CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio de definição desses campos no plano. Em particular, estudaremos os obstáculos para que um campo irrotacional seja conservativo. 1 Introdução Para os fins deste texto, todos os campos vetoriais serão presumidos de classe C 1, ou seja, as derivadas parciais de primeira ordem de suas funções coordenadas serão assumidas contínuas. Lembramos que um campo vetorial F(x, y) = P (x, y) i + Q(x, y) j é conservativo na região D R 2 se, para toda curva γ : [a, b] D, de classe C 1 por partes 1, temos que a integral de linha γ f dr só depende do ponto inicial γ(a) e final γ(b) da curva, sendo i = (1, 0) e j = (0, 1) os vetores que formam a base canônica de R 2. Isto equivale a γ F dr = 0, para toda curva simples e fechada2 γ : [a, b] D, e também é equivalente à existência de uma função (que será forçosamente de classe C 2 e que é chamada de potencial de F) f : D R, tal que F = f (o gradiente de f). 1 Isto é, podemos dividir o intervalo [a, b] em subintervalos [x i, x i+1], de modo que γ é de classe C 1 em seu interior ]x i, x i+1[ e existem os limites γ(x i + ) = lim γ(t) e γ(xi+1 ) = lim γ(t), t x + i t x i+1 para todo i. 2 Ou seja, γ(a) = γ(b) e γ(t 0) γ(t 1), se a < t 0 < t 1 b. 1
Ricardo Bianconi - Campos Conservativos 2 D, Lembramos também que o campo F é irrotacional se, para todo (x, y) Q P (x, y) (x, y) = 0, x y ou seja, considerando a extensão natural de F a um campo em R 3, o seu rotacional deve anular-se (veja o texto sobre o rotacional). Se F = f, com f de classe C 2, então rot F = rot f = 0. Assim, todo campo conservativo é irrotacional, mas nem todo campo irrotacional é conservativo. 2 Um campo irrotacional e não conservativo Um campo irrotacional e não conservativo, que pode ser considerado típico, é o campo yi + xj F(x, y) = x 2 + y 2, definido em D = R 2 \ {(0, 0)} = {(x, y) R 2 : (x, y) (0, 0)}, que é irrotacional (faça a conta), mas F dr = 2π 0, γ se γ(t) = (cos t, sen t), t [0, 2π], uma curva simples e fechada. Esse campo representa um (múltiplo do) campo magnético gerado por uma corrente constante passando por um fio perpendicular ao plano pela origem, ou também um (múltiplo do) campo de velocidades de um fluido viscoso sujeito à ação de um eixo cilíndrico centrado na origem e rodando em sentido anti-horário. Ele admite as seguintes variações: F 1 = yi + xj a 2 x 2 + b 2, com a > 0, b > 0; y2 ou mesmo uma mistura dos dois, F 2 = (y y 0)i + (x x 0 )j (x x 0 ) 2 + (y y 0 ) 2 ; F 3 = (y y 0)i + (x x 0 )j a 2 (x x 0 ) 2 + b 2, a > 0, b > 0. (y y 0 ) 2
Ricardo Bianconi - Campos Conservativos 3 Verifique que cada um desses campos é irrotacional, mas não conservativo. Observe-se que o campo F(x, y) = ( yi + xj)/(x 2 + y 2 ), restrito ao domínio D = {(x, y) : y 0 ou (y = 0 e x > 0} (R 2 menos o semi-eixo negativo dos x), pode ser escrito como o gradiente de arctg (y/x) se x > 0 π f(x, y) = 2 arctg (x/y) se y > 0 arctg (x/y) se y < 0 π 2 que é a função f(x, y) = θ(x, y) o ângulo que o segmento de (0, 0) a (x, y) faz com o semi-eixo positivo dos x, medido em radianos e orientado no sentido anti-horário (verifique que f está bem definida, ou seja, que se x > 0 e y > 0, então arctg (y/x) = (π/2) arctg (x/y) e que, se x > 0 e y < 0, então arctg (y/x) = (π/2) arctg (x/y)). Existe uma outra maneira de obter uma única expressão para esse potencial. Acompanhe a Figura 1. Figura 1: Cálculo da função θ(x, y). O ponto (x, y), que assumimos ser diferente da origem, está na circunferência de raio r = x 2 + y 2, centrada na origem. O segmento ligando o
Ricardo Bianconi - Campos Conservativos 4 ponto ( r, 0) ao ponto (x, y) faz um ângulo de θ(x, y)/2. Daí, ( ) θ tg = y 2 x + r = y x + x 2 + y, 2 donde obtemos θ(x, y) = 2arctg ( y x + x 2 + y 2 que vale para todo (x, y) em dom (θ) = {(x, y) R 2 : se x 0, então y 0}, ou seja, o plano R 2 menos o semieixo negativo dos x. Isto quer dizer que esse campo é conservativo nesse domínio mais restrito. Vamos explorar essa idéia na seção seguinte. 3 Domínios Simplesmente Conexos A Topologia é uma área da Matemática que estuda, entre outros tópicos, propriedades dos subconjuntos de R n, principalmente se tais propriedades causam alguma obstrução para resolvermos problemas de Cálculo. No caso que estamos estudando, é dado um campo irrotacional F, e queremos resolver em f a equação (ou melhor, o sistema de equações) f = F, o que é o mesmo que dizer que o campo é conservativo e calcularmos seu potencial. Observemos que o campo F(x, y) = ( yi + xj)/(x 2 + y 2 ), apesar de não ser conservativo em seu domínio máximo D = R 2 \ {(0, 0)}, passa a sê-lo, se restringimos o seu domínio, retirando toda uma semi-reta partindo da origem. Na verdade, a grande obstrução para que ele seja conservativo é podermos dar uma volta em torno da origem sem sair de D, isto é, existem curvas simples e fechadas em D envolvendo a origem. No domínio mais restrito (R 2 menos a semi-reta), isto é impossível. Pelo Teorema de Green, se uma curva em D, simples e fechada, envolve uma regiãod D, e o campo é irrotacional, então sua circulação (ou integral nessa curva) será nula. Assim, se toda curva simples e fechada em D envolver uma região D D, então o campo será conservativo em D. Por outro lado, se existir alguma curva simples e fechada em D que envolva algum ponto fora de D, mesmo que o campo seja irrotacional, ele pode não ser conservativo (no caso em que a circulação do campo nessa curva não for nula). Desta forma, vemos que a propriedade crucial do domínio D que implica que todo campo irrotacional também seja conservativo é que toda curva simples e fechada em D envolva uma região D D, e não dê volta em torno ),
Ricardo Bianconi - Campos Conservativos 5 de nenhum ponto fora de D. Tais regiões D chamam-se simplesmente conexas. Portanto, pelo Teorema de Green, temos o critério: O campo F, definido num domínio simplesmente conexo D, é conservativo se, e somente se 3, o campo é irrotacional. Para o caso de D não ser simplesmente conexo, mas o seu complemento contiver uma quantidade finita de componentes (ou pedaços), em volta das quais existirem curvas simples e fechadas contidas em D, digamos γ i (em volta da i-ésima componente limitada do complemento de D), 1 i n, novamente pelo Teorema de Green temos o critério: O campo F é conservativo em D (como acima descrito) se, e somente se, rot F = 0 e γ i F dr = 0, para 1 i n. Observe também que, pelo Teorema de Green, o critério é válido para qualquer escolha das curvas γ i. Por fim, escolha (arbitrariamente) um ponto p i = (x i, y i ) na i-ésima componente do complemento de D, 1 i n, e curvas γ i como acima descrito (orientadas no sentido anti-horário). Seja G um campo irrotacional em D e, para 1 i n, sejam F i (x, y) = (y y i)i + (x x i )j (x x i ) 2 + (y y i ) 2, µ i = 1 2π γ i G dr. Então o campo H = G n 1 µ if i é conservativo (use o segundo critério). Isto quer dizer que os campos F i (variantes do campo F(x, y) = ( yi + xj)/(x 2 +y 2 )) codificam em si toda a obstrução para que G seja conservativo. A teoria matemática que faz essa correlação chama-se Cohomologia de de Rham (do matemático francês que a desenvolveu, Georges de Rham), mas isto é tema para outra ocasião. 3 Isto que dizer, que é equivalente a.