Teoria dos Grafos. Fluxo Máximo em Redes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Teoria dos Grafos. Fluxo Máximo em Redes"

Transcrição

1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada Fluxo Máximo em Redes Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos, Notas de aula, IBILCE, Unesp,

2 Conceitos básicos e resultados principais

3 Considere uma rede D(V,E) em que a cada aresta e E está associado um número real positivo c denominado capacidade da aresta e. Suponha que a rede D possua: Um vértice s V chamado origem (fonte). Um vértice t V chamado destino (sumidouro). Definição 1. Um fluxo f de s a t em D é uma função que a cada aresta e E associa um número real não negativo f(e) satisfazendo as seguintes condições (F é o valor do fluxo na rede): i) 0 f(e) c(e), e E (capacidade) ii) v V, v s and v t: f(v j,v) = f(v,v j ) (conservação do fluxo) iii) f(s,v j ) = F e iv) v j V v j V v j V f(v j,t) = F v j V Teoria dos Grafos (Antunes Rangel&Araujo) 3

4 Exemplo 1. Na Figura 1 é exibido um fluxo em uma rede. Figura 1: Fluxo em uma rede [2] Teoria dos Grafos (Antunes Rangel&Araujo) 4

5 Note que: - Em cada aresta o termo antes do parentesis indica sua capacidade e o termo entre parentesis o fluxo na aresta. - a aresta (v 2,v 3 ) possui capacidade 2 e fluxo 1. - O valor do fluxo no vértice v 2 é 3 e no vértice s é 4 (valor do fluxo na rede). Teoria dos Grafos (Antunes Rangel&Araujo) 5

6 Exercício Verificar que o fluxo exibido na Figura 1 é um Fluxo Legal, ou seja, satisfaz as condições i) a iv). 2. Considerando esta mesma rede, definir uma atribuição de fluxos para as arestas que não satisfaça ii). 3. Qual o valor máximo de fluxo para esta rede? Definição 2. Seja F um fluxo em uma rede D(V,E). Uma aresta é dita saturada se f(e) = c(e). Um vértice v V é dito saturado quando todas as arestas convergentes a v ou divergentes de v estão saturadas. Exemplo 2. Verifique se há vértices ou arestas saturados na rede exibida na Figura 1 Teoria dos Grafos (Antunes Rangel&Araujo) 6

7 Definição 3. O problema de fluxo máximo em redes consiste em dada uma rede e um vértice origem s e um vertice destino t, determinar uma atribuição de fluxo para as arestas da rede satisfazendo as condições i) a iv) tal que fluxo na rede seja o maior possível. Definição 4. Um fluxo é dito maximal quando todo caminho de s a t em D contém pelo menos uma aresta saturada. Observação 1. Todo fluxo máximo é maximal, mas a recíproca não é verdadeira. Na Figura 2 temos um fluxo maximal que não é máximo e na Figura 3 um fluxo máximo (e maximal). Teoria dos Grafos (Antunes Rangel&Araujo) 7

8 Figura 2: Fluxo maximal em uma rede [2] Teoria dos Grafos (Antunes Rangel&Araujo) 8

9 Figura 3: Fluxo máximo em uma rede [2] Teoria dos Grafos (Antunes Rangel&Araujo) 9

10 Exercício 2. Defina um fluxo maximal que não seja máximo na rede da Figura 1. Definição 5. Seja S V um subconjunto de vértices tal que s S e t / S, e seja S = V S. Um corte (S, S) relativo a s e t em D é um subconjunto de arestas de D que possuem uma extremidade em S e outra em S. Assim todo caminho da origem s ao destino t em D contém alguma aresta de (S, S). Exemplo 3. Considere a rede da Figura 1: 1) Sejam S = {s} e S = {v 1,v 2,v 3,v 4,t}. Então: (S, S) = {(s,v 1 ),(s,v 2 ),(s,v 3 )} 2) Sejam S = {s,v 1 } e S = {v 2,v 3,v 4,t}. Então: (S, S) = {(s,v 2 ),(s,v 3 ),(v 1,v 3 ),(v 4,v 1 )} Teoria dos Grafos (Antunes Rangel&Araujo) 10

