Campos Vetoriais e Integrais de Linha
|
|
|
- Emanuel Diego Amorim Beretta
- 9 Há anos
- Visualizações:
Transcrição
1 Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente na hidrodinâmica e no eletromagnetismo. Os principais teoremas do cálculo vetorial envolvem campos, alguma noção de derivada e algum tipo de integração, podendo ser considerados irmãos do Teorema Fundamental do Cálculo. Na aula de hoje já veremos um desses casos. 9.1 Campos Vetoriais Se U R m, uma função F : U R n é dita um campo vetorial. Na maioria dos exemplos, m = n. A intuição física pode ser criada pensando em um fluxo. Considere, por exemplo, um rio que corre suavemente, sem muitas variações temporais (o tempo também pode ser considerado como uma variável do domínio, mas deixe isso para um segundo pensamento): para cada ponto deste rio, podemos considerar um vetor velocidade para a partícula que ocupa aquele ponto. Isso vai definir um campo de vetores (n = 3, se considerarmos que o rio tem profundidade e que a água pode subir e descer), definido na região U que corresponde ao rio em questão. Outros exemplos também podem ser considerados. O campo elétrico gerado por uma distribuição de cargas; o campo gravitacional de uma distribuição de matéria (em física newtoniana); o campo de velocidades para partículas atmosféricas (essencial para a meteorologia, e análogo ao exemplo do rio, no parágrafo anterior). Há um exemplo de outra coisa, que também deve ser entendido: se pensarmos na temperatura atmosférica como função da posição, não teremos um campo vetorial, pelo simples fato de a temperatura não ser um vetor. Em alguns contextos, é comum dizer que este é um campo escalar. Do mesmo modo, se pensarmos no potencial elétrico gerado por uma distribuição de cargas, ou no potencial gravitacional de uma distribuição de matéria, teremos exemplos de campos escalares. E qual a relação deles com os campos vetoriais? 1
2 Assim como fizemos com as curvas, campos vetoriais podem ser decompostos em coordenadas (usamos n = 3, mas você pode pensar em n arbitrário): F (x, y, z) = F x (x, y, z) i + F y (x, y, z) j + F z (x, y, z) k. O campo F será contínuo (em p = (x o, y o, z o )) se, e só se, seus componentes forem contínuos (em p). Do mesmo modo, o campo F é diferenciável (em p) se, e só se, seus componentes são funções diferenciáveis (em p). Você se lembra que, para uma função f : U R, diferenciável, você podia definir o vetor gradiente desta função (em cada ponto): f = ( f x, f y, f z Aí está a relação entre os campos escalares que citamos acima e os campos vetoriais: dado um campo escalar diferenciável, seu gradiente define um campo vetorial. Em particular 1, o gradiente do potencial elétrico determina o campo elétrico, o gradiente do potencial gravitacional determinar o campo gravitacional, e, em um regime estacionário 2, o gradiente do campo de temperaturas determina o campo de velocidades. Todos esses exemplos, e a lembrança que o caso interessante mais simples já trata de funções de R 2 em R 2, deve deixar claro porque, normalmente, a representação gráfica de um campo de vetores se faz colocando em cada ponto do domínio um vetor que representa o campo naquele ponto. Claro que tal representação é sempre feita por uma amostragem, sendo impossível representar o campo em todos os pontos. Claro, também, que se essa amostragem não for significativa, muitos erros de interpretação podem acontecer. Para que fique claro, pense no significado do campo (cos (πx), sen (πy)) e faça uma representação gráfica usando apenas pontos com coordenadas inteiras. 1 Lembre que em física se inclui o sinal de menos na definição, apenas para que o campo em questão aponte do maior para o menor. É apenas uma convenção, bastante natural, e que não deve gerar confusão. 2 Em problemas meteorológicos de verdade nunca se está em um regime estacionário, assim outros efeitos entram em jogo e este gradiente de temperatura apenas influencia fortemente na definição do campo de velocidades, mas não de maneira exclusiva. Mas não custa lembrar que também o potencial elétrico só determina o campo elétrico em regime estacionário; do contrário, o potencial vetor A também desempenha um papel. Veja as equações de Maxwell em algum livro, ou na camisa de algum colega. ). 2
3 9.1.1 Campos Conservativos O importante exemplo dos campos gradientes já foi apresentado acima. Por enquanto, queremos apenas incluir a informação que eles são chamados campo conservativos. Assim, um campo F é conservativo quando existe uma função φ (chamada um potencial para este campo) 3 tal que F = φ. Para que o significado desta definição fique mais claro, precisamos passar às integrais de linha. 9.2 Integral de Linha Como já dissemos, há vários contextos para calcular integrais de linha. Já apresentamos alguns deles, como o cálculo do comprimento do arco, ou da integral de uma função escalar definida ao longo da curva. Agora temos uma situação diferente, com um campo de vetores definido ao longo da curva. Portanto, devemos agora considerar uma curva em U, a região onde está definido o campo ( : [a, b] U). Poderíamos pensar em algumas idéias do que fazer com um campo e uma curva, mas há um caso com interpretação natural a partir dos exemplos estudados. Se consideramos agora um campo de forças (ou seja, uma carga de prova no campo elétrico, ou uma massa sujeita ao campo gravitacional...), é natural calcularmos o trabalho deste campo de força quando a partícula percorre a trajetória parametrizada por. Assim, se para um deslocamento retilíneo e uma força constante, o trabalho era dado por F s, agora usamos a noção usual de quebrar em pedacinhos (lembre das somas de Riemann, sempre), calcular para cada pedacinho e somar. Com essa intuição, vem a definição da integral de linha do campo F ao longo da curva : b F d r = F ( (t)) (t) dt. (9.1) a Mais uma vez, a definição foi feita fazendo uso de uma parametrização específica da curva. Mas pode-se mostrar que a integral de linha definida em (9.1) depende apenas do campo, do traço da curva e de sua orientação (i.e. 3 Reveja a nota de rodapé 1. 3
4 se percorrida de (a) a (b) ou vice-versa). Com efeito, usando o mesmo ds do comprimento de arco, temos que F d r = F T ds, e como na aula anterior já mostramos que a integral de linha de uma função escalar não depende da parametrização, segue a independência afirmada. Também deve ser claro porque lá a integral não dependia da orientação e aqui depende: o vetor T depende desta orientação. Caso percorramos a curva no sentido contrário, obteremos o resultado com o sinal negativo, da mesma forma que as integrais definidas do cálculo I, quando invertíamos os limites de integração. Por outro lado, deve ficar claro o significado na (9.1) do novo elemento de integração introduzido: d r = T ds, ou seja, um elemento de linha vetorial, que naturalmente aponta na direção tangente à curva orientada, e tem seu comprimento dado pelo comprimento de arco, já discutido. Agora passemos ao importante caso dos campos conservativos, com F = φ: F d r = = b a φ d r = b a φ ( (t)) (t) dt d φ ( (t)) dt = φ ( (b)) φ ( (a)), dt onde só foi usada a regra da cadeia para funções de várias variáveis, estudada no cálculo II. Esta conta é de simples interpretação e de profundas conseqüências: a interpretação é que ao calcular a integral de linha de um campo gradiente, estamos somando pequenas variações de um campo que é obtido como variação de uma função potencial. Assim, o que fazemos é obter a variação total desta função. A conseqüência é que a integral de linha de um campo conservativo não depende do caminho escolhido entre dois pontos! Apenas dos pontos inicial e final. Daí a noção de conservação: o trabalho realizado está sendo passado a uma energia potencial, que, caso a partícula volte à posição de onde começou 4, será toda devolvida à partícula. Em particular, se o ponto inicial e final coincidirem, a integral de um campo conservativo deve se anular. 4 Independente do caminho realizado. 4
5 9.3 Como saber se um campo é conservativo Claramente os campos conservativos são interessantes. Mas dado F, como saber se existe um potencial para ele? Em outras palavras, como saber se ele é conservativo? O interessante da resposta a esta questão é que ela involve dois aspectos: um local e um global. Em matemática, uma questão é local quando depende apenas da vizinhança de um ponto, e um aspecto é global quando depende de todo o domínio. Em particular, derivadas são propriedades locais, enquanto integrais são globais Restrição ao plano Nesta discussão vamos considerar U R 2 e F : U R 2. A mesma questão será retomada na quarta parte do curso para n = 3. Vale notar que se existe um potencial φ para F e este é uma função bem comportada, teremos o teorema de Schwartz a nos dizer que Mas se teremos 2 x y φ = F = 2 y x φ. ( φ x, φ ), y x F y = y F x. (9.2) Portanto, concluímos que se F é um campo conservativo em uma região do plano, com um potencial bem comportado 5, necessariamente vale a equação (9.2). Mas será que todo campo com esta propriedade é conservativo? Aí entra o aspecto global! A condição obtida aqui, por só envolver derivadas, é uma condição local. Ela nos diz, então, que em uma pequena vizinhança de cada ponto onde está definido o plano, poderíamos sim escrever uma função potencial para ele. A pergunta que resiste é se podemos escrever uma única função potencial para toda a região U onde o campo está definido. De outro modo, se podemos colar os potencial definidos localmente, de modo a obter um potencial global. 5 Segundas derivadas contínuas. 5
6 O contra-exemplo clássico é o campo ( ) y F (x, y) = x 2 + y, x, (9.3) 2 x 2 + y 2 onde temos x F y = y F x = 1 x 2 + y x 2 1 x 2 + y + y 2 2x (x 2 + y 2 ) 2 = x2 + y 2 2x 2 (x 2 + y 2 ) 2 = y2 x 2 (x 2 + y 2 ) 2, 2y (x 2 + y 2 ) 2 = (x2 + y 2 ) + 2y 2 (x 2 + y 2 ) 2 = y2 x 2 (x 2 + y 2 ) 2, e, portanto, a eq. (9.2) é obedecida. Porém, se escolhemos o círculo unitário como curva para fazer a integral, com a paramtrização dada por teremos c F d r = c (t) = (cos t, sen t) t [0, 2π], 2π 0 ( sen t, cos t) ( sen t, cos t) dt = 2π. Por um lado, o resultado da integração deve ser simples: o campo em questão coincide com o vetor tangente unitário da circunferência 6, portanto a integral coincide com o comprimento do arco. Por outro, temos o interessante resultado que, embora o campo F obedeça à eq.(9.2), sua integral de linha em um caminho fechado não é nula, e, portanto, não temos um campo conservativo e não teremos um potencial globalmente definido. De fato, se trabalhássemos em algumas regiões menores do que o domínio deste campo (o plano menos a origem), poderíamos definir um potencial, e portanto restrições deste campo poderiam ser consideradas conservativas. é interessante notar que todo o problema que aqui surge vem do fato do caminho escolhido dar uma volta em torno do ponto onde o campo não está definido. Invertendo o ponto de vista, vemos que a integral de linha aqui utilizada percebeu que deu uma volta em torno de um ponto específico, mesmo sem ter passado por ele. Essa é uma relação entre os domínios do 6 Alguém mais atento já pode ter percebido que o campo da eq.(9.3) é uma versão para o plano do campo magnético gerado por uma corrente uniforme concentrada no eixo z. Isso não é mera coincidência. 6
7 plano e os possíveis campos diferenciáveis definidos nestas regiões (e ainda, os possíveis valores de integrais de linhas definidas em caminhos fechados nestes domínios), um ramo de estudo da matemática chamado topologia diferencial, onde há esta coexistência entre aspectos globais (que tipicamente interessam à topologia) e aspectos locais (derivadas). 7
1 A Integral por Partes
Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Exercícios Adicionais
Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos
Cap. 7 - Fontes de Campo Magnético
Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.
7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).
1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.
Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado
GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação
Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
APOSTILA TECNOLOGIA MECANICA
FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de
ENERGIA CINÉTICA E TRABALHO
ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;
É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.
Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA
PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3
Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as
Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar
Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
4Distribuição de. freqüência
4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva
Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.
Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Recuperação. - Mecânica: ramo da Física que estuda os movimentos;
Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Cálculo Diferencial e Integral II
1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.
Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto
Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação
Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes
Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
Lista 1 para a P2. Operações com subespaços
Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
1. A corrida de vetores numa folha de papel.
1. A corrida de vetores numa folha de papel. desenhando a pista. o movimento dos carros. o início da corrida. as regras do jogo. 2. A corrida no computador. o número de jogadores. o teclado numérico. escolhendo
Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor
A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer
por séries de potências
Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio
A Equação de Bernoulli
Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade
PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL
PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma
FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.
FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar
Bacharelado Engenharia Civil
Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite
Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5
Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................
Unidade: Vetores e Forças. Unidade I:
Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação
Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta
Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média
O Princípio da Complementaridade e o papel do observador na Mecânica Quântica
O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes
COMENTÁRIO DA PROVA DE FÍSICA
COMENTÁRIO DA PROVA DE FÍSICA A prova de Física da UFPR 2013/2014 apresentou algumas questões fáceis, algumas difíceis e maioria de questões médias. Dessa forma, é possível afirmar que, quanto ao nível,
Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por
Força conservativa Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por U 12 = Gm 1m 2 r 2 r 1. Vimos também que
Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.
Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância
Retas e Planos. Equação Paramétrica da Reta no Espaço
Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x
O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:
O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
Como erguer um piano sem fazer força
A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam
CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.
CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,
Gráficos de funções em calculadoras e com lápis e papel (*)
Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado
Um jogo de preencher casas
Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos
A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada.
Aplicações da lei de Gauss A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. De maneira genérica, a lei de Gauss diz que: Fluxo elétrico sobre
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
Aula 6 Derivadas Direcionais e o Vetor Gradiente
Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
3º Bimestre. Física I. Autor: Geraldo Velazquez
3º Bimestre Autor: Geraldo Velazquez SUMÁRIO UNIDADE III... 4 Capítulo 3: Eletromagnetismo... 4 3.1 Introdução... 4 3.2 Campo Magnético (B)... 6 3.3 Campo Magnético Gerado Por Corrente... 7 3.4 Campo
CAMPOS CONSERVATIVOS NO PLANO
CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio
Aula 1: Demonstrações e atividades experimentais tradicionais e inovadoras
Aula 1: Demonstrações e atividades experimentais tradicionais e inovadoras Nesta aula trataremos de demonstrações e atividades experimentais tradicionais e inovadoras. Vamos começar a aula retomando questões
Aula 19 Teorema Fundamental das Integrais de Linha
Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,
Além do Modelo de Bohr
Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade
Consumidor e produtor devem estar
A produção científica tem um produtor e um consumidor e, evidentemente, todo produtor é também um consumidor: quanto melhor consumidor ele for, melhor será como produtor. Há pesquisas em psicologia que
A trigonometria do triângulo retângulo
A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e
3.4 Movimento ao longo de uma curva no espaço (terça parte)
3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória
Física II Curso Licenciatura em Química Selma Rozane 2015.2
Física II Curso Licenciatura em Química Selma Rozane 2015.2 INTRODUÇÃO A palavra magnetismo tem sua origem na Grécia Antiga, porque foi em Magnésia, região da Ásia Menor (Turquia), que se observou um minério
EXPERIMENTO DE OERSTED 313EE 1 TEORIA
EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos
Experimento 3 # Professor: Data: / / Nome: RA:
BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado
3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar
3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento
1 ELEMENTOS DA CIRCUNFERÊNCIA
Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos
DESTRINCHANDO IR PROGRESSIVO OU REGRESSIVO?
DESTRINCHANDO IR PROGRESSIVO OU REGRESSIVO? Escrito em 25 de setembro de 2013 Por Christian Fernandes em. Receba atualizações clicando aqui. Última Atualização em23 de junho de 2015 Introdução Uma das
Eletromagnetismo: imãs, bobinas e campo magnético
Eletromagnetismo: imãs, bobinas e campo magnético 22 Eletromagnetismo: imãs, bobinas e campo magnético 23 Linhas do campo magnético O mapeamento do campo magnético produzido por um imã, pode ser feito
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
POTENCIAL ELÉTRICO. por unidade de carga
POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para
Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir
Realizando cálculos para o aparelho divisor (I)
Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos
Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao
CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.
INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.
Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos
Ano Letivo 2015/ 2016 Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Objeto de avaliação O teste tem por referência o programa de Física e Química A para
Mercados financeiros CAPÍTULO 4. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard
Mercados Olivier Blanchard Pearson Education CAPÍTULO 4 4.1 Demanda por moeda O Fed (apelido do Federal Reserve Bank) é o Banco Central dos Estados Unidos. A moeda, que você pode usar para transações,
4. Tangentes e normais; orientabilidade
4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se
7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.
CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.
Aula 9 Plano tangente, diferencial e gradiente
MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
Laços Fortes e Fracos
Laços Fortes e Fracos Redes Sociais e Econômicas Prof. André Vignatti A Força de Laços em Redes de Larga Escala Para estudar laços fracos e fortes, foi feita uma pesquisa usando dados reais de uma companhia
Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx
Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
Notas sobre a Fórmula de Taylor e o estudo de extremos
Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo
Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento
Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ
EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS
EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de
Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.
Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.
Montagem e Manutenção. Luís Guilherme A. Pontes
Montagem e Manutenção Luís Guilherme A. Pontes Introdução Qual é a importância da Montagem e Manutenção de Computadores? Sistema Binário Sistema Binário Existem duas maneiras de se trabalhar e armazenar
Física Geral I - F 128 Aula 7 Energia Cinética e Trabalho. 2 o semestre, 2011
Física Geral I - F 18 Aula 7 Energia Cinética e Trabalho o semestre, 011 Energia As leis de Newton permitem analisar vários movimentos. Essa análise pode ser bastante complea, necessitando de detalhes
A Torre de Hanói e o Princípio da Indução Matemática
A Torre de Hanói e o Princípio da Indução Matemática I. O jogo A Torre de Hanói consiste de uma base com três pinos e um certo número n de discos de diâmetros diferentes, colocados um sobre o outro em
LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo?
FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto de Pesquisa da Primeira Série Série: Primeira Curso: Eletrotécnica Turma: 2112 Sala: 234 Início: 17 de junho de 2009 Entrega: 23 de junho
Hoje estou elétrico!
A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
FRAÇÕES DE UMA QUANTIDADE
FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai
O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br
A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava
Canguru sem fronteiras 2007
Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada
Os Postulados da Mecânica Quântica
Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná [email protected] Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o
CÓDIGO CRÉDITOS PERÍODO PRÉ-REQUISITO TURMA ANO INTRODUÇÃO
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE GESTÃO E NEGÓCIOS CURSO DE CIÊNCIAS CONTÁBEIS, ADMINISTRAÇÃO E ECONOMIA DISCIPLINA: ESTRUTURA E ANÁLISE DE CUSTO CÓDIGO CRÉDITOS PERÍODO PRÉ-REQUISITO
