Módulo de Números Inteiros e Números Racionais. Números Racionais e Suas Operações. 7 ano E.F.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Módulo de Números Inteiros e Números Racionais. Números Racionais e Suas Operações. 7 ano E.F."

Transcrição

1 Módulo de Números Inteiros e Números Racionais Números Racionais e Suas Operações. ano E.F.

2 Números Inteiros e Números Racionais Números Racionais e Suas Operações. Exercícios Introdutórios Exercício. No quadro abaixo, determine quais números são racionais. 5, 5,... 0,... 0,... 8, 0... π Quais das seguintes afirmações são verda- Exercício. deiras? a) N Q. b) Z Q. c) Q Z. d) r Q r Q. 0, , 0 e) 0 8 Q Z. f) Q Z. g) 0, 0 Q Z. Exercício. Represente em uma reta orientada os seguintes números:, 5 0 5, 0 Exercício. Um digitador produz 00 folhas de um livro em dias, trabalhando horas por dia; um outro digitador faz o mesmo trabalho em dias, trabalhando 5 horas por dia. Em quanto tempo, os dois juntos, trabalhando horas por dia, produzirão 00 folhas do mesmo livro? Exercício 5. Uma torneira sozinha enche um tanque em duas horas e outra torneira sozinha) enche o mesmo tanque em três horas. Em quanto tempo as duas torneiras juntas encherão esse tanque? Exercício. a) 0, b) 0,... Exercício. Encontre a fração geratriz de: c),. d) 0,.... Uma barra de chocolate é dividida entre Nelly, Penha e Sônia. Sabendo que Nelly ganha 5 da barra, Penha ganha e Sônia ganha 0 gramas. Qual o peso, em gramas, da barra? Exercício 8. Para qualquer número positivo x, dizemos x que os números x + e são filhos de x e que os x + dois são irmãos. Por exemplo, e são irmãos, pois são filhos de ; de fato, + e. + a) Encontre um irmão de 5. b) Um número pode ser filho de dois números positivos diferentes? Por quê? c) Mostre que é descendente de, isto é, ele é filho 05 de um filho de um filho... de um filho de. Exercício. Exercício 0. Qual o valor numérico da expressão 8 + ) + 8? Responda o que se pede. a) O número 0 é racional? b) Entre quais inteiros ele se localiza na reta numérica? Exercício. Responda o que se pede. a) O número é racional? b) Entre quais inteiros ele se localiza na reta numérica? Exercício. Use os sinas de < e > para comparar, em cada um dos itens abaixo, as frações. a) 0 b) 8 c) 5 d) Exercício. Um robô começou um estudo no solo de marte e conseguiu perfurar até 8, 5 metros. Depois de recolher algum material subiu, metros para uma análise do terreno. Em qual distância ele se encontra da superfície?

3 Exercícios de Fixação Exercício. números: a) e b) e. c) 5, 5 e 5,. Escreva três racionais que estejam entre os Exercício 5. O metrô da cidade de Sacletiba foi ampliado em, km e passou a ter, km. Quantos quilômetros o metrô possuía antes da ampliação? Exercício. O computador de Luíza quebrou e ela teve que ir uma LAN House para digitar um trabalho da escola. Após horas e 0 minutos ela o terminou e pagou R$, 5. Quanto ela pagou por hora? Exercício. Há muitos anos atrás, uma empresa de picolés fez o anúncio Na troca de 0 palitos de picolés, ganhe um picolé no palito. Que fração representa o valor de picolé sem o palito em relação ao valor de palito? Exercício 8. Qual o valor de ? Exercício. Qual o valor de 0, + 0,? Exercício 0. a) 0, b), c) 58, Exercício. a) 0,.... b) 0,... c), 5. d) 0,.... Exercício. obtemos: Escreva o período dos decimais periódicos: Encontre a fração geratriz de: Simplificando a expressão ) + ), Exercício. Qual o valor da expressão : ) )? Exercício. Obtenha as geratrizes das seguintes dízimas periódicas: a),.... b), c), Exercício 5. Qual o valor da expressão [ + ) ] : 5? Exercícios de Aprofundamento e de Exames Exercício. Na expressão M A T E M A T I C A, letras diferentes representam dígitos diferentes e letras iguais representam dígitos iguais. Qual é o maior valor possível desta expressão? a) 8 b) c) 08 d) 5 e) 8 Exercício. Uma máquina A pode realizar um trabalho em horas. Uma máquina B pode realizar o mesmo trabalho em horas. Se trabalharem juntas, as máquinas A e B demorarão quanto tempo para executar o trabalho? Exercício 8. Ana começou a descer uma escada no mesmo instante em que Beatriz começou a subi-la. Ana tinha descido da escada quando cruzou com Beatriz. No momento em que Ana terminar de descer, que fração da escada Beatriz ainda terá que subir? Exercício. a) 0, 0). b) ) 5 c) 80. Exercício 0. Calcule o valor das expressões: d) 0, ). e) 00 0, 0). Escreva como um única potência: a). b). c). d). e) 5.