11 Notação: - (S, S) + = {(v,w) E tal que v S e w S} - (S, S) = {(v,w) E tal que w S e v S} Definição 6. A capacidade c(s, S) do corte (S, S) é igual a soma das capacidades das arestas de (S, S) +, ou seja, c(s, S) = e j (S, S) + c(e j ). Um corte mínimo é aquele que possui capacidade mínima (c min ). Exercício 3. Verificar a capacidade dos cortes do exemplo anterior. Teoria dos Grafos (Antunes Rangel&Araujo) 11

12 Definição 7. Seja F um fluxo e (S, S) um corte em D. Então, f(s, S) é o fluxo no corte (S, S) e é definido por: f(s, S) = f(e j ) f(e j ). e j (S, S) + e j (S, S) Exercício 4. Verificar o fluxo nos cortes do exemplo anterior. Observação 2. O valor do fluxo em uma rede é igual ao valor do fluxo no corte: (S, S) = (s,v s). Teoria dos Grafos (Antunes Rangel&Araujo) 12

13 Observação 3. Note que o valor do fluxo na rede não pode ultrapassar a capacidade de qualquer corte (S, S). Assim, temos que: F = f(s, S) = f(e j ) f(e j ) c(s, S), (S, S). e j (S, S) + e j (S, S) Em particular: F c min Lema 1. [2] Seja F um fluxo em uma rede D e (S, S) um corte em D. Então f(s, S) = f(d). Ou seja: o valor do fluxo numa rede é igual ao valor do fluxo num corte qualquer de D. Definição 8. Uma aresta e tal que c(e) f(e) > 0, denomina-se aresta direta. Uma aresta e, tal que f(e) > 0, denomina-se aresta contrária. Teoria dos Grafos (Antunes Rangel&Araujo) 13

14 Definição 9. Dado um fluxo F em uma rede D(V,E), define-se rede residual D(f) como sendo uma rede tal que: i) O conjunto de vértices de D(f) coincide com o conjunto de vértices de D. ii) Se (v,w) é uma aresta direta em D então (v,w) também será uma aresta direta em D(f) com capacidade c (v,w) = c(v,w) f(v,w). iii) Se (v,w) é uma aresta contrária em D, então (w,v) é uma aresta contrária em D(f) com capacidade c (w,v) = f(v,w). Teoria dos Grafos (Antunes Rangel&Araujo) 14

15 Exercício 5. Construir as redes residuais das redes exibidas nas Figuras 1 e 2. Definição 10. Um caminho de s a t na rede residual é chamado de caminho aumentante (ou caminho de aumento de fluxo). Lema 2. [2] Seja f um fluxo em uma rede D(V,E) e D(f) a rede residual associada. Suponha que exista em D(f) um caminho aumentante {v 1,v 2,...,v k } da origem v 1 = s ao destino v k = t. Então o fluxo na rede pode ser aumentado de: f = min{c (v j,v j+1 ),1 j k}. Teoria dos Grafos (Antunes Rangel&Araujo) 15

16 Teorema 1. [2] O valor do fluxo máximo em uma rede D(V,E) é igual à capacidade do corte mínimo. Corolário 1. [2] Um fluxo em uma rede D(V,E) é máximo se e somente se não existe caminho aumentante na rede residual associada. Observação 4. Estes resultados foram usados por Ford e Fulkerson para definir um algoritmo para resolver o problema de fluxo máximo em redes (e.g. [2], [1]). Teoria dos Grafos (Antunes Rangel&Araujo) 16

17 O Algoritmo de Ford e Fulkerson

18 Algoritmo de Fluxo Máximo em redes [1] (Ford e Fulkerson, 1956,1957,1962) Dados de entrada: Um digrafo G(V,E); para cada aresta e j E, um número inteiro positivo c(e j ); um vértice origem s; e um vértice destino t. 1. Início 2. F = 0 3. Para todo e j E faça f(e j ) = 0 4. Construa a rede residual D(f) Teoria dos Grafos (Antunes Rangel&Araujo) 18

19 1. enquanto existir um caminho v 1,v 2,...,v k de v 1 = s a v k = t em D(f) faça: 2. F = min{c (v j,v j +1),1 j k} 3. para j = 1,...k faça: 4. se (v j,v j+1 ) é aresta direta então f(v j,v j+1 ) = f(v j,v j+1 )+F 5. caso contrário f(v j,v j+1 ) = f(v j,v j+1 ) F 6. fim para 7. F = F +F 8. Construa a nova rede residual D(f) 9. fim enquanto 10. fim Teoria dos Grafos (Antunes Rangel&Araujo) 19

20 Exercícios Exercício 6. Aplicar o algoritmo na rede da Figura 1. Teoria dos Grafos (Antunes Rangel&Araujo) 20

21 Exercícios Exercício 7. Resolva o problema de fluxo máximo considerando a rede exibida na Figura 4. Discuta a complexidade computacional do Algoritmo de Fluxo Máximo de Ford e Fulkerson usando esta rede como exemplo. Figura 4: Pior caso - Algoritmo de Ford e Fulkerson [2] Teoria dos Grafos (Antunes Rangel&Araujo) 21

22 Exercícios Verificar que para determinar o corte mínimo na rede associado ao fluxo máximo basta fazer: Seja F o fluxo máximo na rede e f(v i,v j ) o fluxo na aresta (v i,v j ). Então o corte mínimo é dado por: i) s S ii) Se v i S e f(v i,v j ) < c(v i,v j ) então v j S. iii) Se v i S e f(v i,v j ) > 0 então v j S. Maiores detalhes ver na pagina 157 de [1] e o capítulo 6 de [2]. Teoria dos Grafos (Antunes Rangel&Araujo) 22

23 [1] Boaventura, P. O., Grafos : teoria, modelos, algoritmos, Edgard Blucher, 2003 (Pg. 157). [2] Szwarcfiter, J.L. - Grafos e Algoritmos Computacionais, Ed. Campos, 1988 (Cap. 6). [3] Mirzaian, A. - Algorithms Animation Worshop, York University, última visita maio 2015: ( aaw/; ( aaw/wang/maxflowstart.htm) Teoria dos Grafos (Antunes Rangel&Araujo) 23

Teoria dos Grafos. Conjuntos de Corte e Conectividade

Teoria dos Grafos. Conjuntos de Corte e Conectividade Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Conjuntos de

Leia mais

Teoria dos Grafos. Árvores

Teoria dos Grafos.  Árvores Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Preparado a partir

Leia mais

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Cobertura, Coloração

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Teoria dos Grafos AULA 2

Teoria dos Grafos AULA 2 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 2 Subgrafos, Operações com Grafos Preparado a partir

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos direcionados (Digrafos) Preparado a partir do texto:

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Teoria dos Grafos. Caminho mínimo - Algoritmo de Dijskstra

Teoria dos Grafos. Caminho mínimo - Algoritmo de Dijskstra Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Caminho mínimo

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

Teoria dos Grafos AULA

Teoria dos Grafos AULA Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA Caminho mínimo - Algoritmo de Djskstra Preparado a partir

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os

Leia mais

O grau de saída d + (v) de um vértice v é o número de arcos que tem

O grau de saída d + (v) de um vértice v é o número de arcos que tem Grafos Direcionados Definição (Grau de Entrada) O grau de entrada d (v) de um vértice v é o número de arcos que tem v como cabeça. Definição (Grau de Saída) O grau de saída d + (v) de um vértice v é o

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Algoritmos de Fluxo Máximo

Algoritmos de Fluxo Máximo UNIVERSIDADE CATÓLICA DE PELOTAS Escola de Informática Programa de Pós-Graduação em Informática Mestrado em Ciência da Computação Algoritmos de Fluxo Máximo Rodrigo Santos de Souza 1 Fluxo em Redes É a

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Fluxo em Redes: Ford-Fulkerson - Fluxo Máximo

Fluxo em Redes: Ford-Fulkerson - Fluxo Máximo JAILSON ALVES MICAEL AGUIAR PIETRO DALMAZIO VINÍCIUS ALVES Fluxo em Redes: Ford-Fulkerson - Fluxo Máximo Trabalho apresentado ao professor doutor Leandro Colombi Resendo como requisito para aprovação na

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 10 de julho de 2017 Marco Antonio M. Carvalho

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Problema do Caminho Mais Curto. Problema do Caminho Mais Curto

Problema do Caminho Mais Curto. Problema do Caminho Mais Curto Problema do Caminho Mais Curto " Podemos afectar pesos" aos arcos de um grafo, por exemplo, para representar uma distância entre cidades numa rede ferroviária: ria: Chicago 650 600 700 Toronto 200 New

Leia mais

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de:

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Planaridade AULA META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir grafo planar e plano; Determinar o dual de um grafo; Caracterizar

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

Teoria dos Grafos Aula 8

Teoria dos Grafos Aula 8 Teoria dos Grafos Aula 8 Aula passada Classe de funções e notação Propriedades da notação Funções usuais Aula de hoje Grafos direcionados Busca em grafos direcionados Ordenação topológica Tempo de execução

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Problemas de Fluxo em Redes

Problemas de Fluxo em Redes CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação

Leia mais

Grafos: componentes fortemente conexos, árvores geradoras mínimas

Grafos: componentes fortemente conexos, árvores geradoras mínimas Grafos: componentes fortemente conexos, árvores geradoras mínimas SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina 1 Componentes fortemente conexos Um componente fortemente

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 12: Extremos relativos e absolutos. Método do Intervalo Fechado Objetivos da Aula Definir e determinar Extremos Absolutos e Relativos de

Leia mais

Grafos: caminhos (matriz adjacência)

Grafos: caminhos (matriz adjacência) Grafos: caminhos (matriz adjacência) Algoritmos e Estruturas de Dados 2 Graça Nunes 1 O problema do menor caminho Um motorista deseja encontrar o caminho mais curto possível entre duas cidades do Brasil

Leia mais

1.2 Grau de um vértice

1.2 Grau de um vértice 1.2 Grau de um vértice Seja G um grafo. Para um vértice v de V G, sua vizinhança N G (v) (ou N(v)) é definida por N(v) = {u V G vu E G }.. p.1/19 1.2 Grau de um vértice Seja G um grafo. Para um vértice

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE543 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Teoria dos Grafos. Teoria dos Grafos. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. agosto

Teoria dos Grafos. Teoria dos Grafos. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. agosto Teoria dos Grafos Introdução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2017 O que é Grafo? Definição formal Um grafo G = (V (G), E(G)) é uma estrutura matemática que consiste de dois conjuntos:

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Problema da Árvore Geradora Mínima

Problema da Árvore Geradora Mínima Instituto Federal do Espírito Santo Campus Serra Problema da Árvore Geradora Mínima Diego Pasti Jefferson Rios Sumário Apresentação do Problema da AGM...3 Raízes do Problema Definindo o Problema O Problema

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES Cortes (cut sets) (INF 5037/INF2781) Corte por arestas Em um grafo conexo G, um corte de arestas é um conjunto de arestas cuja remoção de G torna G desconexo, desde que nenhum subconjunto próprio desse

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Análise e Síntese de Algoritmos Fluxos Máximos em Grafos CLRS, Cap. 26 Contexto Algoritmos elementares em grafos (CLR, Cap. 22) Árvores abrangentes de menor custo (CLR, Cap. 23) Caminhos mais curtos com

Leia mais

Árvores: Conceitos Básicos e Árvore Geradora

Árvores: Conceitos Básicos e Árvore Geradora Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:

Leia mais

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Representação de Relações Definição: Uma relação binária de um conjunto A num conjunto

Leia mais

Teoria dos Grafos Aula 6

Teoria dos Grafos Aula 6 Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Análise e Síntese de Algoritmos. Fluxos Máximos em Grafos CLRS, Cap. 26

Análise e Síntese de Algoritmos. Fluxos Máximos em Grafos CLRS, Cap. 26 Análise e Síntese de Algoritmos Fluxos Máximos em Grafos CLRS, Cap. 26 Contexto Algoritmos elementares em grafos (CLR, Cap. 22) Árvores abrangentes de menor custo (CLR, Cap. 23) Caminhos mais curtos com

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 2001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications, 1993; Kaufmann,

Leia mais

1 Trajeto Euleriano. > Trajeto Euleriano 0/20

1 Trajeto Euleriano. > Trajeto Euleriano 0/20 Conteúdo 1 Trajeto Euleriano > Trajeto Euleriano 0/20 Um trajeto Euleriano em um grafo G é um trajeto que utiliza todas as arestas do grafo. Definição Um grafo G é Euleriano se e somente se possui um trajeto

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO

CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO Email: marcosdossantos_coppe_ufrj@yahoo.com.br SUMÁRIO Introdução; Aplicações; Premissas; Teorema de Ford-Fulkerson; Fluxo Máximo como

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

Alg l ori r t i m t os e E str t u r tu t ra r s d e D ados I I Intr t o r duçã ç o ã a a Gr G a r f a o f s P of o a. M. C r C ist s ina n a /

Alg l ori r t i m t os e E str t u r tu t ra r s d e D ados I I Intr t o r duçã ç o ã a a Gr G a r f a o f s P of o a. M. C r C ist s ina n a / Algoritmos e Estruturas de Dados II Introdução a Grafos Profa. M. Cristina / Profa. Rosane (2012) Baseado no material de aula original: Profª. Josiane M. Bueno Divisão do arquivo 1ª parte: Motivação Definição:

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

Algoritmos e Estruturas de Dados II Introdução a Grafos. Divisão do arquivo

Algoritmos e Estruturas de Dados II Introdução a Grafos. Divisão do arquivo Algoritmos e Estruturas de Dados II Introdução a Profa. M. Cristina / Profa. Rosane (2010/11) Baseado no material de aula original: Profª. Josiane M. Bueno Divisão do arquivo 1ª parte: Motivação Definição:

Leia mais

Casamento em GB. Casamento em Grafos. Notas. Teoria dos Grafos - BCC204, Casamento em Grafos. Notas. Descrição

Casamento em GB. Casamento em Grafos. Notas. Teoria dos Grafos - BCC204, Casamento em Grafos. Notas. Descrição Teoria dos Grafos - BCC20 Casamento em Grafos Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 16 de maio de 2011 1 / 18 Descrição Casamento em Grafos Em grafos, um Casamento (Matching

Leia mais

Conceito Básicos da Teoria de Grafos

Conceito Básicos da Teoria de Grafos 1 Conceito Básicos da Teoria de Grafos GRAFO Um grafo G(V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w),

Leia mais

Introdução à classe de problemas NP- Completos

Introdução à classe de problemas NP- Completos Introdução à classe de problemas NP- Completos R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes FEUP, MIEIC, CAL, 2010/2011 1 Introdução Considerações Práticas Em alguns casos práticos, alguns

Leia mais

Teoria da Computação. Clique de um Grafo. Alexandre Renato Rodrigues de Souza 1

Teoria da Computação. Clique de um Grafo. Alexandre Renato Rodrigues de Souza 1 Teoria da Computação Clique de um Grafo Alexandre Renato Rodrigues de Souza 1 O que é um grafo? Definição 1: grafo é uma estruturas utilizada para representar relações entre elementos de um dado conjunto.

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 2 13 de agosto de 2010 Aula 2 Pré-Cálculo 1 Problemas de organização e erros frequentes Problemas

Leia mais

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma

Grafos. Exemplo de árvore geradora mínima. Notas. Notas. Notas. Notas. Árvores espalhadas mínimas. Como construir uma árvore geradora miníma Grafos Árvores espalhadas mínimas Conteúdo Introdução Como construir uma árvore geradora miníma Algoritmos Referências Introdução Dado um grafo conectado não orientado G = (V, E) e uma função peso w :

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes As arestas possuem a função de indicar o relacionamento(espacial, comportamental, temporal) entre os elementos de um grafo. Em diversas situações esta relação não é simétrica, ou seja, par

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Tempo polinomial Verificação de tempo polinomial Diane Castonguay diane@inf.ufg.br Instituto de Informática Universidade Federal de Goiás Tempo polinomial Um algoritmo é

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

Aula 19 Elipse - continuação

Aula 19 Elipse - continuação MÓDULO 1 - AULA 19 Aula 19 Elipse - continuação Objetivos Desenhar a elipse com compasso e régua com escala. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

Lista de Exercícios2

Lista de Exercícios2 Lista de Exercícios2 Esta lista de exercícios foi criada com o intuito de prover ao aluno uma plataforma para a revisão sistemática do conteúdo visto em aula. Estes exercícios não são de nenhuma maneira

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de agosto de 2017 Marco Antonio M. Carvalho

Leia mais

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes

Grafos Planares. Grafos e Algoritmos Computacionais. Prof. Flávio Humberto Cabral Nunes Grafos Planares Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução Os exemplos mais naturais de grafos são os que se referem à representação de mapas

Leia mais

Teoria dos Grafos Aula 24

Teoria dos Grafos Aula 24 Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

Optimização em Redes e Não Linear

Optimização em Redes e Não Linear Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia

Leia mais

Conceitos Básicos da Teoria de Grafos

Conceitos Básicos da Teoria de Grafos Conceitos Básicos da Teoria de Grafos Universidade Federal do Pampa - UNIPAMPA Engenharia da Computação Estrutura de Dados Profª Sandra Piovesan Grafos Uma noção simples, abstrata e intuitiva. Representa

Leia mais

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II 01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01

Leia mais

Grafos Eulerianos e o Problema do Carteiro Chinês

Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino

Leia mais

Geometria Computacional: Triangulação

Geometria Computacional: Triangulação Geometria Computacional: INF2604 Geometria Computacional Prof. Hélio Lopes lopes@inf.puc-rio.br sala 408 RDC Considere S um conjunto de pontos no plano. O que é uma triangulação de S? Uma para um conjunto

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Análise e Síntese de Algoritmos Algoritmos de Aproximação CLRS, Cap. 35 Resumo Algoritmos de aproximação Algoritmos, com complexidade polinomial, que calculam soluções aproximadas para problemas de optimização

Leia mais

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA - Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Definição 1 Um Grafo G = (V, E) consiste em V, um conjunto não

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza

Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza Árvore Vermelho-Preta Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores Vermelho-preto são árvores binárias de busca Também conhecidas como Rubro-negras ou Red-Black Trees Foram inventadas

Leia mais

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas

Leia mais

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS 12 CAP. 1 CONCEITOS BÁSICOS I i I j. Essa relação de adjacência define um grafo com conjunto de vértices {I 1,...,I k }. Esse é um grafo de intervalos. Faça uma figura do grafo definido pelos intervalos

Leia mais

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo estudo

Leia mais

3 O Teorema de Ramsey

3 O Teorema de Ramsey 3 O Teorema de Ramsey Nesse capítulo enunciamos versões finitas e a versão infinita do Teorema de Ramsey, além das versões propostas por Paris, Harrington e Bovykin, que serão tratadas no capítulos subseqüentes.

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais