Problema do Caminho Mais Curto. Problema do Caminho Mais Curto

Tamanho: px
Começar a partir da página:

Download "Problema do Caminho Mais Curto. Problema do Caminho Mais Curto"

Transcrição

1 Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago Toronto 200 New York Boston 1 Problema do Caminho Mais Curto Shortest Path Problems Estes grafos ponderados podem ser usados para modelar redes de computadores com tempos de resposta, ou com custos de ligação. Uma das questões mais interessantes que podemos investigar com estes grafos é: Qual é o caminho mais curto entre dois vértices v no grafo, ou seja, o caminho com a soma mínima m de pesos? Isto corresponde à ligação mais rápida, r ou à ligação mais económica numa rede de computadores. 2

2 Problema do Caminho Mais Curto Algoritmos: Distância mais curta de um vértice v origem e todos os outros vértices v do grafo Dijkstra custos não negativos; O(n 2 ) Ford custos gerais (sem ciclos comprimento negativo) Algoritmo de Partição ão custos gerais; O(nm) (sem ciclos comprimento negativo) Distância mais curta entre todos os pares de vértices v do grafo Floyd custos gerais; O(n 3 ) (sem ciclos comprimento negativo) 3 Problema do Caminho Mais Curto Aplicações: Concepção de redes de comunicações Problemas de transporte Problemas de distribuição Substituição de equipamento Método do caminho crítico Dimensão dos lotes de produção Sub-problema de outros algoritmos (carteiro chinês, caixeiro viajante) 4

3 Problema do Caminho Mais Curto Substituição de equipamento: c ij O Algoritmo de Dijkstra O algoritmo de Dijkstra (rotulação permanente label setting algorithm) é um procedimento iterativo que determina o caminho mais curto entre um vértice v origem s e todos os outros vértices v do grafo. Associa um rótulo r a cada vértice, v que corresponde à distância mais curta entre o vértice v e a origem s. Os rótulos r são temporários, rios, e em cada iteração um rotúlo transforma-se se em rótulo r permanente, (encontrada a distância mais curta para esse vértice). v Faz uso da propriedade de não existir custos negativos. 6

4 O Algoritmo de Dijkstra Teorema: o algoritmo de Dijkstra determina correctamente a distância mais curta do vértice v s para cada um dos restantes vértices v do grafo. Prova: X S X v j Vértices com distância + curta encontrada V 1 v i V n t 7 Distância + curta de F a D O Algoritmo de Dijkstra 8

5 O Algoritmo de Dijkstra 9 O Algoritmo de Dijkstra 10

6 O Algoritmo de Dijkstra 11 O Algoritmo de Dijkstra 12

7 O Algoritmo de Dijkstra 13 O Algoritmo de Dijkstra 14

8 O Algoritmo de Dijkstra 15 O Algoritmo de Dijkstra 16

9 O Algoritmo de Dijkstra 17 O Algoritmo de Dijkstra 18

10 O Algoritmo de Dijkstra 19 O Algoritmo de Dijkstra 20

11 O Algoritmo de Dijkstra 21 O Algoritmo de Dijkstra 22

12 O Algoritmo de Ford Modelos com custos negativos não podem ser estudados pelo algoritmo de Dijkstra. Modelo do caminho mais longo. (caminho mais curto aplicado aos custos simétricos) Problema: ap após s a atribuição de uma distância pode ser descoberto outro caminho mais curto. Solução: necessário corrigir rótulo r e re-avaliar sucessores (algoritmo de correcção de rótulos r label correcting algorithms) 23 O Algoritmo de Ford 24

13 O Algoritmo de Ford 25 O Algoritmo de Ford 26

14 O Algoritmo de Ford 27 O Algoritmo de Ford 28

15 O Algoritmo de Ford 29 O Algoritmo de Ford 30

16 O Algoritmo de Ford 31 O Algoritmo de Ford 32

17 O Algoritmo de Ford 33 O Algoritmo de Ford 34

18 O Algoritmo de Ford v 1 s 5 4 v t v 3 35 O Algoritmo de Partição No algoritmo de Ford, um vértice v pode ser analisado mais do que uma vez. -> > Não é possível definir a complexidade polinomial do algoritmo. A prática revela um comportamento competitivo. Uma forma eficiente de manusear os vértices v do conjunto X consiste em particionar a lista em dois subconjuntos. Este procedimento estabelece um limite para o número n de iterações. Complexidade: Polinomial O(mn) 36

19 O Algoritmo de Partição 37 O Algoritmo de Partição 38

ALGORITMO DE DIJKSTRA

ALGORITMO DE DIJKSTRA LGORITMO IJKSTR por runo Miguel Pacheco Saraiva de arvalho epartamento de ngenharia Informática Universidade de oimbra oimbra, Portugal brunomig@student.dei.uc.pt Resumo escreve-se o funcionamento do algoritmo

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 12 Prof. Dr. Sylvio Barbon Junior Sumário - Árvore Geradora Mínima - Teorema pare reconhecer arestas seguras; - Algoritmo de Prim; - Algoritmo

Leia mais

Aplicação do algoritmo de Dijkstra para o problema de roteamento da frota de táxis partindo de um ponto fixo

Aplicação do algoritmo de Dijkstra para o problema de roteamento da frota de táxis partindo de um ponto fixo Aplicação do algoritmo de Dijkstra para o problema de roteamento da frota de táxis partindo de um ponto fixo Heverton Ramos dos Santos 1 Alamir Rodrigues Rangel Jr 2 O presente artigo visa demonstrar uma

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

Grafos: caminhos mínimos

Grafos: caminhos mínimos quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem

Leia mais

APLICAÇÕES DE BUSCA EM GRAFOS

APLICAÇÕES DE BUSCA EM GRAFOS APLICAÇÕES DE BUSCA EM GRAFOS David Krenkel Rodrigues de Melo david.melo1992@gmail.com Prof. Leonardo Sommariva, Estrutura de Dados RESUMO: São inúmeras as aplicaçõe de grafos, bem como os problemas clássicos

Leia mais

Caminhos Mais Curtos Fluxo Máximo Árvores Geradoras Mínimas

Caminhos Mais Curtos Fluxo Máximo Árvores Geradoras Mínimas Caminhos Mais Curtos Fluxo Máximo Árvores Geradoras Mínimas Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho marco.opt@gmail.com BCC0 Aula 1 Algoritmos e Programação Avançada Plano da Aula Caminhos

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Índice Geral. O Problema do Caminho Mais Curto com um só Objectivo

Índice Geral. O Problema do Caminho Mais Curto com um só Objectivo Índice Geral RESUMO CAPÍTULO 1 Introdução Geral 1. O problema multicritério--------------------------------------------------------------------------------- 1 2. O problema multiobjectivo ------------------------------------------------------------------------------

Leia mais

Análise de Redes de Transportes. Útil também para várias outras áreas além de Transportes!

Análise de Redes de Transportes. Útil também para várias outras áreas além de Transportes! Análise de Redes de Transportes Útil também para várias outras áreas além de Transportes! Roteiro da apresentação! Conceitos e definições! Caminho mínimo! Árvore de caminhos mínimos! Introdução ao problema

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de

Leia mais

Grafos: caminhos (matriz adjacência)

Grafos: caminhos (matriz adjacência) Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Aula 10: Tratabilidade

Aula 10: Tratabilidade Teoria da Computação DAINF-UTFPR Aula 10: Tratabilidade Prof. Ricardo Dutra da Silva Na aula anterior discutimos problemas que podem e que não podem ser computados. Nesta aula vamos considerar apenas problemas

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo

Leia mais

Técnicas de Programação III Análise de Algoritmos (Continuação)

Técnicas de Programação III Análise de Algoritmos (Continuação) Técnicas de Programação III Análise de Algoritmos (Continuação) Aula ministrada em: 23/08/2007 Prof. Mauro L. C. Silva 1/10 Objetivos da Aula Entender a Análise e a Complexidade de Algoritmos 2/10 Avaliação

Leia mais

Árvore Binária de Busca Ótima

Árvore Binária de Busca Ótima MAC 5710 - Estruturas de Dados - 2008 Referência bibliográfica Os slides sobre este assunto são parcialmente baseados nas seções sobre árvore binária de busca ótima do capítulo 4 do livro N. Wirth. Algorithms

Leia mais

COMPLEMENTAÇÃO DE CARGA HORÁRIA: 1 aula de 1h40min PLANO DE ENSINO

COMPLEMENTAÇÃO DE CARGA HORÁRIA: 1 aula de 1h40min PLANO DE ENSINO CURSO: Graduação em Matemática 1º semestre de 2016 DISCIPLINA: PESQUISA OPERACIONAL 2 PROFESSOR(ES): Vincent Gérard Yannick Guigues & Elivelton Ferreira Bueno CARGA HORÁRIA: 60h PRÉ-REQUISITO: CÁLCULO

Leia mais

Estudo e Implementação de Algoritmos de Roteamento sobre Grafos em um Sistema de Informações Geográficas

Estudo e Implementação de Algoritmos de Roteamento sobre Grafos em um Sistema de Informações Geográficas Estudo e Implementação de Algoritmos de Roteamento sobre Grafos em um Sistema de Informações Geográficas RUDINI MENEZES SAMPAIO 1 HORÁCIO HIDEKI YANASSE 2 1 UFLA Universidade Federal de Lavras DCC Departamento

Leia mais

Fluxo Máximo. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Fluxo Máximo 2014/ / 28

Fluxo Máximo. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Fluxo Máximo 2014/ / 28 Fluxo Máximo Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Fluxo Máximo 2014/2015 1 / 28 Fluxo Máximo Um grafo pesado pode ser interpretado como uma rede de canalizações onde o peso é a capacidade

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

Grafos aula 3. Relembrando... Rede de eventos e atividades. Rede de eventos e atividades

Grafos aula 3. Relembrando... Rede de eventos e atividades. Rede de eventos e atividades Grafos aula Relembrando... m grafo é valorado (ou ponderado) se possuir valores associados às linhas e/ou aos vértices. Rota mais curta entre aeroportos aminho mais curto entre máquinas, para transmissão

Leia mais

Roteamentos AULA ... META. Introduzir alguns problemas de roteamento. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Roteamentos AULA ... META. Introduzir alguns problemas de roteamento. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Roteamentos AULA META Introduzir alguns problemas de roteamento. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir circuito euleriano e ciclo hamiltoniano; Obter um circuito euleriano

Leia mais

A palavra ALGORITMO teve origem com um Matemático Persa, al. Khawarizmi. O seu trabalho mais famoso foi Al-jabr walmuquabalah,

A palavra ALGORITMO teve origem com um Matemático Persa, al. Khawarizmi. O seu trabalho mais famoso foi Al-jabr walmuquabalah, A palavra ALGORITMO teve origem com um Matemático Persa, al Khawarizmi. O seu trabalho mais famoso foi Al-jabr walmuquabalah, ou a ciência das Equações que, em última análise suscitaram o desenvolvimento

Leia mais

Andrés Eduardo Coca Salazar Tutor: Prof. Dr. Zhao Liang

Andrés Eduardo Coca Salazar Tutor: Prof. Dr. Zhao Liang : Finding Structures in Bach s, Chopin s and Mozart s NOLTA 08, Hungary, 2008 Complex network structure of musical composition: Algoritmic generation of appealing music Physica A 389 (2010) 126-132 Chi

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

FATEC Zona Leste. Teoria dos Gráfos. Métodos Quantitativos de Gestão MQG

FATEC Zona Leste. Teoria dos Gráfos. Métodos Quantitativos de Gestão MQG Teoria dos Gráfos Métodos Quantitativos de Gestão MQG Conceitualmente, um grafo consiste em um conjunto de vértices (pontos ou nós) e um conjunto de arestas (pontes ou arcos), ou seja, é uma noção simples,

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Quantidade de memória necessária

Quantidade de memória necessária Tempo de processamento Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias Quantidade de memória necessária Um algoritmo que usa 1MB de memória RAM é melhor que outro

Leia mais

A Cidade Enlameada Árvores Geradoras Mínimas

A Cidade Enlameada Árvores Geradoras Mínimas Atividade 9 A Cidade Enlameada Árvores Geradoras Mínimas Sumário Nossa sociedade é conectada por muitas redes: redes telefônicas, redes de abastecimento, redes de computadores e redes rodoviárias. Para