4 a). b) 8. c) ). d) e) 8 : 5. Exercício. Qual é o primeiro dígito não nulo após a vírgula na representação decimal da fração 5? a) b) c) d) 5 e). Exercício. Sabe-se que do conteúdo de uma garrafa enchem de um copo. Para encher 5 copos iguais a esse, 5 quantas garrafas deverão ser usadas? a) b) c) d) 5 e). Exercício. Simplifique a seguinte fração: b), ,... 0, ) Exercício 8. frações Qual o menor inteiro positivo n tal que as n +, 0 n +, n +,..., n + sejam todas irredutíveis? Exercício. A professora Luísa observou que o número de meninas de sua turma dividido pelo número de meninos dessa mesma turma é 0, 8. Qual é o menor número possível de alunos dessa turma? a) b) c) 0 d) 5 e) 8 Exercício A sequência F n de Farey é uma sequência de conjuntos formados pelas frações irredutíveis a b com 0 a b n arranjados em ordem crescente. Exibimos abaixo os quatro primeiros termos da sequência de Farey. F {0/, /} F {0/, /, /} F {0/, /, /, /, /} F {0/, /, /, /, /, /, /} Qual deve ser o conjunto F 5? Exercício 5. É possível mostrar que se duas frações a b e c d são vizinhas na sequência de Farey F n veja o exercício anterior) então ad bc ±. Sabendo disso, você consegue determinar que fração a está imediatamente à es- b querda de 5 em F sem calcular todos os seus elementos? Exercício. Qual o valor da expressão ) ) 0 0,...) +?,...) Exercício. Resolva as expressões ) a) )

5 Respostas e Soluções.. Números racionais são aqueles que podem ser expressos por uma fração com numerador e denominador inteiros, sendo este último não nulo. Assim, podemos completar o quadro da seguinte forma: Q 5, 5 Q,... Q / Q Q 0, / Q 0,... Q Q 5 / Q 0,... Q Q Q 8, 0... / Q π / Q 0, 0 Q. Já sabemos que valem as inclusões N Z Q R. Assim: a) N Q.Verdadeira! b) Z Q.Verdadeira! c) Q Z.Falsa, pois Q Z é o conjunto das frações não inteiras. d) r Q r Q. Verdadeira! 5. Vazão é a razão entre o volume V) de água despejado e o tempo t) para despejá-lo. Observe que a primeira torneira tem vazão V, já a segunda tem V. Queremos saber qual a vazão de uma toneira equivalente de vazão V t ) às duas trabalhando juntas. Isso é equivalente a resolver a equação. a) V + V V t + t t 5 t 5 t hora e minutos. x 0, x 5, x 5 e) 0 Q Z. Falsa, pois Q Z é o conjunto das frações 8 não inteiras e f) Q Z. Falsa, pois Q Z é o conjunto das frações não inteiras e. g) 0, 0 Q Z. Verdadeira, pois Q Z é o conjunto das frações não inteiras e 0, Uma representação seria: b) c) Logo, x 5. Logo, x. x 0,... 00x,... x. O primeiro digitador produz 00 folhas em horas de trabalho. Portanto, a sua produção em uma hora será igual a 00 folhas. O segundo digitador produz 00 folhas em 5 0 horas. Portanto, a sua produção em uma hora será igual a 00 folhas. Os dois juntos 0 produzirão em uma hora a soma folhas e para produzir 00 folhas serão gastas horas d) Logo, x 8. x,... 0x,... x 8 x 0,... 0x,... x Por fim, se eles trabalharão horas por dia, então serão dias e horas Logo, x.

