Experimento. Guia do professor. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Tamanho: px
Começar a partir da página:

Download "Experimento. Guia do professor. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia"

Transcrição

1 Números e funções Guia do professor Experimento Mensagens secretas com matrizes Objetivos da unidade 1 Introduzir o conceito de criptografia; 2 Fixar conteúdos como multiplicação e inversão de matrizes licença Esta obrá está licenciada sob uma licença Creative Commons Secretaria de Educação a Distância Ministério da Ciência e Tecnologia Ministério da Educação

2 Mensagens secretas com matrizes Guia do professor Sinopse Neste experimento, seus alunos aprenderão uma das diversas maneiras de criptografar mensagens: usando matrizes Inicialmente, dividindo a classe em grupos, o professor deve explicar como isso pode ser feito e fornecer uma mensagem codificada, pedindo para que eles tentem decifrá-la Depois, cada grupo deve criar sua própria mensagem cripto grafada e trocá la com os outros O desafio é tentar decifrar o que o outro grupo quis dizer sabendo a matriz chave que usaram Conteúdos Matrizes: Propriedades, Determinantes 1 2 Objetivos Introduzir o conceito de criptografia; Fixar conteúdos como multiplicação e inversão de matrizes Duração Uma aula simples

3 Introdução A palavra criptografia tem origem grega (kripto = oculto; grapho = grafia) e diz respeito à ciência, por vezes arte, de escrever mensagens de forma que somente certas pessoas possam decifrá-las - se você estiver do outro lado de uma trincheira, pode tentar decifrar mensagens que terceiros se esforçaram para ocultar Popularmente, um sistema criptográfico é chamado de código secreto e, por isso, mesmo considerando que em matemática a palavra código tem um significado diferente, utilizaremos esse termo ao invés do extenso sistema criptográfico Todos nós, desde a infância, desenvolvemos sistemas criptográficos próprios, como, por exemplo, a famosa Língua do Pê Nesta brincadeira, transformamos a informação que desejamos transmitir, uma frase qualquer, acrescentando a sílaba pê antes de cada sílaba da palavra Assim, por exemplo, a palavra criptografia vira pecrippetopegrapefipea O colega que conhece o sistema, se tiver praticado um tempo, sabe que para entender a mensagem precisa excluir os pês no começo de cada sílaba: pecrippetopegrapefipea O princípio essencial da Língua do Pê, presente em quase todos os sistemas criptográficos, é muito simples: temos uma função entre o conjunto das palavras de nosso idioma e o conjunto das palavras criptografadas definida através de uma instrução simples: inserir os pês É fundamental notar que, ao inserir os pês em duas palavras diferentes, obtemos duas palavras diferentes Em termos de função, podemos dizer que se trata de uma função injetora, o que é essencial para podermos decodificar a mensagem sem dubiedades, ou seja, ao remover os pês, podemos obter uma única palavra: a mensagem original Naturalmente existem formas mais sofisticadas de criptografia baseadas neste mesmo princípio: definimos uma transformação (função) injetiva f entre um conjunto de mensagens originais (não codificadas) e um conjunto de mensagens codificadas A função f deve ser inversível para garantir que o processo seja reversível e que as mensagens possam ser reveladas pelos receptores Na interceptação de mensagens, seja através de grampos telefônicos, de dados (no mundo moderno) ou simplesmente capturando os mensageiros (método empregado desde sempre), a eficiência de um código reside principalmente na dificuldade de se descobrir a chave f 1 mesmo conhecendo a mensagem criptografada Neste experimento abordaremos um tipo muito específico de sistema criptográfico, no qual a função f e sua inversa f 1 são determinadas por alguma matriz A e sua inversa A 1 [?] Mensagens secretas com matrizes Guia do professor 2 / 8

