variação de tensão.

LABORATÓRIO INTEGRADO II

LABORATÓRIO INTEGRADO II FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila CARACTERISTICAS ELÉTRICAS Lembrete: https://www.youtube.com/watch?v=culltweexu Potência Nominal: NBR 5356:2006

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia EXPERIÊNCIA: ENSAIOS EM CURTO E VAZIO DE TRANSFORMADORES

Leia mais

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Magnéticos Os circuitos magnéticos são empregados com o intuito de concentrar o efeito magnético em uma dada região do espaço.

Leia mais

1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA

1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA 1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. José Roberto Cardoso Circuitos Magnéticos 1. Um núcleo toroidal de seção transversal 1 cm 2 e comprimento médio 15 cm é envolvido

Leia mais

PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO. TRANSFORMADORES - Prática

PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO. TRANSFORMADORES - Prática PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO TRANSFORMADORES - Prática 2014 PEA2211-2014 Transformadores Parte Prática 1 Data / / 2014

Leia mais

Transformadores elétricos (trafos)

Transformadores elétricos (trafos) Transformadores elétricos (trafos) Dispositivo que converte, por meio da ação de um campo magnético, a energia elétrica CA em uma certa frequência e nível de tensão em energia elétrica CA de mesma frequência,

Leia mais

Transformadores monofásicos

Transformadores monofásicos Transformadores monofásicos Motivações. Introdução. Transformador ideal. Transformador real. Circuito equivalente. Determinação dos parâmetros do circuito equivalente. Rendimento. Motivações Por que precisamos

Leia mais

EXP 05 Motores Trifásicos de Indução - MTI

EXP 05 Motores Trifásicos de Indução - MTI EXP 05 Motores Trifásicos de Indução - MTI Funcionamento e Ligações Objetivos: Compreender o funcionamento e as ligações do motor de indução; Analisar os diferentes tipos de construção e as principais

Leia mais

PEA MÁQUINAS ELÉTRICAS I 35 PRINCÍPIO DE FUNCIONAMENTO DO TRANSFORMADOR - ACOPLAMENTO COM O SECUNDÁRIO

PEA MÁQUINAS ELÉTRICAS I 35 PRINCÍPIO DE FUNCIONAMENTO DO TRANSFORMADOR - ACOPLAMENTO COM O SECUNDÁRIO PEA 400 - MÁQUINAS ELÉTRICAS I 35 PRINCÍPIO DE FUNCIONAMENTO DO TRANSFORMADOR - ACOPLAMENTO COM O SECUNDÁRIO FLUXO MÚTUO NO TRANSFORMADOR RELAÇÃO DE TRANSFORMAÇÃO TENSÃO INDUZIDA NA BOBINA PRIMÁRIA (LEI

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE

3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE 25 3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE 31 INTRODUÇÃO Um estudo mais completo da teoria do transformador deve levar em conta os efeitos das resistências dos enrolamentos,

Leia mais

TRANSFORMADOR ELÉTRICO (Segunda Parte)

TRANSFORMADOR ELÉTRICO (Segunda Parte) LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA Professores: Eduardo Nobuhiro Asada Luís Fernando Costa Alberto Colaborador: Elmer Pablo Tito Cari 1 OBJETIVOS: TRANSFORMADOR ELÉTRICO (Segunda Parte)

Leia mais

LABORATÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC. PRODUÇÃO 1/9 EXPERIÊNCIA 5

LABORATÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC. PRODUÇÃO 1/9 EXPERIÊNCIA 5 LBORTÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC PRODUÇÃO /9 I TÍTULO: TRNSFORMDOR MONOFÁSICO II OBJETIO: O objetivo desta experiência consiste na verificação prática das relações fundamentais de um transformador

Leia mais

ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios

ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios ET720 Sistemas de Energia Elétrica I Capítulo 4: Transformadores de potência Exercícios 4.1 Um transformador monofásico de dois enrolamentos apresenta os seguintes valores nominais: 20 kva, 480/120 V,

Leia mais

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa. Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria

Leia mais

` Prof. Antonio Sergio 1

` Prof. Antonio Sergio 1 ` Prof. Antonio Sergio O funcionamento de um transformador baseia-se no fenômeno da mutua indução entre dois circuitos eletricamente isolados, mas magnéticamente acoplados. Fig. Núcleo magnetizável usado

Leia mais

1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr?

1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr? ATIVIDADE T3 - Capítulo 8. 1. Princípios básicos de eletrônica 8.1 Cargas elétricas. 1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo

Leia mais

Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores

Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores 1. OBJETIVO Obtenção experimental dos parâmetros do circuito equivalente de um transformador

Leia mais

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor

Leia mais

- Trabalho Laboratorial nº4 - - Transformadores -

- Trabalho Laboratorial nº4 - - Transformadores - - Trabalho Laboratorial nº4 - DEMGi 2º S - 07/08 - Transformadores - 1. Objectivos No final deste trabalho laboratorial, deverá compreender e comentar de forma eficiente os objectivos relatados em seguida.

Leia mais

Figura [6] Ensaio em curto-circuito

Figura [6] Ensaio em curto-circuito DIAGRAMAS DE SEQUÊNCIA DE TRANSFORMADORES PARTE 1 6- ROTEIRO DA PARTE EXPERIMENTAL O objetivo da experiência é levantar o diagrama de seqüência zero para os diversos tipos de ligação de um banco de transformadores

Leia mais

ENGC25 - ANÁLISE DE CIRCUITOS II

ENGC25 - ANÁLISE DE CIRCUITOS II ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo

Leia mais

4 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES TRIFÁSICOS

4 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES TRIFÁSICOS 34 4 CIRCUITO EQUIVLENTE PR TRNSFORMDORES TRIFÁSICOS 4.1 INTRODUÇÃO caracterização dos bancos trifásicos, formados por transformadores monofásicos (mostrados nas Figura 13 (b), Figura 14 (b), Figura 15

Leia mais

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ PRESENCIAL MARINGÁ Professor 01/10/2016 1 / 51 CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 3.3 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***

Leia mais

Lista de Exercícios 3 Conversão de Energia

Lista de Exercícios 3 Conversão de Energia Lista de Exercícios 3 Conversão de Energia Aluno: Turma: 6 Período Professor(a): Geraldo Leão Lana ENSAIOS DE TRANSFORMADORES 1) Por que o ensaio a vazio a realizado no lado de baixa tensão? Quais as medidas

Leia mais

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios

Leia mais

Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )

Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( ) Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente

Leia mais

ENSAIOS DE CIRCUITO ABERTO E CURTO CIRCUITO EM TRANFORMADOR

ENSAIOS DE CIRCUITO ABERTO E CURTO CIRCUITO EM TRANFORMADOR ENSAIOS DE CIRCUITO ABERTO E CURTO CIRCUITO EM TRANFORMADOR LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA ENSAIOS DE CIRCUITO ABERTO E CURTO CIRCUITO EM TRANSFORMADOR OBJETIO : Realizar em laboratório os ensaios

Leia mais

Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques

Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques Transformadores e circuitos magneticamente acoplados Prof. Luis S. B. Marques Transformadores Um transformador consiste de duas ou mais bobinas acopladas através de um campo magnético mútuo. O Transformador

Leia mais

Ensaios de Transformadores 1φ

Ensaios de Transformadores 1φ INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA BAHIA Campus Santo Amaro Curso de Eletromecânica Apostila de Laboratório, Ensaios de Transformadores 1φ Máquinas Elétricas Prof.: Elvio Prado da Silva

Leia mais

Sistemas de Accionamento Electromecânico

Sistemas de Accionamento Electromecânico Sistemas de Accionamento Electromecânico Exercícios Teórico-práticos (Transformadores de potência) 3.º Ano, 1.º Semestre 2007-2008 1. Desenhe o diagrama vectorial de um transformador monofásico em carga,

Leia mais

TRANSFORMADORES. Fonte: itu.olx.com.br

TRANSFORMADORES. Fonte: itu.olx.com.br Fonte: itu.olx.com.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referentes Transformadores. Transformador é uma máquina elétrica estática, sem partes

Leia mais

3. Um transformador de 220/400 V foi ensaiado em vazio, tendo-se obtido os seguintes valores: P 10 =20 W, I 10 =0,5 A. Calcule:

3. Um transformador de 220/400 V foi ensaiado em vazio, tendo-se obtido os seguintes valores: P 10 =20 W, I 10 =0,5 A. Calcule: 1. Um transformador de 220/112 V, 110 VA, foi ensaiado em vazio tendo-se obtido os seguintes valores: U 1n =220 V, U 20 =112 V, I 10 =0,14 A, P 10 =8,8 W. Medimos ainda as resistências do primário e do

Leia mais

Exercícios: Eletromagnetismo, circuitos CC e aplicações

Exercícios: Eletromagnetismo, circuitos CC e aplicações 1 UFOP - Universidade Federal de Ouro Preto - Escola de Minas CAT17 - Eletrotécnica Geral - Prof. Danny Tonidandel. Data: Aluno: Matrícula: Exercícios: Eletromagnetismo, circuitos CC e aplicações Resolva

Leia mais

Eletrotécnica Geral. Lista de Exercícios 1

Eletrotécnica Geral. Lista de Exercícios 1 ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO PE - Departamento de Engenharia de Energia e utomação Elétricas Eletrotécnica Geral Lista de Exercícios 1 1. Circuitos em corrente contínua 2. Circuitos monofásicos

Leia mais

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade - 1 o Semestre de 2011 Prof. Rubens H. Korogui Experimento 03 1 Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade 1.1 Objetivo Verificação do comportamento freqüência

Leia mais

TRANSFORMADORES TRIFÁSICOS

TRANSFORMADORES TRIFÁSICOS TRANSFORMADORES TRIFÁSICOS Prof. ALBERTO WILLIAN MASCARENHAS, Dr. 10 A 5 A 110 V TRANSFORMADOR 220 V PRIMÁRIO SECUNDÁRIO PROFESSOR ALBERTO WILLIAN MASCARENHAS, Dr. 2 Os transformadores monofásicos possuem

Leia mais

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Laboratório de Eletrotécnica

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Laboratório de Eletrotécnica Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Laboratório de Eletrotécnica 2010.2 01 Prática 01 Introdução ao uso do Laboratório Objetivo - Conhecer as bancadas,

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 09

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 09 SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 09 Tópicos da Aula de Hoje Polaridade de transformadores Autotransformadores Transformadores Trifásicos Polaridade dos enrolamentos do transformador Dois terminais

Leia mais

Fotos. Transformadores utilizados em sistemas de transmissão

Fotos. Transformadores utilizados em sistemas de transmissão Trafos Monofásicos Motivações Por que precisamos estudar este tópico? Os transformadores permitem a transmissão a grandes distâncias usando altos níveis de tensão e reduzindo as perdas elétricas dos sistemas.

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS. O tipo de dispositivo mais adequado para proteger um motor elétrico contra correntes de curto circuito é:

PROVA DE CONHECIMENTOS ESPECÍFICOS. O tipo de dispositivo mais adequado para proteger um motor elétrico contra correntes de curto circuito é: 10 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 31 O tipo de dispositivo mais adequado para proteger um motor elétrico contra correntes de curto circuito é: a) fusível rápido b) fusível retardado c) contator

Leia mais

Problema resolvido sobre o transformador monofásico

Problema resolvido sobre o transformador monofásico Problema resolvido sobre o transformador monofásico Considere um transformador monofásico com as seguintes características nominais: S N =10kVA 10kV/400V No ensaio em curto-circuito, aplicando a tensão

Leia mais

Experimento 6 Laço de histerese

Experimento 6 Laço de histerese Experimento 6 Laço de histerese 1. OBJETIVO Obter a curva BH do material magnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,

Leia mais

Introdução. Resultados do ensaio em carregamento de um trafo monofásico: Rendimento (%) Potência no Secundário (W) Potência no Primário (W) ,5

Introdução. Resultados do ensaio em carregamento de um trafo monofásico: Rendimento (%) Potência no Secundário (W) Potência no Primário (W) ,5 Transformador 1 ntrodução Resultados do ensaio em carregamento de um trafo monofásico: otência no rimário (W) otência no Secundário (W) Rendimento (%) 35 0 0 96 60 6,5 155 10 77,4 10 180 85,71 65 40 90,57

Leia mais

Conversão de Energia I. Capitulo 3 Transformadores de Energia

Conversão de Energia I. Capitulo 3 Transformadores de Energia Conversão de Energia I Capitulo 3 Transformadores de Energia 1. Introdução O estudo de transformadores permite compreender como a energia elétrica pode ser transportada de um circuito elétrico a outro

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Elétricos de Potência 3. Elementos de Sistemas Elétricos de Potência 3..5 Transformadores Trifásicos em p.u. Professor: Dr. Raphael Augusto de Souza Benedito E-mail:raphaelbenedito@utfpr.edu.br

Leia mais

1.5 - Determinação do rendimento para a carga nominal

1.5 - Determinação do rendimento para a carga nominal 1.5 - Determinação do rendimento para a carga nominal Determinação do esquema equivalente reduzido ao primário Curva característica do rendimento η = f (S 2 ), para vários factores de potência Objectivos

Leia mais

INTRODUÇÃO AOS SISTEMAS DE ENERGIA ELÉTRICA

INTRODUÇÃO AOS SISTEMAS DE ENERGIA ELÉTRICA INTRODUÇÃO AOS SISTEMAS DE ENERGIA ELÉTRICA VALORES POR UNIDADE Júlio Borges de Souza 2.1 - INTRODUÇÃO - A UTILIZAÇÃO DE VARIÁVEIS ELÉTRICAS REAIS PARA A ANÁLISE DE CIRCUITOS ELÉTRICOS APRESENTA CERTAS

Leia mais

Valor por unidade. Mudança de escala Normalização Volts, A, VA,... -> p.u.

Valor por unidade. Mudança de escala Normalização Volts, A, VA,... -> p.u. Valores por unidade Valor por unidade Mudança de escala Normalização Volts, A, VA,... -> p.u. Define-se duas grandezas fundamentais para serem as bases. As outras são derivadas das equações: V=Z*I S=V*I

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Excitação CA

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Excitação CA Os circuitos magnéticos dos transformadores e das máquinas CA são excitados por fontes CA. Com excitação CA, a indutância influi no comportamento do regime permanente. Joaquim Eloir Rocha 1 Com excitação

Leia mais

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Corrente Alternada. Circuitos Monofásicos (Parte 2) Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO

Leia mais

EXPERIÊNCIA 1: CIRCUITO TRIFÁSICO EQUILIBRADO

EXPERIÊNCIA 1: CIRCUITO TRIFÁSICO EQUILIBRADO EXPERIÊNCIA 1: CIRCUITO TRIFÁSICO EQUILIBRADO Objetivo: Verificar as relações entre os valores (de tensão e de corrente) de linha e de fase nas ligações estrela e triângulo. Circuitos: a) Estrela b) Triângulo

Leia mais

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 2002

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 2002 COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 2002 PROVA DE ENGENHARIA ELÉTRICA PROVA A ATENÇÃO: ABRA ESTA PROVA SOMENTE APÓS

Leia mais

ENGC25 - ANÁLISE DE CIRCUITOS II

ENGC25 - ANÁLISE DE CIRCUITOS II ENGC25 - ANÁLISE DE CIRCUITOS II Módulo VI CIRCUITOS POLIFÁSICOS Sistema Monofásico a 3 Condutores O sistema possui duas fontes de tensão iguais: 2 Sistema Monofásico a 3 Condutores Considerando o circuito

Leia mais

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento Faculdade Pitágoras de Betim Engenharia Elétrica / Controle e Automação Máquinas Elétricas II Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente

Leia mais

PRÁTICAS DE LABORATÓRIO

PRÁTICAS DE LABORATÓRIO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Departamento Acadêmico de Eletrotécnica Disciplina: Máquinas Elétricas 1 PRÁTICAS DE LABORATÓRIO Professor: Joaquim

Leia mais

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOEAR 2002 05 No circuito mostrado na figura abaixo, determine a resistência

Leia mais

Transformador Transformador Permite a transferência de energia em tensões mais adequadas, por exemplo, na geração tensão mais elevada e economicamente viável para transmissão de energia, na distribuição

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.

Leia mais

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ 17/09/2016 1 / 26 PRESENCIAL MARINGÁ Professor CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10

Leia mais

Experimento 6 Laço de histerese

Experimento 6 Laço de histerese Experimento 6 aço de histerese. OBJETIVO Obter a curva BH do materiaagnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,

Leia mais

Exame de Ingresso - 1o. Período de 2016 Programa de Pós-Graduação em Engenharia Elétrica

Exame de Ingresso - 1o. Período de 2016 Programa de Pós-Graduação em Engenharia Elétrica Exame de Ingresso - 1o. Período de 2016 Programa de Pós-Graduação em Engenharia Elétrica PROVA DE CONHECIMENTOS Sistemas de Potência Nome: Renan Lima Baima Assinatura: INSTRUÇÕES Preencha seu nome no espaço

Leia mais

1ª. Prova. Conversão Eletromecânica de Energia

1ª. Prova. Conversão Eletromecânica de Energia ª. Proa Conersão Eletromecânica de Energia José Roberto Cardoso GABARITO 08 de Abril de 06 ª. Questão: Descrea o significado físico de cada parâmetro do circuito elétrico equialente do transformador destacando

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Auto Transformador Monofásico

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Auto Transformador Monofásico Auto Transformador Monofásico Determinação do rendimento para a carga nominal Determinação do esquema equivalente reduzido ao primário Curva característica do rendimento η = f (S 2 ), para vários factores

Leia mais

Transformador Monofásico [de Isolamento]

Transformador Monofásico [de Isolamento] Transormador Monoásico [de Isolamento] Transormação de Tensão Transormação de tensão para várias tensões de entrada:, 3, 3 = ( 1 ) Inormação 1.1. Generalidades Além da conversão de energia natural - carvão,

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas

Leia mais

Figura Circuito para determinação da seqüência de fases

Figura Circuito para determinação da seqüência de fases A C B R N C R N Figura 4.1 - Circuito para determinação da seqüência de fases Exercício 4.2 No circuito da Figura 4.2, quando ocorre um defeito fase-terra franco na barra P, pede-se determinar: a) a corrente

Leia mais

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental B 16/maio/015 Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07 SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente

Leia mais

Características Básicas dos Transformadores

Características Básicas dos Transformadores Características Básicas dos Transformadores (Roteiro No 2) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab Maq I 2018 1 / 35 Introdução

Leia mais

e (t) = dλ dt = N dφ dt aforça electromotriz e sabendo que o fluxo instantâneo édadopor φ (t) =φ max sin (ωt), (207) ωnφ max.

e (t) = dλ dt = N dφ dt aforça electromotriz e sabendo que o fluxo instantâneo édadopor φ (t) =φ max sin (ωt), (207) ωnφ max. 5 Transformador (Electric Machinery, 6 a edition, A.E. Fitzgerald, Charles Kingsley, Stephan Umans, McGraw-Hill, 2003) 5.1 Problema 2.1 Sendo e (t) = dλ dt = N dφ dt aforça electromotriz e sabendo que

Leia mais

a) Circuito RL série b) Circuito RC série c) Circuito RLC série

a) Circuito RL série b) Circuito RC série c) Circuito RLC série Teoria dos Circuitos 1. Determine a evolução temporal das tensões e corrente em cada um dos elementos dos circuitos especificados, quando aplica uma fonte de tensão constante. Considere 5, 10 mh e C 10

Leia mais

TRANSFORMADOR MONOFÁSICO. Prof. Nelson M. Kanashiro 1. N0ÇÕES DE ELETROMAGNETISMO I I. Densidade de Fluxo Magnético ou simplesmente Campo Magnético,

TRANSFORMADOR MONOFÁSICO. Prof. Nelson M. Kanashiro 1. N0ÇÕES DE ELETROMAGNETISMO I I. Densidade de Fluxo Magnético ou simplesmente Campo Magnético, TRASFORMADOR MOOFÁSCO 1 0ÇÕES DE ELETROMAGETSMO Os materiais magnéticos, denominados como Magnetitas ou Ímãs Permanentes já eram conhecidos pelos gregos a mais de 2500 anos Certas pedras da região da Magnésia

Leia mais

LABORATÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC. PRODUÇÃO 1/19 EXPERIÊNCIA 7

LABORATÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC. PRODUÇÃO 1/19 EXPERIÊNCIA 7 LORTÓRO ELETRO EDFÍOS/PROJETOS/PRO. PRODUÇÃO 1/19 EXPERÊ 7. TÍTULO: RUTOS TRFÁSOS. OJETOS: a erificar experimentalmente as relações entre valores de tensão e corrente de fase e de linha para a ligação

Leia mais

Apoio didático para o Ensaio 1

Apoio didático para o Ensaio 1 Apoio didático para o Ensaio 1 1. Carga linear [1] Quando uma onda de tensão alternada senoidal é aplicada aos terminais de uma carga linear, a corrente que passa pela carga também é uma onda senoidal.

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07 SEL 39 COVERSÃO ELETROMECÂICA DE EERGIA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente

Leia mais

Circuitos trifásicos

Circuitos trifásicos MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

INTRODUÇÃO A SISTEMA DE ENERGIA ELÉTRICA DEFINIÇÃO DE SISTEMA POR UNIDADE (PU)

INTRODUÇÃO A SISTEMA DE ENERGIA ELÉTRICA DEFINIÇÃO DE SISTEMA POR UNIDADE (PU) RODRIGO PRADO DE PAULA TEMA 1 INTRODUÇÃO A SISTEMA DE ENERGIA ELÉTRICA DEFINIÇÃO DE SISTEMA POR UNIDADE (PU) Introdução Em diversas aplicações na engenharia é útil escalar, ou normalizar, quantidades com

Leia mais

SISTEMAS ELÉTRICOS. Sistemas p.u. Jáder de Alencar Vasconcelos

SISTEMAS ELÉTRICOS. Sistemas p.u. Jáder de Alencar Vasconcelos SISTEMAS ELÉTRICOS Sistemas p.u Jáder de Alencar Vasconcelos Sistemas Elétricos de Potência Sistemas por unidade p.u Aula 4 Sistema por unidade (pu) O sistemas por unidade (pu), é um meio conveniente de

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima: 13 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 35 É característica que determina a um transformador operação com regulação máxima: a) A soma do ângulo de fator de potência interno do transformador com o

Leia mais

Outros tópicos transformadores. Placa de identificação trafo de potência Trafos de instrumentos

Outros tópicos transformadores. Placa de identificação trafo de potência Trafos de instrumentos Outros tópicos transformadores Placa de identificação trafo de potência Trafos de instrumentos Placa de identificação Transformadores para Instrumentos São dispositivos utilizados de modo a tornar compatível

Leia mais

Aula 3 Corrente alternada circuitos básicos

Aula 3 Corrente alternada circuitos básicos Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação

Leia mais

Conversão de Energia I. Capitulo 2 Circuito Magnético

Conversão de Energia I. Capitulo 2 Circuito Magnético Conversão de Energia I Capitulo 2 Circuito Magnético 2 1. Introdução Nos dispositivos eletromecânicos geradores, motores, contactores, relés, etc. a utilização de enrolamentos e núcleos objetiva o estabelecimento

Leia mais

O MOTOR DE INDUÇÃO - 1

O MOTOR DE INDUÇÃO - 1 PEA 2211 Introdução à Eletromecânica e à Automação 1 O MOTOR DE INDUÇÃO - 1 PARTE EXPERIMENTAL Conteúdo: 1. Introdução. 2. Observando a formação do campo magnético rotativo. 3. Verificação da tensão e

Leia mais

Conversores Estáticos

Conversores Estáticos Conversores Estáticos Circuitos Retificadores Monofásicos 08/03/2009 www.corradi.junior.nom.br Sinal Senoidal Os circuitos eletrônicos podem trabalhar com tensões e correntes continuas e alternadas. Um

Leia mais

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A.

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A. 53.(ALERJ/FGV/2017) Um motor CC do tipo shunt que possui uma potência mecânica de 6 HP é alimentado por uma fonte de 200 V. Sabendo-se que o seu rendimento é de 80 % e que a corrente de excitação é de

Leia mais

Transformadores. Prof. Regis Isael Téc. Eletromecânica

Transformadores. Prof. Regis Isael Téc. Eletromecânica Transformadores Prof. Regis Isael Téc. Eletromecânica Transformadores Carga Horária: 50 Horas - Aulas: Seg. e Sex. Provas (das 19h30 às 22h): AV1-19/05 REC. PAR. 26/05 AV2-05/06 Prova Final: 09/06 Laboratório

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANA CAARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório Aula 07 POÊNCIA MONOFÁSICA E FAOR DE POÊNCIA 1.0 INRODUÇÃO 1.1 Instrumento Eletrodinâmico

Leia mais

Transformadores trifásicos

Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica

Leia mais

VIII TRANSFORMADORES

VIII TRANSFORMADORES TASFOMADOES O transformador é um conversor de energia eletromagnética, cuja operação pode ser explicada em termos do comportamento de um circuito magnético excitado por uma corrente alternada. onsiste

Leia mais

6661 CIRCUITOS MAGNÉTICOS ENSAIOS. Rubens Zenko Sakiyama Departamento de Engenharia Química Universidade Estadual de Maringá

6661 CIRCUITOS MAGNÉTICOS ENSAIOS. Rubens Zenko Sakiyama Departamento de Engenharia Química Universidade Estadual de Maringá 6661 CIRCUITOS MAGNÉTICOS ENSAIOS Rubens enko Sakiyama rubens@deq.uem.br Departamento de Engenharia Química Universidade Estadual de Maringá INTRODUÇÃO Dois ensaios são utilizados para determinar os parâmetros

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA N o PEA50 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADORES NÃO CONTROLADOS DE DOIS CAMINHOS W. KAISER 0/009 1. OBJETIVOS Estudo do funcionamento e processo de comutação em retificadores

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO 27 Experimento 3: Lei de Faraday, transformadores e campo magnético da Terra 1.3.1 Objetivos Realizar experimentos que verifiquem a lei de indução de Faraday. Estudar o processo de transformação de tensão

Leia mais

Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51

Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51 Sumário CAPÍTULO 1 A Natureza da Eletricidade 13 Estrutura do átomo 13 Carga elétrica 15 Unidade coulomb 16 Campo eletrostático 16 Diferença de potencial 17 Corrente 17 Fluxo de corrente 18 Fontes de eletricidade

Leia mais

EXERCÍCIOS DE ELETRICIDADE BÁSICA Exercícios Eletricidade Básica

EXERCÍCIOS DE ELETRICIDADE BÁSICA Exercícios Eletricidade Básica EXERCÍCIOS DE ELETRICIDADE BÁSICA Exercícios Eletricidade Básica Q1) Qual o valor de energia convertida por um ferro de passar roupas, de 600W, ligado por 2min? ( 2min=120s E=P*t=600*120= 72000J ) Q2)

Leia mais