6 . Adaptado do da OBM) Veja que Nelly e Penha pegam juntas da barra. Portanto, os 0 gramas de Sônia representam da barra. Dessa forma, o peso da barra será gramas. 8. Adaptado do Banco de Questões da OBMEP 0) Do enunciado, garantimos que as frações envolvidas no problema devem ser positivas. a) Suponhamos que 5 seja filho de um número positivo x. Então, 5 x + ou 5 x. A primeira equação x + resulta em x, que não convém, já da segunda temos x. b) Suponhamos que seja possível que x seja filho de y e z. Sendo assim, teremos i) x + z +, o que implica x z. ii) + x x x + z z + + z, o que implica x z. iii) x + z, o que implica xz + ), sem z + solução nos inteiros positivos. iv) z + x, o que implica zx + ), sem x + solução nos inteiros positivos. c) Como sugestão, analise o que aconteceu com o sendo pai de e complete o raciocínio calculando de é filho de. Vamos provar que n + é filho de n. Para x teremos que n x x + n n + n +. Sendo assim, 05 é filho de 0, neto de 0, bisneto de 0, Observe que 0 é uma fração de inteiros e o denominador é diferente do zero, portante é um número racional, e está localizado entre o e o não no ponto médio).. Observe que é uma fração de inteiros, portanto é um número racional, equivalente a, 5 e está localizado entre o 5 e o não no ponto médio).. Em cada item, basta construirmos frações equivalentes e de mesmo denominador. a) e 8 b) 8, logo 0 > e 0 0, logo 8 > 0. c) 5 5 e 5 5 5, logo 5 > 5. d) 08 e 5 585, logo < 5.. Ele desceu 8, 5 metros, portanto está a 8, 5 metros da superfície, e depois subiu, metros ficando a 8, 5 +,, metros da superfície.. É importante destacar que o conjunto dos racionais é denso nos números reais, ou seja, em qualquer intervalo aberto existem infinitos outros racionais. a) Três exemplos:,, e, 5. b) Três exemplos:,,, e, 8. c) Três exemplos: 5, 5, 5, 588 e 5, Basta efetuarmos a operação inversa, ou seja,,,, km.. Primeiro, precisamos perceber que horas e 0 minutos são equivalentes a, 5 horas. Agora, basta efetuarmos a divisão de, 5 por, 5 horas, o que resulta em, 5, ,. 0 O valor pago por hora foi de um real e setenta centavos.. O valor será. Ela trocava 0 palitos por picolé com palito, então se subtrair um palito que foi deixado em relação ao que está sendo levado ficamos com. Esse é referente a do valor do picolé sem o palito. 5

7 ) + ).. Observe que ) ) 0, + 0, a) 8. b) 8. c) 5.. a) b) c) Logo, x. x 0,... 0x,... x x 0,... 00x,... x Logo, x. Logo, x 5. x, x 5, x 5 d)... a) Logo, x. x 0,... 0x,... x ) + ) + /. : ) Logo, x : + + ) ) : + ) 5 : + ) 5 ) : x,... 0x,... 00x,... 0x 5

8 b) c) 5. Logo, x 0 0. Logo, x 8 0. x, x 8,... 00x 8,... 0x x, x, x 0, x 8 {[ : : : : + ) ] : } 5 {[ 8 + ] : } 5 {[ ] : } 5 { : } 5 { 5 : : } 5 { 5 : 5 } : Extraído da OBM 0) Como letras iguais representam dígitos iguais, temos: M A T E M A T I C A M E I C A. Para que essa expressão tenha o maior valor, o numerador deve ser formado pelos maiores dígitos com M > E) e o denominador deve ser formado pelos menores. Logo, M, E 8 e A I C. Portanto, a expressão resulta em Resposta: Letra C. M E I C A Usando o método já apresentado no exercício 5, teremos: + t t t + t t t t t horas. 8. Adaptado do da OBM) Quando Ana andar / da escada, Beatriz terá andado / da mesma. Isso significa que Ana é três vezes mais rápida para descer do que Beatriz para subir. Quando Ana andar mais / da escada e terminar, Beatriz terá andado mais um terço disso, que é /. Assim, Beatriz andou / da escada, então ainda terá que subir 8/ / dela.. a) 0, b). c) d) 0, 0 0, 0. e) a) b) ) 0. c) 5. d) 0. e). 5 5,