Leia mais

Grafos Caminhos mais curtos

Grafos Caminhos mais curtos rafos Caminhos mais curtos Cada caminho num digrafo ponderado possui um peso -a soma dos pesos das arestas que o constituem. Esta característica origina directamente problemas como: determinar o caminho

Leia mais

MOQ 43 PESQUISA OPERACIONAL. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo

MOQ 43 PESQUISA OPERACIONAL. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ PESQUISA OPERACIONAL Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo Apresentação da disciplina. Formulação em programação matemática (PM). Introdução

Leia mais

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula 15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

2 Problema das p-medianas

2 Problema das p-medianas 2 Problema das p-medianas 2.1 Definição O PMNC é definido da seguinte forma: determinar quais p facilidades (p m, onde m é o número de pontos onde podem ser abertas facilidades) devem obrigatoriamente

Leia mais

Optimização em Redes e Não Linear

Optimização em Redes e Não Linear Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final Tópicos de Matemática Finita Data: 15-07-2002 2 a Época Correcção Código: 3C Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

Grafos: algoritmos de busca

Grafos: algoritmos de busca busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 27 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

PROBLEMA DO CAMINHO MAIS CURTO ALGORITMO DE DIJKSTRA

PROBLEMA DO CAMINHO MAIS CURTO ALGORITMO DE DIJKSTRA ISSN 2175-6295 Rio de Janeiro- Brasil, 05 e 06 de agosto de 2008. SPOLM 2008 PROBLEMA DO CAMINHO MAIS CURTO ALGORITMO DE DIJKSTRA Yasmín Salazar Méndez Mestrado em Engenharia de Produção Universidade Federal

Leia mais

Um Estudo Experimental do Problema de Caminhos Mínimos Multiobjetivo

Um Estudo Experimental do Problema de Caminhos Mínimos Multiobjetivo Um Estudo Experimental do Problema de Caminhos Mínimos Multiobjetivo Wagner Schmitt Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) wschmitt@inf.ufrgs.br Leonardo T. C. Bezerra

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Conceitos básicos Classes de de Complexidade P NP Redução Problemas NPC NP-Completude Introdução Existem alguns problemas computacionais que são

Leia mais

GABINETE MTMAX MTBDJ-2UR

GABINETE MTMAX MTBDJ-2UR GABINETE MTMAX MTBDJ-2UR 1- Esta sugestão de montagem aqui descrita está baseada no gabinete MTBDJ-2UR- MTMAX (com 2 unidades de rack 19Pol), poderá ser modificada pelo cliente pois se trata de um gabinete

Leia mais

Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo

Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo Um algoritmo para aproximação da fronteira de Pareto em problemas de programação inteira multiobjectivo Manuela Fernandes, Vladimir Bushenkov A. I. de Matemática, E.S.T.T., Instituto Politécnico de Tomar,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear. CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.

Leia mais

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos

Eduardo Camponogara. DAS-9003: Introdução a Algoritmos Caminhos Mínimos entre Todos os Vértices 1/ 48 Caminhos Mínimos entre Todos os Vértices Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-9003: Introdução

Leia mais

Aula 21: Roteamento em Redes de Dados

Aula 21: Roteamento em Redes de Dados Aula : Roteamento em Redes de Dados Slide Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC Rede de Pacotes PC PC PC PC Buffer Pacote Comutado Slide Roteamento

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Classes de Complexidades de Problemas Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Tempo polinomial Um algoritmo A, com entrada

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

Não há 3 sem 2: O Teorema de Sharkovskii

Não há 3 sem 2: O Teorema de Sharkovskii Não há 3 sem 2: O Teorema de Sharkovskii Nuno Mestre Programa Gulbenkian Novos Talentos em Matemática Departamento de Matemática da Universidade de Coimbra 1 ESTRUTURA 1. Introdução 2. Casos p = 2 e p

Leia mais

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 1Q-2016 1 1995 2015 2 Custo de um algoritmo e funções de complexidade Introdução

Leia mais

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I Recursividade Pedro O.S. Vaz de Melo Problema Implemente uma função que classifique os elementos de um vetor em ordem crescente usando o algoritmo quicksort: 1. Seja

Leia mais

CAL ( ) MIEIC/FEUP Algoritmos em Grafos ( )

