Modelagem computacional aplicada à análise do gradiente de tensões superficiais

Documentos relacionados
Estrutura física da matéria Difração de elétrons

Cálculo de Tensões Residuais em Filmes Finos Através de Difração de Raios-X com Ângulo de incidência Rasante

1304 Difração de elétrons

Olimpíada Brasileira de Física a Fase Gabarito Comentado para a prova de 3º ano

1318 Raios X / Espectro contínuo e característico Medida da razão h/e.

Descrição das Atividades

4. Metodologia Modelos utilizados

O espectro eletromagnético

SIMULAÇÃO DAS TENSÕES RESIDUAIS DE CHAPAS SOLDADAS NA CONSTRUÇÃO NAVAL

Interferência e Experiência de Young

Pressão Interna + Momento Fletor e Esforço Axial.

Laboratório de Estrutura da Matéria II

Lista de Problemas rad.)

Transformação da deformação

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

FLUORESCÊNCIA DE RAIOS X

2 Propagação de ondas elásticas em cilindros

PME Mecânica dos Sólidos II 6 a Lista de Exercícios

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.

Física IV Escola Politécnica PS 14 de dezembro de 2017

Comprimento de onda ( l )

2 Conceitos preliminares

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS

3. Metodologia utilizada na modelagem numérica dos conglomerados

Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV

PME Mecânica dos Sólidos I 4 a Lista de Exercícios


Propriedades Ondulatórias da matéria

Estudo analítico e numérico do espalhamento acústico

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES (BC 1105)

Física. Física Moderna

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

7 Análise Método dos Elementos Finitos

CONAEND&IEV 063 NOVA TÉCNICA DE AVALIAÇÃO DO ESTADO DAS TENSÕES DE SOLDAGEM

Figura 1 - Onda electromagnética colimada

Física IV P1-1 de setembro de 2016

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200

Escola Politécnica FAP GABARITO DA P2 24 de outubro de 2006

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Laboratório de Estrutura da Matéria II

SISTEMA HEXAGONAL SIMPLES

Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018

de maior força, tanto na direção normal quanto na direção tangencial, está em uma posição no

Capítulo 36 Difração

5 Corte em Rocha 5.1. Introdução

O Elétron como Onda. Difração de Bragg

Experiência 10 DIFRAÇÃO E INTERFERÊNCIA

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

Estado duplo ou, Estado plano de tensões.

Medição da Velocidade da Luz

ESTUDO DO COMPORTAMENTO DE UM SÓLIDO ELÁSTICO-LINEAR TRANSVERSALMENTE ISOTRÓPICO VIA MHA E VIA MEF

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos

DIFRATÔMETRO DE RAIOS X PORTÁTIL PARA ANÁLISE DE TENSÕES EM CONDIÇÕES DE CAMPO

4 e 6/Maio/2016 Aulas 17 e 18

Introdução. Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela.

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

LOM Teoria da Elasticidade Aplicada

Teoria - Difração e Interferência

LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina

RESULTADOS: Intensidade das Fontes, Absorção Ótica e Dureza das Amostras

Cinemática Inversa de Manipuladores

Fundamentos físicos da Sismoestratigrafia

5 A Influência dos dopantes na deformação mecânica do Nitreto de Gálio por nanoindentação

Universidade de Lisboa

3 Programa Experimental

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

MÉTODO NUMÉRICO PARA A DETERMINAÇÃO DO MÓDULO DE TENACIDADE DE MATERIAIS A PARTIR DE ENSAIOS DE TRAÇÃO

5 Apresentação e Análise dos Resultados

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

Avaliação Teórica II Seleção Final 2017 Olimpíadas Internacionais de Física 23 de Março de 2017

n 1 senθ 1 = n 2 senθ 2 (1)

Propriedades mecânicas dos materiais

3 Teoria do Método dos Elementos Discretos 3.1. Introdução

Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV

7. Resultados e discussão

Física VIII Ondas eletromagnéticas e Física Moderna

3. Experimentos de laboratório em halita

Escola Politécnica

Propagação Radioelétrica 2017/II Profa. Cristina

Energia Solar Térmica. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014

Laboratório de Física IV. Prof. Helena

3 Modelagem numérica.

STV 15 SET na figura acima a freqüência das variações do sinal de onda quadrada da câmera mostradas no topo do padrão xadrez é de 0,11 MHz

Física. Leonardo Gomes (Arthur Vieira) 27 e Refração da Luz

5 Análise para antenas em espiras inclinadas em relação ao eixo da ferramenta

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

3 Propagação de Ondas Milimétricas

6 Análise de Aterros Via MEF

Física IV - Laboratório. Difração

MÉTODO NUMÉRICO PARA A DETERMINAÇÃO DO MÓDULO DE TENACIDADE DE MATERIAIS A PARTIR DE ENSAIOS DE TRAÇÃO

Departamento de Zoologia da Universidade de Coimbra

4 SIMULAÇÃO TEÓRICA DOS GUIAS DE ONDA

Escola Politécnica FAP GABARITO DA PS 12 de dezembro de 2006

Transcrição:

Modelagem computacional aplicada à análise do gradiente de tensões superficiais Vladimir Ivanovitch Monin Joaquim Teixeira de Assis Susana Marrero Iglesias Universidade do stado do Rio de Janeiro, Instituto Politécnico CP 9785 863-5 Nova Friburgo, RJ, Brasil -mail: joaquim@iprj.uerj.br.br Resumo: O estudo do gradiente de tensão superficial é um dos mais importantes problemas teóricos e experimentais em mecânica, especialmente no caso da análise de tensões superficiais que surgem após vários tipos de tratamentos superficiais, como: processamento por laser ou tecnologia de implantação iônica. As dificuldades nessa área estão diretamente relacionadas à não completeza da metodologia desenvolvida para ambas as técnicas teóricas e experimentais. A simulação computacional e os métodos numéricos nos dão a possibilidade de resolver esses problemas da determinação dos parâmetros do gradiente de tensão. O objetivo desse trabalho foi desenvolver uma metodologia para a determinação dos parâmetros do gradiente de tensão usando a simulação computacional das linhas de difração e a adaptação desta ao método experimental de medida pela técnica de difração de raios X. A metodologia desenvolvida é baseada na simulação dos perfis de difração distorcidos pelo gradiente de tensão superficial. A análise dessas distorções, caracterizadas pelo deslocamento e alargamento do perfil, permitiu que se encontrasse uma relação entre os dados experimentais de difração e os parâmetros do gradiente de tensão. Foram estudados os gradientes de tensão formados por distribuições lineares e exponenciais nas camadas superficiais do material.. INTRODUÇÃO Os tratamentos para modificações das propriedades físico-mecânicas das superfícies de materiais por tecnologias modernas, como têmpera superficial por lazer ou implantação iônica, são acompanhadas pelo surgimento de tensões residuais caracterizadas por alto nível da tensão e do gradiente. A Figura mostra vários tipos de distribuições de tensões residuais que podem ser encontrados nas camadas superficiais dos metais e ligas após os tratamentos mencionadas acima. Fig. Vários tipos das distribuições de tensões superficiais: a linear; b exponencial; c polinomial. A principal particularidade das distribuições de tensões mostradas na Fig. é que a camada de localização de tensões é muito fina e o valor do gradiente neste caso é alto. A camada fina de localização de tensões com gradiente alto cria um grande problema tanto na parte de análise teórica quanto na parte de medidas experimentais. Um dos métodos mais utilizados e confiáveis na pratica é o método das medidas de tensões por difração de raios X [,]. A penetração dos raios X nos materiais, inclusive metais e ligas, pode variar de unidades até dezenas de micrometros. Nestas condições o valor de tensão medida por difração de raios X é a 343

média através da camada efetiva de penetração dos raios X. Claro que no caso de gradiente alto a diferença entre o valor verdadeiro de tensão na superfície e o valor médio medido por difração de raios X pode ser significativa. O objetivo deste trabalho é desenvolver uma metodologia de medidas de tensões por difração de raios X que permita obter o valor verdadeiro de tensão na superfície tratada e do gradiente e que dá a possibilidade de avaliar a espessura efetiva de ação de tensões residuais nas camadas superficiais. Fig. - squema de medida de tensão por difração de raios X: tubo de raios X;,3 raio X incidente e difratado; 4 amostra analisada; 5 perfil da linha de difração.. MTODOLOGIA Medições das tensões mecânicas pelo método de sen ψ De outra forma, a deformação ε φ,ψ pode ser expressa em termos da difração interpretada pela lei de Bragg: d senθ = λ () O principal método de medidas de tensões por difração de raios X é o método do sen ψ, que é baseado na medida do ângulo de difração que caracteriza a posição angular da linha de difração []. A Fig. mostra o esquema das medidas pelo método do sen ψ. O método do sen ψ [3] é baseado na utilização da equação da teoria de elasticidade para deformação ε φ,ψ em direção arbitrária. No caso do sistema de coordenadas polares esta equação para ε φ,ψ é + ν ν ε ϕ, ψ = ϕ sen ψ ( + ) () onde ϕ é o ângulo azimutal e ψ é o ângulo polar;, ν são as constantes de elasticidade do material;, são tensões principais e ϕ é a componente da tensão medida. onde d é a distância interplanar da rede cristalina, θ é o ângulo de difração e d λ é o comprimento de onda do raio X. Após a diferenciação da lei de Bragg podemos obter: Igualando as equações () e (3), podemos obter a equação para o ângulo de difração θ ψ mostrado na Fig.: ( + ν ) sen ψ ν θψ = θ + ϕ ( + ) ctgθ (4) Pode-se ver que θ ψ é uma função linear em relação ao sen ψ e o valor de tensão pode ser determinado como: ε φ, ψ = = ctgθ θ + ν (5) d θ ( θ θ ) ϕ = ctg φ = 9 φ = (3) 344

Onde (θ ψ =9 - θ ψ= ) é a inclinação da linha reta da função θ ψ =f(sen ψ). Fig.3 ilustra a dependência de ângulo de difração θ ψ em função de sen ψ para vários tensões. Fig.3 Os gráficos de θ ψ =f(sen ψ) do método de (sen ψ). A posição angular dos perfis individuais é determinada pela equação (4), onde a tensão ψ é substituída por uma função de distribuição de tensões (t) caracterizada por um gradiente [3]. A equação (4) pode ser escrita neste caso como: ( + ν ) sen ψ ν θ ψ = θ + ( t) ( + ) ctgθ (7) A figura 4 mostra a estrutura do perfil final da linha de difração para o caso de tensão superficial constante. Pode-se ver que a forma e a posição dos todos os perfis neste caso são iguais. Variações do ângulo ψ se realizam por inclinações da superfície da amostra analisada em relação de feixe de raios X incidente (veja Fig.). A inclinação total (θ ψ =9 - θ ψ= ) é determinada por regressão linear e o valor da tensão no método de sen ψ pode ser calculado pela q. 5. Método de sen ψ no caso de gradiente de tensões. A influência do gradiente de tensões no método de sen ψ pode ser analisada pela simulação do perfil da linha de difração pela modelagem computacional desenvolvida nos trabalhos [4]. sta metodologia é baseada na interpretação da linha de difração de raios X como soma dos perfis refletidos separadamente por seqüência das camadas superficiais. A intensidade da cada perfil individual depende de absorção de raios X no material e é expressa pela seguinte equação []: I dif = αi e µ z = αi e µ t cos (6) + ( ψ + 9 θ ) cos( ψ 9+ θ ) Fig. 4 strutura do perfil da linha de difração simulado por modelagem computacional. No caso de tensões com gradiente, as posições dos perfis individuais variam dependendo da função de distribuição de tensões (t). A Fig.5 mostra as posições e as intensidades dos perfis individuais e dá a posição e a forma do perfil final neste caso. Fig.5 strutura do perfil da linha de difração simulado por modelagem computacional: a perfis individuais; b perfil final sem gradiente (vermelho) e com gradiente (azul). 345

Como pode ser visto na fig. 5, o gradiente de tensões influencia significativamente na posição e na forma da linha de difração (Fig.5b). de raios X. A primeira questão é como descobrir a presença do gradiente na superfície do material analisado. Resultados da metodologia de análise de tensões com gradiente O ângulo polar ψ encontrado nas equações (6) e (7) não participa evidentemente na formação do perfil final no caso tensões com gradiente. sta influência é ligada à dependência da penetração de raios X, da inclinação de feixe incidente á superfície do material analisado ou dependência de ângulo polar ψ. Realmente, com o aumento do ângulo polar ψ diminui-se a profundidade de penetração dos raios X no material e isso tem que influir na posição e na forma do perfil da linha de difração. A metodologia de simulação do perfil da linha de difração por modelagem computacional [4] permite analisar esta dependência. A Fig.6 apresenta os resultados da determinação dos valores dos ângulos de difração para aço quando nas camadas superficiais atuam as tensões residuais distribuídas linearmente, pela seguinte equação: ( t) kt (8) = Onde a tensão na superfície = 5MPa e o gradiente k = MPa/µm. De acordo com equação (5) do método de sen ψ, o valor de tensão calculado pela inclinação da linha reta 3 é igual a = 3 MPa. m resultado o pesquisador que realiza as medidas de tensões pode tirar uma conclusão falsa que na superfície do aço analisado atuam as tensões iguais a 3 MPa, mas o valor de tensão verdadeira na superfície do aço é = 5MPa. ntão o problema é como fazer as correções das tensões com gradiente medidas pelo método de difração Fig.6 - Dependências θ ψ =f(sen ψ) obtidas pelo método de sen ψ para aço: linha reta corresponde a tensão constante = 5MPa ; os dados correspondentes a tensão com gradiente k= MPa/ µm; 3 linha reta obtida pela regressão linear para os dados da curva. Para obter a resposta para esta questão o pesquisador tem que analisar o alargamento da linha de difração que pode ser causado pela presença do gradiente alto de tensão superficial. A Fig.5b e os resultados apresentados no trabalho [4] mostram que no caso de gradiente de tensões superficiais existe um alargamento significativo da linha de difração. sse pode ser um critério principal da existência do gradiente no estado de tensões medido pela difração de raios X. È importante notar que o alargamento das linhas de difração é causado somente pelo gradiente de tensões e não tem dependência de valor de tensão. O alargamento pode ser caracterizado pela largura integral da linha de difração, que é a área ocupada pela linha de difração dividida pela intensidade máxima do pico. O valor do alargamento b pode ser determinado como diferença das larguras integrais das linhas de difração para a amostra com gradiente B med. e sem gradiente B ou b = B med. - B. Mas não temos necessidade de analisar uma amostra padrão livre do gradiente de tensão porque existe uma dependência da largura integral de ângulo polar ψ 346

permitindo resolver o problema do conhecimento de B. Na Fig.7 é mostrada esta situação [4]. Figura 7. Simulação da influência do gradiente na largura integral da linha de difração em função de sen ψ: - (t)=5-5t; - (t)=5*exp(-.55t); 3- (t)=-5t; 4- (t)=-t; Analisando os gráficos na Fig.7 podemos concluir que o alargamento máximo é observado nos ângulos ψ= e ψ=6 e existe um ponto com ângulo ψ=3 onde a largura integral é não sensível a influência do gradiente de tensão. Por isso, o alagamento da linha de difração b = B med. - B pode ser substituído por: ψ = ψ = 3 b = B B. (9) med. med. A equação (9) permite utilizar esta característica para determinar o valor do gradiente k na função de distribuição de tensões nas camadas superficiais do material. Um gráfico obtido pela modelagem computacional mostrado na Fig.7 apresenta a relação entre o alargamento da linha de difração b e o valor do gradiente de tensão k. Fig.8 Alargamento da linha de difração em função do valor do gradiente. ste gráfico pode ser considerado como um gráfico de calibração para determinação o valor do gradiente k nas medidas de tensões no aço com a utilização da radiação de Kα Cr. O conhecimento do valor de gradiente k é muito importante, mas não é suficiente para caracterizar completamente o estado de tensões superficiais. O problema foi ilustrado na Fig.6 e se revela como grande diferença entre o valor de tensão medida igual a med. = 3 MPa e o valor de tensão na superfície igual a = 5MPa. Assim como fazer as correções das tensões med. medidas pelo método do sen ψ para o caso de existência do gradiente. ste problema pode ser resolvido com a utilização de outro gráfico de calibração que estabelece as relações entre o valor de tensão medida e o valor de tensão verdadeira. O gráfico foi obtido pela construção através de modelagem computacional das dependências θ ψ =f(sen ψ) e utilização do método de sen ψ para vários valores do gradiente k e da tensão. Fig.9 - Gráfico da relação entre a tensão medida med., tensão na superfície e o valor do gradiente k: os pontos vermelhos correspondem a k=5mpa/µm e os azuis - a k=mpa/µm. Discussão O gráfico na Fig.9 é a base para fazer as correções dos valores de tensões 347

medidas pelo método de sen ψ no caso de influência do gradiente de tensões superficiais. As correções se realizam pelo método de aproximações sucessivas após a determinação do gradiente k pela análise do alargamento da linha de difração com o gráfico apresentado na Fig.7. No eixo horizontal do gráfico da Fig. k 9 ficam os valores e no eixo vertical os valores de coeficiente de correção α med. =. Na primeira fase de correção pelo método de aproximações sucessivas k k substituindo o valor por med. podemos achar o primeiro valor do coeficiente α e fazer a correção como med. =. O procedimento seguinte é α típico para o método de aproximações sucessivas, com o novo valor de se k repete a determinação do valor. Achase então um novo coeficiente de correção e calcula-se o novo valor e se repete este processo até que este valor se aproxime do valor verdadeiro de tensão. stado do Rio de Janeiro (FAPRJ) para desenvolvimento desta pesquisa. Referências. I.S. Noyan, J.B. Cohen, Residual Stress. Measurement by diffraction and interpretation, Springer Verlag, New York, Berlin, 987.. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, lsevier, Amsterdam, 997. 3. S.P.Timoshenko, N.J.Goodier, Theory of lasticity, McGraw-Hill, New York, 98. 4. V.I.Monin, J. T.Assis, S.Philippov. Study of Stress Gradients using Computer Simulation of Diffraction Data, Spie, Bellingham, USA, v. 54, p. 96-99, 4. Conclusões No presente trabalho a modelagem computacional foi utilizada para o desenvolvimento de uma metodologia de medidas de tensões superficiais caracterizadas por alto gradiente. A metodologia é aplicada para o método de tensometria por de difração raios X e permite obter o valor de gradiente de tensão e o valor verdadeiro de tensão na superfície tratada. Agradecimentos Os autores agradecem ao suporte financeiro dado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e pela Fundação Carlos Chagas Filho de Amparo à Pesquisa do 348