9 . Extraído da OBM 0) Além disso, ) 0,... / Como 0, o primeiro dígito não nulo após a vírgula é. Resposta C.. Extraído da OBM) Serão necessárias 5 garrafas.. Extraído do Clube de Matemática da OBMEP) O numerador e o denominador são múltiplos de, logo a fração original é equivalente a Agora, todos no numerador são múltiplos de e no denominador de 5, colocando-os em evidência, ficaremos com ) ). Simplificando os fatores ), ficaremos com 5.. F 5 {0/, /5, /, /, /5, /, /5, /, /, /5, /}. Assim, o valor da expressão procurada é: Extraído da Vídeo Aula) Vamos desenvolver as operações observação a sequência dos parênteses e colchetes e ainda das operações a) ) + ) 0 [ ] + [ ] + [ + ] [ ] Usando a propriedade dada no enunciado, temos a 5b ±. Veja que a deve deixar resto ou na divisão por 5. Dentre os valores possíveis de a no conjunto {0,,,..., }, apenas e satisfazem tal condição. Se a, temos b. Se a, teremos b. Entretanto, como < 5 <, a fração procurada é.. Veja que b), ,... 0, ) ) ) 0,...) ) 8 8. Extraído da Olimpíada do Cone Sul) A fração b a a é irredutível se e só se b a é irredutível se a e b tem um fator comum, então a e b a têm um fator comum, e reciprocamente). O problema se transforma em achar o menor valor de n tal que as frações sejam todas irredutíveis. Observe que as frações anteirores possuem 8

10 a a forma e pelo critério anterior bastaria que n + a + a fosse irredutível. Tendo isso em mente, se n + é n + um primo maior que, todas as frações serão irredutíveis. Assim, um valor possível de n é 5 pois n + é um número primo. Verifiquemos que é o menor possível. i) Se n + < e n + é par, então n é par e há frações redutíveis como, por exemplo, 0 n+. ii) Se n +, obviamente há uma fração redutível. iii) Se n + <, então n + tem um múltiplo entre e e, portanto, há uma fração redutível. iv) Se n +., então n+ é redutível. v) Se n , então n+ é redutível. Logo, o valor mínimo de n + é, que corresponde a n 5.. Extraído da OBMEP 0) Seja m o número de meninas e h o número de meninos. Do enunciado concluímos que m h 0, Essa última é a fração equivalente com menores numerador e denominador inteiros. Daí, podemos concluir que os menores números para são h e m 5, e para essa situação h + m. O que está na letra b. Elaborado por Tiago Miranda e Cleber Assis Produzido por Arquimedes Curso de Ensino

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Aritméticas Soma dos termos de uma PA 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Soma dos termos de uma PA 1 Exercícios Introdutórios Exercício

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios

Leia mais

Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações

Leia mais

Operações com Números na Forma Decimal. 6 ano/e.f.

Operações com Números na Forma Decimal. 6 ano/e.f. Módulo Operações Básicas Operações com Números na Forma Decimal. 6 ano/e.f. Operações Básicas. Operações com Números na Forma Decimal. 1 Exercícios Introdutórios Exercício 1. Escreva os números decimais

Leia mais

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis

Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis Módulo de Plano Cartesiano e Sistemas de Equações Discussão de Sistemas de Equações 7 ano E.F. Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações O Plano Cartesiano 1 Exercícios

Leia mais

Módulo Divisibilidade. Múltiplos e Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Múltiplos e Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Múltiplos e Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Múltiplos e Divisores 2 Exercícios de Fixação 1 Exercícios Introdutórios Exercício 7. primos.

Leia mais

Módulo Divisibilidade. Múltiplos e Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Múltiplos e Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Múltiplos e Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Múltiplos e Divisores 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 7. No quadro

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Módulo de Plano Cartesiano e Sistemas de Equações. Exercícios de Sistemas de Equações. Professores Tiago Miranda e Cleber Assis

Módulo de Plano Cartesiano e Sistemas de Equações. Exercícios de Sistemas de Equações. Professores Tiago Miranda e Cleber Assis Módulo de Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de Equações 7 ano E.F. Professores Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de

Leia mais

Módulo Frações, o Primeiro Contato. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Frações, o Primeiro Contato. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Frações, o Primeiro Contato Exercícios sobre Frações ano EF Professores Cleber Assis e Tiago Miranda Frações, o Primeiro Contato Exercícios sobre Frações Exercícios Introdutórios Exercício a) +

Leia mais

Números Naturais Representação, Operações e Divisibilidade. Múltiplos e Divisores. Tópicos Adicionais

Números Naturais Representação, Operações e Divisibilidade. Múltiplos e Divisores. Tópicos Adicionais Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores Tópicos Adicionais Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores 1 Exercícios Introdutórios

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:

Leia mais

7 o ano/6 a série E.F.

7 o ano/6 a série E.F. Módulo de Notação Algébrica e Introdução às Equações Eercícios de Notação Algébrica. 7 o ano/6 a série E.F. Eercícios de Notação Algébrica Notação Algébrica e Introdução às Equações. 1 Eercícios Introdutórios

Leia mais

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:

Leia mais

Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F.

Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F. Módulo de Números Inteiros e Números Racionais Números Inteiros e suas operações. 7 ano E.F. Números Inteiros e Números Racionais Números Inteiros e suas operações. 1 Exercícios Introdutórios Exercício

Leia mais

Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Critérios de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Critérios de Divisibilidade 1 Exercícios Introdutórios Exercício 1. O tablete de chocolate

Leia mais

Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F.

Módulo de Números Inteiros e Números Racionais. Números Inteiros e suas operações. 7 ano E.F. Módulo de Números Inteiros e Números Racionais Números Inteiros e suas operações. 7 ano E.F. Números Inteiros e Números Racionais Números Inteiros e suas operações. 1 Exercícios Introdutórios Exercício

Leia mais

7 o ano/6 a série E.F.

7 o ano/6 a série E.F. Módulo de Notação Algébrica e Introdução às Equações Sentenças Matemáticas e Notação Algébrica. 7 o ano/6 a série E.F. Sentenc as Matema ticas e Notac a o Alge brica Notac a o Alge brica e Introduc a o

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10. DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.

Leia mais

Módulo de Progressões Aritméticas. Exercícios de PA. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Aritméticas. Exercícios de PA. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Aritméticas Exercícios de PA 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Exercícios de PA 1 Exercícios Introdutórios Exercício 1. Analise as sequências

Leia mais

Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:

Leia mais

Equações do Primeiro Grau a uma Variável. 7 ano/e.f.

Equações do Primeiro Grau a uma Variável. 7 ano/e.f. Módulo Equações e Inequações do Primeiro Grau Equações do Primeiro Grau a uma Variável. 7 ano/e.f. Equações e Inequações do Primeiro Grau. Equações do Primeiro Grau a uma Variável. 1 Eercícios Introdutórios

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais

Módulo Divisibilidade. Exercícios sobre Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Exercícios sobre Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Exercícios sobre Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Exercícios sobre Divisibilidade 1 Exercícios Introdutórios Exercício 1. Uma antiga

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5

Leia mais

7 ano E.F. Professores Cleber Assis e Tiago Miranda

7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Noções Básicas de Estatística Introdução à Estatística 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Introdução à Estatística 1 Exercícios Introdutórios Exercício

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

Módulo de Progressões Geométricas. Soma dos Termos da P.G. Infinita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Geométricas. Soma dos Termos da P.G. Infinita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Geométricas Soma dos Termos da P.G. Infinita a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Soma dos Termos da P.G. Infinita Eercícios Introdutórios

Leia mais

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro.

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro. ATIVIDADE 1. Considere os números a seguir e responda: 5; -8; 0; 14; -100; 57; -18; 2/3; -0,4; -1 a) Quais deles são números naturais? b) Quais deles são números inteiros? c) Todo número natural é um número

Leia mais

Mais Exercícios sobre Equações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Mais Exercícios sobre Equações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Mais Eercícios sobre Equações 1 Eercícios

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

Números Diretamente e Inversamente Proporcionais. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Números Diretamente e Inversamente Proporcionais. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Razões e Proporções Números Diretamente e Inversamente Proporcionais 7 ano E.F. Professores Tiago Miranda e Cleber Assis Razões e Proporções Números Diretamente e Inversamente Proporcionais Exercícios

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios

Leia mais

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro Números Racionais MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro O que são números racionais? Alguma definição? Como surgiram? Relacionados a quais ideias ou situações? Representação

Leia mais

CDI I Lista 0. Data da lista: 11/04/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete. (e) 3 (4.

CDI I Lista 0. Data da lista: 11/04/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete. (e) 3 (4. CDI I Lista 0 Data da lista: 11/0/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete 1. Calcule as expressões abaixo. a) 2 + 2 b) 5 2 + 1 2 e) 5 2 f) 5) ) c) 2

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Propriedades de Proporções. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Propriedades de Proporções. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Razões e Proporções Propriedades de Proporções 7 ano E.F. Professores Tiago Miranda e Cleber Assis Razões e Proporções Propriedades de Proporções 1 Eercícios Introdutórios Eercício 1. A primeira

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 3 Razões e Proporções 1. RAZÕES E PROPORÇÕES 1.1 RAZÃO: A razão entre dois números a e b é definida como sendo a fração ou. Em uma razão, a e b são ditos os

Leia mais

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Áreas de Figuras. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 1 Exercícios

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados?

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados? AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/1 NOME N.º Turma Nas questões 1 a, assinale com x a opção correta. 1. O valor de 4 : 4 10. A soma de dois números negativos é um número: Positivo

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Pró-letramento Matemática Estado de Minas Gerais

Pró-letramento Matemática Estado de Minas Gerais Pró-letramento Matemática Estado de Minas Gerais Diferentes significados de um mesmo conceito: o caso das frações. 1 Cleiton Batista Vasconcelos e Elizabeth Belfort Muitos conceitos matemáticos podem ser

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medidas de Comprimentos e Primeiros Exercícios. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Unidades de Medidas de Comprimentos e

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

aparecem os números, na parte de cima da máquina)

aparecem os números, na parte de cima da máquina) Um número de quatro algarismos multiplicado por outro de três algarismos deu como resultado 123 123. Quais são esses números? Vamos aprender a utilizar a máquina de calcular em operações simples. Para

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 9 de abril de 013 Nome: N.º Turma: Classificação:

Leia mais

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m. Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.

Leia mais

II.4 - Técnicas de Integração Integração de funções racionais:

II.4 - Técnicas de Integração Integração de funções racionais: Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...} 07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento.

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Resolução de Exercícios 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Exercícios de Função Quadrática 1 Exercícios Introdutórios Exercício 1. Considere

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Módulo de Fração como Porcentagem e Probabilidade. Fração como Porcentagem. 6 ano E.F.

Módulo de Fração como Porcentagem e Probabilidade. Fração como Porcentagem. 6 ano E.F. Módulo de Fração como Porcentagem e Probabilidade Fração como Porcentagem. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Porcentagem. 1 Exercícios Introdutórios Exercício 1. a) 10% 120.

Leia mais

Módulo de Porcentagem. Porcentagem. Oitavo Ano

Módulo de Porcentagem. Porcentagem. Oitavo Ano Módulo de Porcentagem Porcentagem Oitavo Ano Porcentagens 1 Exercícios Introdutórios Exercício 1. Siga o modelo e calcule as porcentagens: a) 10% 120. b) 7% 80. c) 15% 90. d) 0, 5% 200. Exercício 2. Calcule:

Leia mais