CAL ( ) MIEIC/FEUP Algoritmos em Grafos ( ) CAL (-) MIEIC/FEUP Algoritmos em Grafos (--) Algoritmos em Grafos: Caminho mais curto R. Rossetti, A.P.. Rocha, A. Pereira, P.B. Silva, T. Fernandes CAL, MIEIC, FEUP Março de Algoritmos em Grafos: Caminho

Leia mais

Programação Dinâmica: Algoritmo de Bellman-Ford

Programação Dinâmica: Algoritmo de Bellman-Ford Programação Dinâmica: Algoritmo de Bellman-Ford César Garcia Daudt Caio Licks Pires de Miranda Instituto de Informática Universidade Federal do Rio Grande do Sul 22/11/2010 Resumo Este artigo se propõe

Leia mais

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a,

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a, - SOLUÇÃO DE EQUAÇÕES NÃO LINEARES INTRODUÇÃO Um dos problemas que ocorrem mais reqüentemente em trabalhos cientíicos é calcular as raízes de equações da orma: () 0. A unção () pode ser um polinômio em

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

GABINETE MTMAX MTGAB-192UR

GABINETE MTMAX MTGAB-192UR GABINETE MTMAX MTGAB-192UR 1- Esta sugestão de montagem aqui descrita está baseada no gabinete MTGAB-192UR- MTMAX (com 2 unidades de rack 19Pol), poderá ser modificada pelo cliente pois se trata de um

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

Scheduling and Task Allocation ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING Hesham El-Rewini 2005 Capítulo 10 Autor...: Antonio Edson Ceccon Professor..: Prof. Heitor Silvério Lopes Apresentação

Leia mais

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos

PROVA ESPECÍFICA MODELO. Duração da prova: 120 minutos Página 1 de 9 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de Março AVALIAÇÃO DA CAPACIDADE

Leia mais

RCC - GABARITO - 2014/2

RCC - GABARITO - 2014/2 CURSO: Redes de Computadores / Sistemas para Internet / Sistemas de Informação PERÍODO: 1 o COMUM 1 - A 2 - B 3 - A 4 - A 5 - A 6 - A 7 - E CURSO: Redes de Computadores / Sistemas para Internet PERÍODO:

Leia mais

1. Cento e vinte e três. É o número de funcionárias de limpeza que diariamente trabalham

1. Cento e vinte e três. É o número de funcionárias de limpeza que diariamente trabalham Licenciatura em Engenharia Electrotécnica e de Computadores Investigação Operacional a chamada 00.01. Duração: horas e 0 minutos Com Consulta Responda a cada questão numa folha separada 1. Cento e vinte

Leia mais

PESQUISA OPERACIONAL APLICADA A LOGÍSTICA

PESQUISA OPERACIONAL APLICADA A LOGÍSTICA PESQUISA OPERACIONAL APLICADA A LOGÍSTICA Pós-Graduação em Logística e Supply Chain Valdick Sales 1 APRESENTAÇÃO Valdick sales Graduado em Ciência da Computação pela UFPE. Pós-Graduado em Redes e Banco

Leia mais

Teoria dos Grafos Aula 9

Teoria dos Grafos Aula 9 Teoria dos Grafos Aula 9 Aula passada Grafos direcionados Busca em grafos direcionados Ordenação topológica Aula de hoje Grafos com pesos Dijkstra Implementação Fila de prioridades e Heap Dijkstra (o próprio)

Leia mais

Análise e Implementação de Algoritmos para o Roteamento de Veículos

Análise e Implementação de Algoritmos para o Roteamento de Veículos Análise e Implementação de Algoritmos para o Roteamento de Veículos Milton Roberto Heinen 1 1 Universidade do Vale do Rio dos Sinos (UNISINOS) Mestrado em Computação Aplicada CEP 93022-000 - São Leopoldo

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

Universidade Federal do Rio de Janeiro COPPE. Trabalho de Processamento de Imagens Reconhecimento de Símbolos de Componentes Eletrônicos

Universidade Federal do Rio de Janeiro COPPE. Trabalho de Processamento de Imagens Reconhecimento de Símbolos de Componentes Eletrônicos Universidade Federal do Rio de Janeiro COPPE Trabalho de Processamento de Imagens Reconhecimento de Símbolos de Componentes Eletrônicos Nome: Fernanda Duarte Vilela Reis de Oliveira Professores: Antonio

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DA REPESCAGEM DO 1 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 00/006 o Semestre RESOLUÇÃO DA REPESCAGEM DO o TESTE I. (,+,+,0 =,0 val.) ) Considere o seguinte grafo. d f i l a c g h b e j k

Leia mais

Teoria dos Grafos Introdu c ao

Teoria dos Grafos Introdu c ao Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,

Leia mais

Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução Matemática e Divisibilidade. 5 Congruências Lineares

Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução Matemática e Divisibilidade. 5 Congruências Lineares Programa Matemática Discreta 2008/09 Jorge Manuel L. André FCT/UNL 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução Matemática e Divisibilidade 5 Congruências Lineares

Leia mais

4 Casamento de Padrões

4 Casamento de Padrões 4 Casamento de Padrões O casamento de padrões é uma técnica que tem por objetivo localizar os elementos constituintes de uma seqüência em um conjunto de outras seqüências. Chamemos de padrão a seqüência

Leia mais

TRANSMISSÃO DE DADOS

TRANSMISSÃO DE DADOS TRANSMISSÃO DE DADOS Aula 2: Dados e sinais Notas de aula do livro: FOROUZAN, B. A., Comunicação de Dados e Redes de Computadores, MCGraw Hill, 4ª edição Prof. Ulisses Cotta Cavalca

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão

Leia mais

SBC - Sistemas Baseados em Conhecimento

SBC - Sistemas Baseados em Conhecimento Siglas, Símbolos, Abreviaturas DW - Data Warehouse KDD Knowledge Discovery in Database MD Mineração de Dados OLAP - On-line analytical processing SBC - Sistemas Baseados em Conhecimento 1. INTRODUÇÃO O

Leia mais

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT Aula 20 Roteamento em Redes de Dados Eytan Modiano MIT 1 Roteamento Deve escolher rotas para vários pares origem, destino (pares O/D) ou para várias sessões. Roteamento datagrama: a rota é escolhida para

Leia mais

SISTEMA DE ROTEIRIZAÇÃO URBANA

SISTEMA DE ROTEIRIZAÇÃO URBANA SISTEMA DE ROTEIRIZAÇÃO URBANA EVANDRO HARRISON HOFFMANN 1, KELVIN WILLIAM ZIMMERMANN AEBI 2, SILVIO BORTOLETO 3 UnicenP Centro Universitário Positivo Bacharelado em Sistemas de Informação 1 ehh@unicenp.edu.br,

Leia mais

Grafo: Algoritmos e Aplicações

Grafo: Algoritmos e Aplicações Grafo: Algoritmos e Aplicações Leandro Colombi Resendo leandro@ifes.edu.br Grafos: Algortimos e Aplicações Referências Basicas: Boaventura Netto, P. O., Grafos: Teoria, Modelos, Algoritmos, 2ª, SP, Edgar

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em

Leia mais

Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra

Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre

Leia mais

O uso da Teoria dos Grafos no Jogo Icosiano

O uso da Teoria dos Grafos no Jogo Icosiano O uso da Teoria dos Grafos no Jogo Icosiano Leandro Natal Coral 1, Rafael Spilere Marangoni 1, Kristian Madeira 2 1 Acadêmico do curso de Ciência da Computação Unidade Acadêmica de Ciências, Engenharias

Leia mais

Algoritmo baseado em vetor de distâncias

Algoritmo baseado em vetor de distâncias Algoritmo baseado em vetor de distâncias Distance-vector-based (DV) Equação de Bellman-Ford (programação dinâmica) Define d x (y) := custo do caminho de menor custo de x para y Então d x (y) = min v {c(x,v)

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Divisão e conquista Divide um problema em subproblemas independentes, resolve-os e combina as soluções obtidas em uma solução para o problema original. Isso resulta em um processo recursivo

Leia mais

Introdução ao Teste de Software

Introdução ao Teste de Software Introdução ao Teste de Software Ricardo A. Ramos [Baseado na apresentação do LABS ICMC-USP -> http://www.labes.icmc.usp.br] Organização Introdução Teste de Software Terminologia e Conceitos Básicos Técnicas