4 Motivação Criptografia é uma ciência essencialmente matemática, provavelmente tão antiga quanto a necessidade tão humana que motiva seu surgimento: a de que temos de ter segredos e a precisão de eventualmente partilharmos esses segredos com outras pessoas Desde a Antiguidade, conhecemos alguns sistemas criptográficos bem definidos, como por exemplo o Código de César, usado na comunicação entre comandantes do exército romano Na história da criptografia podemos distinguir dois tipos de momentos: um em que os sistemas criados eram considerados seguros, impedindo que a mensagem capturada fosse decifrada, e outro em que já havia muitos recursos para quebrar a mensagem O grande desafio do primeiro momento era quebrar o código e, no segundo caso, os donos do código eram impelidos a inventar constantemente novos detalhes para dificultar o trabalho dos decodificadores Nos dias de hoje, quiçá por vivermos em tempos nos quais as informações são tão abundantes e a necessidade de comunicação é tão pungente, mesmo sem nos darmos conta, os sistemas criptográficos estão presentes em nosso cotidiano: cada vez que digitamos nossa senha de ou do cartão de débito, antes de ser transmitida ao servidor de internet ou ao computador central do banco, ela é criptografada para evitar que, caso seja interceptada, ainda assim permaneça protegida Para nossa tranquilidade, vivemos um momento no qual o fardo realmente pesado fica por conta daqueles que desejam violar nossa privacidade, ou seja, é praticamente impossível quebrar os sistemas criptográficos em uso Para aqueles que estejam interessados na fascinante história dos sistemas criptográficos, recomendamos o Livro dos Códigos, de Simon Singh É um livro muito agradável e acessível, e aborda os sistemas criptográficos utilizados desde a Antiguidade até final do século xix O experimento Comentários iniciais Neste experimentos trabalharemos muito com matrizes Por isso, antes de introduzir códigos, talvez seja útil recordar alguns conceitos Vamos nos restringir ao caso de matrizes 2 2, mas os conceitos em si podem ser facilmente generalizados para matrizes n n Uma matriz a11 a A 2 2 = 12 a 22 define uma função de R 2 em R 2 associando o ponto x1 a11 a v = 12 x1 a11 x ao ponto = 1 + a 12 x 2 x 2 a 22 x 2 a 21 x 1 + a 22 x 2 a 21 Esta função, que a cada ponto v associa o ponto w = Av, tem algumas propriedades importantes Geometricamente, esse tipo de função pode ser caracterizada, independentemente da matriz A, como sendo uma função que leva retas do plano em retas (ou ponto) do plano e, se uma reta passa pela origem, sua imagem também será uma reta pela origem Essas propriedades podem ser formuladas algebricamente através de propriedades menos intuitivas do que sua contrapartida geométrica, mas muito úteis para se desenvolver teorias mais amplas: é possível verificar diretamente, a partir da definição do produto da matriz quadrada A(pela matriz coluna v, que A(u + v) =Au + Av e A(cv) =c(av), para quaisquer matrizes coluna v, u e para qualquer número real c A soma u + v e o produto cv são definidos coordenada a coordenada: se x1 x1 u = e v =, y 1 y 2 a 21 Mensagens secretas com matrizes Guia do professor 3 / 8

5 então u + v = x1 + x 2 x2 cx2 e c = y 1 + y 2 y 2 cy 2 Isso define o que chamamos de transformação linear Uma transformação linear de R 2 é uma função T : R 2 R 2 que satisfaz as seguintes propriedades: 1 T (u + v) =T (u)+t(v), para quaisquer u, v R 2 ; 2 T (cu) =ct (u), para quaisquer e qualquer c R u R 2 Antes de prosseguir, é conveniente que lembremos que uma função f : C D entre dois conjuntos é injetora se as imagens de dois pontos distintos são distintas (f(x) = f(y) se x = y) e sobrejetora se todo elemento de D é imagem de algum elemento de C (qualquer que seja z D, existe x C tal que f(x) =z) Quando uma função for ao mesmo tempo injetora e sobrejetora, dizemos que ela é bijetora e, neste caso, e apenas neste caso, ela é inversível, ou seja, existe uma função f 1 : D C tal que f 1 (f(x)) = x para todo x C e f(f 1 (z)) = z para todo z D É importante observar que a transformação do plano definida por uma matriz A é inversível se, e somente se, a matriz A for inversível, ou seja, se existir uma matriz 2 2 que denotamos por A 1 tal que 1 AA 1 = A 1 A = 1 e isto ocorre se, e somente se, o determinante de A for diferente de zero Etapa 1 Mensagem do professor Definição Nesta etapa é necessário escolher símbolos para representar as letras do alfabeto e os sinais de pontuação: cada letra é representada por um ponto do plano Assim, sua mensagem, ao invés de ser constituída por uma sequências de letras e sinais de pontuação, passa a ser formada por uma sequência de pontos do plano No exemplo em questão, a frase BOA AULA é substituída pela seguinte sequência de pontos: B O A A U L A tabela Repare que os pontos estão representados por colunas Esta representação de letras por pontos no plano não é um esquema de criptografia, mas apenas uma convenção que pode ser divulgada aos quatro ventos sem necessariamente causar problemas de segurança para o seu segredo Para criptografar a mensagem, ou melhor, para criptografar as letras que compõem a mensagem, devemos multiplicar cada coluna que representa uma letra por uma matriz 2 2, como a sugestão escolhida 1 1 C = 1 2 Observe neste ponto que a matriz C é inversível: sua inversa é a matriz 2 1 C 1 = 1 1 e isso é importante para garantir que a mensagem possa ser decodificada Se, ao invés da matriz C, tivéssemos escolhido a matriz 1 /2 1/2 D =, 1/2 1/ teríamos que as letras U, Q, M, I e E, representadas respectivamente pelos pontos (, 4), (1, 3), (2, 2), (3, 1) e (4, ), seriam todas, depois de criptografadas, representadas pelo ponto (2, 2) Em resumo, neste exemplo teríamos as seguintes letras representadas pelos seguintes pontos: Mensagens secretas com matrizes Guia do professor 4 / 8

6 /2 1/2 1 3/2 2 5/2 3 7/2 4 9/2 A B, F C, G, K D, H, tabela 2 Assim, a decodificação da mensagem criptografada 1 / /2 2 2 poderia ser BEM, FUI, FIM ou BIE Lembre-se de que uma matriz é inversível se, e somente se, seu determinante é não nulo Neste caso, o inverso da matriz a b A = c d é a matriz abaixo: A 1 = d ad bc c ad bc b ad bc a ad bc Observe que o denominador ad bc é nada mais que o determinante de A Se os alunos não souberem como calcular a inversa de uma matriz, é possível fazê-lo exclusivamente a partir da definição Dada matriz a b A =, c d procuramos uma matriz L, P E, I, M, Q, U x C = z J, N, R, V, Z y k O, S, W, espaço T, X, ponto Y, vírgula interro- gação tal que Como a A C = c A XC = b x d z 1 1 y ax + bz = k cx + dz bk + ay, dk + cy a exigência acima nos leva a dois sistemas, cada um com duas equações lineares e duas incógnitas (x, y, z e k) que podem ser facilmente resolvidas ax + bz =1 cx + dz = bk + ay = dk + cy =1 Etapa 2 Troca de mensagens Como dissemos no Experimento, se a matriz C escolhida não for inversível, pode ocorrer de a mensagem não ser decifrável, pois sem a condição de C ser inversível não podemos garantir que pontos que representam letras distintas possam ser levados a letras distintas No entanto, mesmo com a matriz C determinando uma transformação não injetora do plano, pode acontecer de a restrição desta transformação aos pontos do alfabeto ser injetora Na realidade, trata-se de uma situação genérica: dentre todas as infinitas matrizes 2 2, apenas um número finito delas tornarão a mensagem impossível de ser revertida Um exemplo de uma matriz 2 2 não inversível mas que leva pontos que representam caracteres distintos em caracteres distintos é a matriz 1 17 C = 1 17 Mensagens secretas com matrizes Guia do professor 5 / 8

7 Fechamento Se observarmos o exemplo fornecido na sessão anterior, em que a matriz 1 /2 1/2 D = 1/2 1/2 foi escolhida, poderemos ver que a transformação determinada por D mantém a reta definida pela equação x = y fixa, ou seja, x x D = x x Já retas perpendiculares a esta primeira são projetadas sobre as intersecções entre elas e a reta x = y Esta é uma característica geral de uma transformação linear não inversível do plano Se ela não for a transformação identicamente nula (que leva todos os pontos na origem (, )), então existe uma reta l que fica invariante, ou seja, é levada nela mesma Existe, também, uma família de retas paralelas entre si que interceptam l tal que cada uma delas é levada pela transformação em questão em um único ponto da reta l Assim, escolhendo um par de retas transversais, com a segunda delas passando por pontos que representam letras distintas, é possível construir uma projeção não apenas dada por uma matriz não inversível, mas que gera dubiedades no código Se escolhermos, por exemplo, as retas definidas pelas equações y = e 3x 2y = (passando pelos pontos (, ) e (2, 3), que representam as letras A e R respectivamente), projetamos a segunda na primeira resolvendo o sistema de equações ou, equivalentemente, em forma não matricial, o sistema cuja solução é a matriz a =1 c =, 2a +3b = 2c +3d = 1 2/3 Observe que, como o conjunto de pontos que representam caracteres é finito (no nosso caso contém 3 pontos), o número de retas que passam por mais de dois desses pontos também é finito Desafie seus alunos a encontrar matrizes não inversíveis que permitam ou não criptografar a mensagem de modo adequado a b 1 1 = e c d a b 2 = c d 3 Mensagens secretas com matrizes Guia do professor 6 / 8

8 Variações Bibliografia O mesmo experimento pode ser realizado com matrizes quadradas de dimensões maiores A análise, as discussões e as conclusões são essencialmente as mesmas que foram feitas neste texto O texto Codificando e Decifrando Mensagens (veja a Bibliografia) aborda um método criptográfico baseado em matrizes diferente do que abordamos neste experimento, o que pode servir como tema para uma exploração semelhante à que propusemos SINGH, S O livro dos códigos São Paulo: Record, 21; TAMAROZZI, A Codificando e decifrando mensagens Explorando o ensino Matemática Vol 3 São Paulo: MEC Secretaria de Educação, 24, v 3, p Mensagens secretas com matrizes Guia do professor 7 / 8

9 Ficha técnica Autor Marcelo Firer e Cristiano Torezzan Revisores Matemática Antônio Carlos Patrocínio Língua Portuguesa Carolina Bonturi Projeto gráfico e ilustrações técnicas Preface Design Ilustrador Lucas Ogasawara de Oliveira Universidade Estadual de Campinas Reitor José Tadeu Jorge Vice-Reitor Fernando Ferreira da Costa Grupo Gestor de Projetos Educacionais (ggpe unicamp) Coordenador Fernando Arantes Gerente Executiva Miriam C C de Oliveira Matemática Multimídia Coordenador Geral Samuel Rocha de Oliveira Coordenador de Experimentos Leonardo Barichello Instituto de Matemática, Estatística e Computação Científica (imecc unicamp) Diretor Jayme Vaz Jr Vice-Diretor Edmundo Capelas de Oliveira licença Esta obrá está licenciada sob uma licença Creative Commons Secretaria de Educação a Distância Ministério da Ciência e Tecnologia Ministério da Educação

Experimento. Guia do professor. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. Guia do professor. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia Números e funções Guia do professor Experimento Mensagens secretas com matrizes Objetivos da unidade 1. Introduzir o conceito de criptografia; 2. Fixar conteúdos como multiplicação e inversão de matrizes.

Leia mais

Experimento. Guia do professor. Quadrado mágico aditivo. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância

Experimento. Guia do professor. Quadrado mágico aditivo. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância geometria e medidas Guia do professor Experimento Quadrado mágico aditivo Objetivos da unidade 1. Apresentar o desafio de lógica Quadrado Mágico; 2. Estudar Progressões Aritméticas com o auxílio de quadrados

Leia mais

Experimento. O experimento. Quadrado mágico aditivo. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância

Experimento. O experimento. Quadrado mágico aditivo. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância números e funções O experimento Experimento Quadrado mágico aditivo Objetivos da unidade 1. Apresentar o desafio de lógica Quadrado Mágico; 2. Estudar Progressões Aritméticas com o auxílio de quadrados

Leia mais

Experimento. O experimento. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Análise de dados e probabilidade O experimento Experimento Jogo da trilha 1. 2. 3. Objetivos da unidade Discutir, através de um jogo, o conceito de probabilidade condicional; Desenvolver a habilidade necessária

Leia mais

Experimento. Guia do professor. Baralho mágico. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Baralho mágico. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Baralho mágico Objetivos da unidade Examinar uma função logarítmica discreta a partir da execução de uma mágica com cartas; Motivar o estudo dos logaritmos.

Leia mais

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções números e funções O experimento Objetivos da unidade Examinar uma função logarítmica discreta a partir da execução de uma mágica com cartas; Motivar o estudo dos logaritmos. licença Esta obra está licenciada

Leia mais

Experimento. Guia do professor. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Jogo da trilha. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Análise de dados e probabilidade Guia do professor Experimento Jogo da trilha Objetivos da unidade 1. Discutir, através de um jogo, o conceito de probabilidade condicional; 2. Desenvolver a habilidade

Leia mais

Experimento. Guia do professor. Duplicação do Cubo. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Duplicação do Cubo. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação geometria e medidas Guia do professor Experimento Duplicação do Cubo 1. 2. 3. Objetivos da unidade Experimentalmente, obter a aresta de um cubo, que possui o dobro do volume de um outro cubo de arestas

Leia mais

Software. Guia do professor. Geometria do táxi formas geométricas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Software. Guia do professor. Geometria do táxi formas geométricas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Geometria e medidas Guia do professor Software Geometria do táxi formas geométricas Objetivo da unidade Utilizar o sistema de coordenadas cartesianas no plano e a noção de distância do táxi para explorar

Leia mais

Experimento. O experimento. Caixa de papel. Ministério da Educação. Ministério da Ciência e Tecnologia. Secretaria de Educação a Distância

Experimento. O experimento. Caixa de papel. Ministério da Educação. Ministério da Ciência e Tecnologia. Secretaria de Educação a Distância números e funções geometria e medidas O experimento Experimento Caixa de papel Objetivo da unidade Discutir com o aluno o conceito de volume aliado ao comportamento de funções. licença Esta obrá está licenciada

Leia mais

A loira do banheiro. Série Matemática na Escola

A loira do banheiro. Série Matemática na Escola A loira do banheiro Série Matemática na Escola Objetivos 1. Apresentar os princípios básicos da criptografia. 2. Mostrar o funcionamento de algumas cifras de substituição. 3. Apresentar alguns esquemas

Leia mais

Experimento. O experimento. Como economizar cadarço. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Como economizar cadarço. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação geometrias e medidas O experimento Experimento Como economizar cadarço 1. 2. Objetivos da unidade Permitir ao aluno criar e testar hipóteses; Descrever situações e resolver problemas utilizando conceitos

Leia mais

Experimento. O experimento. Avalanches. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Avalanches. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções O experimento Experimento Avalanches 1. 2. 3. Objetivos da unidade Modelar o fenômeno de avalanches; Construir gráficos; Linearizar gráficos através de logaritmos. licença Esta obrá está

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas Guia do professor Objetivos da unidade 1. Desenvolver a habilidade para utilizar um transferidor; 2. Apresentar, experimentalmente, a noção de tangente de um ângulo; 3. Usar a noção

Leia mais

Experimento. Guia do professor. Transformação de Möbius. Governo Federal. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. Guia do professor. Transformação de Möbius. Governo Federal. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia geometria e medidas Números e funções Guia do professor Experimento Transformação de Möbius Objetivos da unidade 1. Estudar o efeito da translação, rotação e dilatação no plano complexo; 2. Pôr em prática

Leia mais

Experimento. O experimento. Esqueletos no espaço. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. O experimento. Esqueletos no espaço. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância geometrias e medidas O experimento Experimento Esqueletos no espaço 1. 2. Objetivos da unidade Instrumentalizar o docente com material para o ensino de Geometria Espacial; Explorar esqueletos de poliedros

Leia mais

Experimento. Guia do professor. Câmara escura. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Câmara escura. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Câmara escura 1. Objetivos da unidade Motivar o estudo de relações de proporcionalidade direta e inversa a partir da obser vação de um fenômeno físico. licença

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Mostrar uma aplicação muito importante de matrizes à análise de grafos; 2. Reforçar o significado da multiplicação de matrizes; 3. Introduzir

Leia mais

Experimento. O experimento. Qual é a área do quadrilátero? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. O experimento. Qual é a área do quadrilátero? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia Geometria e medidas O experimento Experimento Qual é a área do quadrilátero? Objetivos da unidade 1. Apresentar diferentes formas de se calcular ou aproximar a área de quadriláteros; 2. Analisar situações

Leia mais

CIFRA DE HILL. Autor: Maycon Pereira de Souza

CIFRA DE HILL. Autor: Maycon Pereira de Souza CIFRA DE HILL Autor: Maycon Pereira de Souza Instituto Federal de Goiás Campus Uruaçu. maycon.souza@ifg.edu.br Resumo Vamos falar sobre um método criptográfico conhecido como Cifra de Hill, método este

Leia mais

Experimento. Guia do professor. Avalanches. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Avalanches. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Avalanches Objetivos da unidade 1. Modelar o fenômeno de avalanches; 2. Construir gráficos; 3. Linearizar gráficos através de logaritmos. licença Esta obrá

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes.

Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a Granel Série Matemática na Escola Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a granel Série Matemática na Escola Conteúdos Produto de matrizes. Duração Aprox.

Leia mais

Secretaria de Educação a Distância

Secretaria de Educação a Distância Objetivos da unidade Elaborar, verificar e reformular hipóteses sobre um fenômeno observado; Aplicar conceitos básicos de geometria plana e espacial. Esta obrá está licenciada sob uma licença Creative

Leia mais

Experimento. Guia do professor. A matemática dos calendários. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. Guia do professor. A matemática dos calendários. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia Números e funções Guia do professor Experimento A matemática dos calendários Objetivos da unidade 1. Entender e aplicar algoritmos; 2. Revisar o uso de operações básicas. licença Esta obrá está licenciada

Leia mais

Mantendo Segredos com a ajuda da Matemática

Mantendo Segredos com a ajuda da Matemática Mantendo Segredos com a ajuda da Matemática Hemar Godinho Departamento de Matemática - UnB 21 de outubro de 2002 Vamos imaginar que dois colegas de uma turma estejam planejando uma festa surpresa. O sucesso

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

Os Infinitos de Cantor. Série Matemática na Escola

Os Infinitos de Cantor. Série Matemática na Escola Os Infinitos de Cantor Série Matemática na Escola Objetivos 1. Abordar os temas de cardinalidade, conjuntos e subconjuntos infinitos, correspondência biunívoca; 2. Apresentar uma demonstração matemática

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Números primos e Criptografia

Números primos e Criptografia 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2008 Números primos e Criptografia Marisa Ortegoza da Cunha marisa.ortegoza@bol.com.br

Leia mais

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

1. Introdução: 2. Desenvolvimento: Atividade 1: Operações com Matrizes

1. Introdução: 2. Desenvolvimento: Atividade 1: Operações com Matrizes FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Colégio Estadual Monsenhor Barenco Coelho PROFESSOR: Gilvânia Alves Ribeiro Pinheiro MATRÍCULA: 00/0891340-2 SÉRIE:

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Solução de Sistemas Lineares INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Solução de Sistemas Lineares Introdução Uma variedade de problemas de engenharia pode ser resolvido através da análise linear; entre eles podemos citar: determinação do

Leia mais

Esse tal de Bhaskara. Série Matemática na Escola

Esse tal de Bhaskara. Série Matemática na Escola Esse tal de Bhaskara Série Matemática na Escola Objetivos 1. Proporcionar um passeio histórico sobre os processos de resolução de equações quadráticas. Esse tal de Bhaskara 1/7 Esse tal de Bhaskara Série

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.

O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

ÁLGEBRA LINEAR AULA 2

ÁLGEBRA LINEAR AULA 2 ÁLGEBRA LINEAR AULA 2 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de 1 2 3 4 5 6 7 2 / 14 matrizes Muitos problemas em várias áreas da Ciência recaem na solução

Leia mais

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas O experimento Objetivos da unidade 1. Desenvolver a habilidade para utilizar um transferidor; 2. Apresentar, experimentalmente, a noção de tangente de um ângulo; 3. Usar a noção de

Leia mais

MAT Geometria Analítica Licenciatura em Matemática

MAT Geometria Analítica Licenciatura em Matemática MAT010 - Geometria Analítica Licenciatura em Matemática 3 ā Prova - 29/06/2009 Nome: N ō USP: Instruções: 1- Preencha o cabeçalho a caneta. 2- A prova pode ser resolvida a lápis. 3- Justifique suas afirmações.

Leia mais

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas O experimento Objetivos da unidade 1. Desenvolver a habilidade para utilizar um transferidor; 2. Apresentar, experimentalmente, a noção de tangente de um ângulo; 3. Usar a noção de

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

0.1 Tutorial sobre Polinômio de Taylor

0.1 Tutorial sobre Polinômio de Taylor Métodos numéricos e equações diferenciais ordinárias Solução da lista 02 Tutorial sobre Pol de Taylor tarcisio@member.ams.org T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 4 de fevereiro

Leia mais

Onde está o peso extra? Série Problemas e Soluções. Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis.

Onde está o peso extra? Série Problemas e Soluções. Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis. Onde está o peso extra? Série Problemas e Soluções Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis. Onde está o peso extra? Série Problemas e soluções Conteúdos Lógica,

Leia mais

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO

ADA 1º BIMESTRE CICLO I 2018 MATEMÁTICA 2ª SÉRIE DO ENSINO MÉDIO ADA º BIMESTRE CICLO I 08 MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM DA ADA Um sistema de equações pode ser usado para representar situações-problemas da matemática ou do dia-a-dia. Assinale a alternativa

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

aula AJUSTE POR MÍNIMOS QUADRADOS

aula AJUSTE POR MÍNIMOS QUADRADOS AJUSTE POR MÍNIMOS QUADRADOS META Conduzir o aluno a aplicar o método de ajuste por mínimos quadrados, efetuando uma regressão linear e oferecer ao aluno uma oportunidade de praticar a aplicação do método

Leia mais

Material Teórico - Módulo Sistemas de Equações do 1 o Grau. Sistemas de Equações do 1 o Grau. Oitavo Ano

Material Teórico - Módulo Sistemas de Equações do 1 o Grau. Sistemas de Equações do 1 o Grau. Oitavo Ano Material Teórico - Módulo Sistemas de Equações do 1 o Grau Sistemas de Equações do 1 o Grau Oitavo Ano Autor: Prof Ulisses Lima Parente Revisor: Prof Antonio Caminha M Neto 1 Introdução Um sistema linear

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

GAN Introdução à Álgebra Linear Aula 5. Turma A1 Profa. Ana Maria Luz Fassarella do Amaral

GAN Introdução à Álgebra Linear Aula 5. Turma A1 Profa. Ana Maria Luz Fassarella do Amaral GAN 00007 Introdução à Álgebra Linear Aula 5 Turma A1 Profa. Ana Maria Luz Fassarella do Amaral Codificação por multiplicação matricial Exemplo retirado de W. K. Nicholson, Álgebra Linear. Um avião espião

Leia mais

Criptografia. Thiago de Paiva Campos

Criptografia. Thiago de Paiva Campos Criptografia Thiago de Paiva Campos Algoritmo: 1º Escolha, de forma aleatória, infinitos símbolos diferentes e que não se repetem na sequência. ( ) 2º Transforme todos os símbolos escritos anteriormente

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4. Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas

Leia mais

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares.

Objetivos. Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Transformações lineares MÓDULO 3 - AULA 18 Aula 18 Transformações lineares Objetivos Definir os conceitos de transformação matricial e linear; Apresentar vários exemplos de transformações lineares. Introdução

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ. Sistemas Lineares. Matemática 2 Ano 4 Bimestre/2014 Tarefa 1.

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ. Sistemas Lineares. Matemática 2 Ano 4 Bimestre/2014 Tarefa 1. Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Sistemas Lineares Matemática 2 Ano 4 Bimestre/2014 Tarefa 1 Grupo 1 Elaboração do plano de trabalho 1 Cursista: Maria Delfina Ribas Ferreira

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

Xeque-Mate. Série Matemática na Escola

Xeque-Mate. Série Matemática na Escola Xeque-Mate Série Matemática na Escola Objetivos 1. Introduzir o Princípio Fundamental de Contagem; 2. Apresentar os conceitos de Arranjo e Permutação. Xeque-Mate Série Matemática na Escola Conteúdos Arranjo,

Leia mais

Música quase por acaso. Série Matemática na Escola

Música quase por acaso. Série Matemática na Escola Música quase por acaso Série Matemática na Escola Objetivos 1. Introduzir o conceito de probabilidade de transição; 2. Introduzir Cadeias de Markov; 3. Usar matrizes, estatística e probabilidade para compor

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,?

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,? SÉRIES NUMÉRICAS Séries Numéricas Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos: 2,10,12,16,17,18,19,?

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

x 1 + b a 2 a 2 : declive da recta ;

x 1 + b a 2 a 2 : declive da recta ; - O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2

Leia mais

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear I - Aula 5. Roteiro Álgebra Linear I - Aula 5 1. Produto misto. 2. Equação paramétrica da reta. 3. Retas paralelas e reversas. 4. Equação paramétrica do plano. 5. Ortogonalizade. Roteiro 1 Produto Misto Dados três vetores

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos.

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2012-2013 Matemática METAS CURRICULARES

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo: n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.

Leia mais

ÁLGEBRA LINEAR A FICHA 2

ÁLGEBRA LINEAR A FICHA 2 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 7/Out/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Matrizes: Inversão e Formas

Leia mais

Cifra Homofônica. Mestrado em Ciência da Computação Estruturas de Dados Prof. Dr. Paulo Roberto Gomes Luzzardi Mestranda: Nelsi Warken

Cifra Homofônica. Mestrado em Ciência da Computação Estruturas de Dados Prof. Dr. Paulo Roberto Gomes Luzzardi Mestranda: Nelsi Warken Cifra Homofônica Mestrado em Ciência da Computação Estruturas de Dados Prof. Dr. Paulo Roberto Gomes Luzzardi Mestranda: Nelsi Warken Sumário 1. Introdução 2. História da Criptologia 3. Tipos de Cifras

Leia mais

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6). F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.

Leia mais

PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I

PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I PROJETO SEEDUC FORMAÇÃO CONTINUADA DE PROFESSORES COLÉGIO ESTADUAL MARECHAL JUAREZ TÁVORA GRUPO

Leia mais

Experimento. O experimento. Quantos peixes há no lago? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Quantos peixes há no lago? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Análise de dados e probabilidade O experimento Experimento Quantos peixes há no lago? Objetivos da unidade Introduzir um método que permite estimar o tamanho de uma deter minada população. licença Esta

Leia mais

Plano de Trabalho. Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º Ano 3º Bimestre/2012. Matriz e Determinante

Plano de Trabalho. Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º Ano 3º Bimestre/2012. Matriz e Determinante Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 3º Bimestre/202 Plano de Trabalho Matriz e Determinante Tarefa Cursista: Márcio A. Guedes de Magalhães Tutora: Karina

Leia mais

Circuitos Lógicos Aula 5

Circuitos Lógicos Aula 5 Circuitos Lógicos Aula 5 Aula passada Sistemas numéricos Metodo de conversão Conversão entre sistemas Números fracionários Aula de hoje Conversão fracionária Método da multiplicação Código BCD Código ASCII

Leia mais