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Laboratório de Física II: Engenhocas. Centro de Massa. Caroline Maritan Costa. Ellen Chiochetti da Silva. Eloisa Dal Ri Paz

Laboratório de Física II: Engenhocas. Centro de Massa. Caroline Maritan Costa. Ellen Chiochetti da Silva. Eloisa Dal Ri Paz Laboratório de Física II: Engenhocas Centro de Massa Caroline Maritan Costa Ellen Chiochetti da Silva Eloisa Dal Ri Paz Junho/2015 1. Introdução Todo corpo que não pode ser descrito como um ponto, recebe

Leia mais

MANUAL DE UTILIZAÇÃO DO PLUGIN TERRANETWORK 1.0 (julho/2007)

MANUAL DE UTILIZAÇÃO DO PLUGIN TERRANETWORK 1.0 (julho/2007) MANUAL TERRANETWORK DE UTILIZAÇÃO DO 1.0 PLUGIN (julho/2007) Grupo de Tabalho: Coordenador: Dr. Luiz Antonio Nogueira Lorena - Pesquisador Titular - LAC/INPE Integrantes: Dr. Geraldo Ribeiro Filho Dr.

Leia mais

Algoritmos para Resolução de Problemas em Redes

Algoritmos para Resolução de Problemas em Redes INSTITUTO MILITAR DE ENGENHARIA PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES Algoritmos para Resolução de Problemas em Redes Prof.ª Vânia Barcellos G. Campos Índice pag 1- Definição e Conceitos Básicos sobre

Leia mais

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Luísa Jorge Teresa Gomes Uma versão melhorada de um algoritmo de encaminhamento

Leia mais

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29

Análise e Síntese de Algoritmos. Programação Linear CLRS, Cap. 29 Análise e Síntese de Algoritmos Programação Linear CLRS, Cap. 29 Conteto Algoritmos em Grafos (CLRS, Cap. 22-26)... Fluos máimos em grafos (CLRS, Cap. 26) Programação Linear (CLRS, Cap. 29) Programação

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 1- Visão Geral de Testes de Software Aula 2 Estrutura para o Teste de Software SUMÁRIO 1. Introdução... 3 2. Vertentes

Leia mais

Algoritmos 2 - Introdução

Algoritmos 2 - Introdução DAINF - Departamento de Informática Algoritmos 2 - Introdução Prof. Alex Kutzke (http://alex.kutzke.com.br/courses) 19 de Agosto de 2015 Slides adaptados do material produzido pelo Prof. Rodrigo Minetto

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Grafos 1. Figura 1: grafo

Grafos 1. Figura 1: grafo Capítulo V Grafos 1 1 Definições básicas Um grafo é constituído por um conjunto finito de vértices e um conjunto finito de arcos (ou arestas) que ligam pares de vértices. O diagrama da Figura 1 representa

Leia mais

PROBLEMA DO CARTEIRO CHINÊS

PROBLEMA DO CARTEIRO CHINÊS Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 005 PROBLEMA DO CARTEIRO CHINÊS Resumo A teoria dos grafos teve seu início há cerca de 50 anos e aplicações datadas daquela época

Leia mais

Sumário. RObust Clustering using links ROCK. Thiago F. Covões. Motivação. Motivação. Links. Market basket analys. Motivação

Sumário. RObust Clustering using links ROCK. Thiago F. Covões. Motivação. Motivação. Links. Market basket analys. Motivação Sumário RObust Clustering using links ROCK Thiago F. Covões Motivação Links Função de qualidade Algoritmo Vantagens/Desvantagens SCC5895Análise de Agrupamento de Dados 1 2 Motivação Atributos categóricos/nominais/discretos

Leia mais

TS03. Teste de Software ESTÁGIOS DO TESTE DE SOFTWARE. COTI Informática Escola de Nerds

TS03. Teste de Software ESTÁGIOS DO TESTE DE SOFTWARE. COTI Informática Escola de Nerds TS03 Teste de Software ESTÁGIOS DO TESTE DE SOFTWARE COTI Informática Escola de Nerds Teste do Desenvolvedor O Teste do Desenvolvedor denota os aspectos de design e implementação de teste mais apropriados

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais