Revisão 04 Princípios e Permutação 01. Um "Shopping Center" possui 4 portas de entrada para o andar térreo, 5 escadas rolantes ligando o térreo ao primeiro pavimento e 3 elevadores que conduzem do primeiro para o segundo pavimento. De quantas maneiras diferentes uma pessoa, partindo de fora do "Shopping Center" pode atingir o segundo pavimento usando os acessos mencionados? a) 12 b) 17 c) 19 d) 23 e) 60 02. Num restaurante, são oferecidos 4 tipos de carne, 5 tipos de massa, 8 tipos de salada e 6 tipos de sobremesa. De quantas maneiras diferentes podemos escolher uma refeição composta por 1 carne, 1 massa, 1 salada e 1 sobremesa? a) 23. b) 24. c) 401. d) 572. e) 960. 03. Uma melodia é uma sequência de notas musicais. Para compor um trecho de três notas musicais sem repeti-las, um músico pode utilizar as sete notas que existem na escala musical. O número de melodias diferentes possíveis de serem escritas é: a) 3 b) 21 c) 35 d) 210 e) 5040 04. A figura a seguir representa um mapa das estradas que interligam as comunidades A, B, C, D, E e F. 05. Desde o fim da última era glacial até hoje, a humanidade desenvolveu a agricultura, a indústria, construiu cidades e, por fim, com o advento da Internet, experimentou um avanço comercial sem precedentes. Quase todos os produtos vendidos no planeta atravessam alguma fronteira antes de chegar ao consumidor. No esquema adiante, suponha que os países a, b, c e d estejam inseridos na logística do transporte de mercadorias com o menor custo e no menor tempo. Os números indicados representam o número de rotas distintas de transporte aéreo disponíveis, nos sentidos indicados. Por exemplo, de a até b são 4 rotas; de c até d são 2 rotas, e assim por diante. Nessas condições, o número total de rotas distintas, de a até d é igual a a) 66 b) 65 c) 64 d) 63 e) 62 06. Cada um dos círculos da figura deverá ser pintado com uma cor, escolhida dentre três disponíveis. Sabendo que dois círculos consecutivos nunca serão pintados com a mesma cor, o número de formas de se pintar os círculos é a) 72 b) 68 c) 60 d) 54 e) 48 07. As novas placas dos veículos são formadas por três letras seguidas por quatro algarismos, como por exemplo GYK 0447. O número de placas diferentes que podem ser construídas é, em milhões de placas, aproximadamente igual a: Assinale a opção que indica quantos percursos diferentes existem para se chegar à comunidade D (partindo-se de A), sem que se passe mais de uma vez numa mesma comunidade, em cada percurso. a) 1 b) 25 c) 75 d) 100 e) 175 a) 72 b) 12 c) 18 d) 36 e) 12 1
08. Por questão de segurança os bancos instalaram ao lado da maçaneta da porta, que dá acesso à área por trás dos caixas, um teclado como o da figura abaixo. a) 10 6-12 b) 10 6-12. 10 2 c) 10 4 + 12. 10 2 d) 10 4-12 e) 10 6-12. 10 4 12. Hoje em dia, é possível realizar diversas operações bancárias a partir de um computador pessoal ligado à Internet. Para esse acesso, o cliente de determinado banco, após digitar o número de sua agência e conta corrente, deverá introduzir uma senha de quatro dígitos a partir de um teclado virtual como o da figura. Para entrar nessa área, cada funcionário tem a sua própria senha. Suponha que esta senha seja composta por quatro dígitos distintos. Quantas senhas poderão ser criadas se forem usados apenas os números primos que aparecem no teclado? a) 6 b) 24 c) 80 d) 120 e) 720 09. A senha de um cartão eletrônico possui sete caracteres, todos distintos, sendo quatro algarismos e três letras maiúsculas, intercalando algarismos e letras, (por exemplo, 5C7X2P8). Sabendo que são disponibilizados 26 letras e 10 algarismos, o número de senhas distintas que podem ser confeccionadas é a) 66 888 000. b) 72 624 000. c) 78 624 000. d) 84 888 000. e) 86 869 000. 10. Um encontro científico conta com a participação de pesquisadores de três áreas, sendo eles: 7 químicos, 5 físicos e 4 matemáticos. No encerramento do encontro, o grupo decidiu formar uma comissão de dois cientistas para representá-lo em um congresso. Tendo sido estabelecido que a dupla deveria ser formada por cientistas de áreas diferentes, o total de duplas distintas que podem representar o grupo no congresso é igual a a) 46. b) 59. c) 77. d) 83. e) 91. 11. Numa certa rede bancária, cada um dos clientes possui um cartão magnético e uma senha formada por seis dígitos. Para aumentar a segurança e evitar que os clientes utilizem datas de aniversário como senha, o banco não permite o cadastro de senhas nas quais os dois dígitos centrais correspondam aos doze meses do ano, ou seja, senhas em que os dois dígitos centrais sejam 01, 02,..., 12 não podem ser cadastradas. Quantas senhas diferentes podem ser compostas dessa forma? Para inserir um dígito da senha da sua conta corrente, o cliente deste banco deve clicar em um dos quatro botões indicados pela inscrição "clique aqui"; isto é, para inserir o dígito 4, por exemplo, pode-se clicar no botão "clique aqui" situado abaixo dos dígitos "0, 4 ou 7" ou naquele situado abaixo dos dígitos "2, 4 ou 8". Pode-se afirmar que o número total de senhas compostas por quatro dígitos distintos que estão associadas à sequência de "cliques", primeiro, no botão correspondente aos dígitos 1, 5 ou 8; depois, no botão correspondente aos dígitos 0, 4 ou 7; novamente no botão correspondente aos dígitos 1, 5 ou 8 e, por último, no botão correspondente aos dígitos 0, 4 ou 7, é igual a: a) 12 b) 24 c) 36 d) 54 e) 81 13. Para gerar sua senha de acesso, o usuário de uma biblioteca deve selecionar cinco algarismos de 0 a 9, permitindo-se repetições e importando a ordem, em que eles foram escolhidos. Por questões de segurança, senhas que não tenham nenhum algarismo repetido são consideradas inválidas. Por exemplo, as senhas 09391 e 90391 são válidas e diferentes, enquanto que a senha 90381 é inválida. O número total de senhas válidas que podem ser geradas é igual a a) 69.760. b) 30.240. c) 50.000. d) 19.760. e) 20.000. 2
14. A senha de acesso a um jogo de computador consiste em quatro caracteres alfabéticos ou numéricos, sendo o primeiro necessariamente alfabético. O número de senhas possíveis será, então: a) 36 4. b) 10 36 3. c) 26 36 3. d) 26 4. e) 10 26 4. 15. Para efetuar suas compras, o usuário que necessita sacar dinheiro no caixa eletrônico deve realizar duas operações: digitar uma senha composta por 6 algarismos distintos e outra composta por 3 letras, escolhidas num alfabeto de 26 letras. Se essa pessoa esqueceu a senha, mas lembra que 8, 6 e 4 fazem parte dos três primeiros algarismos e que as letras são todas vogais distintas, sendo E a primeira delas, o número máximo de tentativas necessárias para acessar sua conta será a) 210 b) 230 c) 2.520 d) 3.360 e) 15.120 16. Para responder a certo questionário, preenche-se o cartão apresentado a seguir, colocando-se um "x" em uma só resposta para cada questão. 18. Duzentos e cinquenta candidatos submeteram-se a uma prova com 5 questões de múltipla escolha, cada questão com 3 alternativas e uma única resposta correta. Admitindo-se que todos os candidatos assinalaram, para cada questão, uma única resposta, pode-se afirmar que pelo menos: a) Um candidato errou todas as respostas. b) Dois candidatos assinalaram exatamente as mesmas alternativas. c) Um candidato acertou todas as respostas. d) A metade dos candidatos acertou mais de 50% das respostas. e) A metade dos candidatos errou mais de 50% das respostas. 19. Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser escolhido entre os funcionários das respectivas repartições e não devem ser ambos do mesmo sexo. Abaixo é apresentado o quadro de funcionários das repartições A e B. REPARTIÇÕES FUNCIONÁRIOS A B Mulheres 4 7 Homens 6 3 De quantas maneiras é possível ocupar esses dois cargos? a) 12. b) 24. c) 42. d) 54. e) 72. 20. Na sala de reuniões de certa empresa há uma mesa retangular com 10 poltronas dispostas da forma como é mostrado na figura abaixo. De quantas maneiras distintas pode-se responder a esse questionário? a) 3 125 b) 120 c) 32 d) 25 e) 10 17. A prova de um concurso é composta somente de 10 questões de múltipla escolha, com as alternativas A, B, C e D por questão. Sabendo-se que, no gabarito da prova, não aparece a letra A e que a letra D aparece apenas uma vez, quantos são os gabaritos possíveis de ocorrer? a) 4 10 b) 2 10 c) 2 9 d) 10. 2 9 e) 2 11 Certo dia, sete pessoas foram convocadas para participar de uma reunião a ser realizada nessa sala: o presidente, o vicepresidente, um secretário e quatro membros da diretoria. Sabe-se que: o presidente e o vice-presidente deverão ocupar exclusivamente as poltronas das cabeceiras da mesa; o secretário deverá ocupar uma poltrona ao lado do presidente. Considerando que tais poltronas são fixas no piso da sala, de quantos modos as sete pessoas podem nelas se acomodar para participar de tal reunião? a) 3.360 b) 2.480 c) 1.680 d) 1.240 e) 840 3
21. Quantos números ímpares, cada um com três algarismos, podem ser formados com os algarismos 2,3,4,6 e 7, se a repetição de algarismos é permitida? a) 60 b) 50 c) 40 d) 30 e) 20 27. Escrevendo-se em ordem decrescente todos os números de cinco algarismos distintos formados pelos algarismos 3, 5, 7, 8 e 9, a ordem do número 75389 é: a) 54 b) 67 c) 66 d) 55 e) 56 22. As portas de acesso de todos os apartamentos de certo hotel são identificadas por meio de números ímpares formados com 3 elementos do conjunto M = {3,4,6,7,8}. Nessas condições, é correto afirmar que o número máximo de apartamentos desse hotel é: a) 24 b) 36 c) 44 d) 50 e) 56 23. Com os elementos do conjunto {1, 2, 3, 4, 5, 6, 7} formamse números de 4 algarismos distintos. Quantos dos números formados NÃO são divisíveis por 5? a) 15 b) 120 c) 343 d) 720 e) 840 24. Quantos são os números inteiros positivos de 5 algarismos que não têm algarismos adjacentes iguais? a) 5 9. b) 9 8 4. c) 8 9 4. d) 8 5. e) 9 5. 25. Os números pares com 4 algarismos distintos, que podemos obter com os elementos do conjunto {0; 3; 4; 5; 6; 7; 8}, são em número de: a) 6 3 b) 420 c) 5.6 2 d) 5.4 3 e) 380 26. Colocando em ordem crescente os números resultantes das permutações dos algarismos 1, 2, 3, 4, 5, que posição ocupará o número 35241? a) 55 a b) 70 a c) 56 a d) 69 a e) 72 a 28. Um número capicua é um número que se pode ler indistintamente em ambos os sentidos, da esquerda para a direita ou da direita para a esquerda (exemplo: 5335). Em um hotel de uma cidade, onde os jogadores de um time se hospedaram, o número de quartos era igual ao número de capicuas pares de 3 algarismos. Quantos eram os quartos do hotel? a) 20 b) 40 c) 80 d) 90 e) 100 29. Uma família formada por 3 adultos e 2 crianças vai viajar num automóvel de 5 lugares, sendo 2 na frente e 3 atrás. Sabendo-se que só 2 pessoas podem dirigir e que as crianças devem ir atrás e na janela, o número total de maneiras diferentes através das quais estas 5 pessoas podem ser posicionadas, não permitindo crianças irem no colo de ninguém, é igual a: a) 120 b) 96 c) 48 d) 24 e) 8 30. Um vagão de metrô tem 10 bancos individuais, sendo 5 de frente e 5 de costas. De 10 passageiros, 4 preferem sentar de frente, 3 preferem sentar de costas e os demais não têm preferência. De quantos modos eles podem sentar, respeitadas as preferências? a) Um número inteiro maior que 40000. b) Um número inteiro entre 167 e 40000. c) Exatamente 166. d) Um número inteiro menor que 100. e) Exatamente 40000. 31. Um trem é constituído de uma locomotiva e seis vagões distintos, sendo um restaurante. Sabendo que a locomotiva deve ir à frente e que o vagão restaurante não pode ser colocado imediatamente após a locomotiva, o número de modos diferentes de montar a composição é: a) 20 b) 320 c) 500 d) 600 e) 720 4
32. Uma bicicleta de marchas tem três engrenagens na coroa, que giram com o pedal, e seis engrenagens no pinhão, que giram com a roda traseira. Observe a bicicleta a seguir e as tabelas que apresentam os números de dentes de cada engrenagem, todos de igual tamanho. 34. (Enem) O código de barras, contido na maior parte dos produtos industrializados, consiste num conjunto de várias barras que podem estar preenchidas com cor escura ou não. Quando um leitor óptico passa sobre essas barras, a leitura de uma barra clara é convertida no número 0 e a de uma barra escura, no número 1. Observe a seguir um exemplo simplificado de um código em um sistema de código com 20 barras. Se o leitor óptico for passado da esquerda para a direita irá ler: 01011010111010110001 Cada marcha é uma ligação, feita pela corrente, entre uma engrenagem da coroa e uma do pinhão. Um dente da 1 a engrenagem da coroa quebrou. Para que a corrente não se desprenda com a bicicleta em movimento, admita que a engrenagem danificada só deva ser ligada à 1 a ou à 2 a engrenagem do pinhão. Nesse caso, o número máximo de marchas distintas, que podem ser utilizadas para movimentar a bicicleta, é de: a) 10 b) 12 c) 14 d) 16 e) 18 33. (Enem) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere é um conjunto de 6 pontos dispostos em forma retangular, dos quais pelo menos um se destaca, ou seja, pelo menos um dos pontos é do tipo maior. Por exemplo, a letra A é representada por O número total de caracteres que podem ser representados no sistema Braile é a) 12 b) 31 c) 36 d) 63 e) 720 Se o leitor óptico for passado da direita para a esquerda irá ler: 10001101011101011010 No sistema de código de barras, para se organizar o processo de leitura óptica de cada código, deve-se levar em consideração que alguns códigos podem ter leitura da esquerda para a direita igual à da direita para a esquerda, como o código 00000000111100000000, no sistema descrito acima. Em um sistema de códigos que utilize apenas cinco barras, a quantidade de códigos com leitura da esquerda para a direita igual à da direita para a esquerda, desconsiderando-se todas as barras claras ou todas as escuras, é a) 14. b) 12. c) 8. d) 6. e) 4. 35. Para colocar preço em seus produtos, uma empresa desenvolveu um sistema simplificado de código de barras formado por cinco linhas separadas por quatro espaços. Podem ser usadas linhas de três larguras possíveis e espaços de duas larguras possíveis. O número total de preços que podem ser representados por esse código é a) 1440. b) 2880. c) 3125. d) 3888. e) 4320. 36. O número de anagramas com a palavra ÔNIBUS que começa por vogal é: a) 2160 b) 120 c) 240 d) 720 e) 360 5
37. Na figura a seguir, temos uma "malha" formada por 16 retângulos iguais. Uma partícula deve ir do ponto P ao ponto M, percorrendo a menor distância possível, deslocando-se somente por sobre as linhas da figura e com velocidade média de 2cm/s. Como exemplo, temos, a seguir, uma representação de um desses caminhos. 40. (Enem) João mora na cidade A e precisa visitar cinco clientes, localizados em cidades diferentes da sua. Cada trajeto possível pode ser representado por uma sequência de 7 letras. Por exemplo, o trajeto ABCDEFA, informa que ele saíra da cidade A, visitando as cidades B, C, D, E e F nesta ordem, voltando para a cidade A. Além disso, o número indicado entre as letras informa o custo do deslocamento entre as cidades. A figura mostra o custo de deslocamento entre cada uma das cidades. Quantos são os possíveis caminhos que tal partícula poderá percorrer? a) 256 b) 128 c) 120 d) 70 e) 56 38. Dos anagramas da palavra CASTELO, quantos têm as vogais em ordem alfabética e juntas? a) 180 b) 144 c) 120 d) 720 e) 360 39. (UFPE) Um fazendeiro dispõe de um terreno dividido em regiões, como na figura abaixo, e pretende cultivá-las de forma que as regiões com uma fronteira comum tenham plantios diferentes. De quantas formas ele pode fazer o plantio se pode optar entre milho, feijão, soja, arroz e trigo para cultivar? Como João quer economizar, ele precisa determinar qual o trajeto de menor custo para visitar os cinco clientes. Examinando a figura, percebe que precisa considerar somente parte das sequências, pois os trajetos ABCDEFA e AFEDCBA têm o mesmo custo. Ele gasta 1 min30s para examinar uma sequência e descartar sua simétrica, conforme apresentado. O tempo mínimo necessário para João verificar todas as sequências possíveis no problema é de a) 60 min. b) 90 min. c) 120 min. d) 180 min. e) 360 min. TESTES ESPECÍFICOS 41. (UFPE) O segredo de um cofre é formado de uma seqüência de quatro dígitos distintos. Se o quarto dígito é o dobro do primeiro, determine o número N de possíveis segredos. Indique a soma dos dígitos de N. 42. Um aparelho eletrônico é composto das peças A, B e C, cujos preços, em reais, nas lojas L1, L2 e L3 estão na tabela a seguir. a) 120 b) 24 c) 48 d) 64 e) 60 A B C L1 100 600 1200 L2 210 500 1100 L3 150 x 900 Se a loja L3 não vende a peça B, então, o número de maneiras para montar esse aparelho com um custo máximo de R$ 1.930,00 é a) 10 b) 13 c) 16 d) 20 e) 24 6
43. Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os algarismos 1,2,3,4,5 podem ser usados e um mesmo algarismo pode aparecer mais de uma vez. Contudo, supersticiosa, Maria não quer que sua senha contenha o número 13, isto é, o algarismo 1 seguido imediatamente pelo algarismo 3. De quantas maneiras distintas Maria pode escolher sua senha? a) 551 b) 552 c) 553 d) 554 e) 555 44. (Ita) Determine quantos números de 3 algarismos podem ser formados com 1, 2, 3, 4, 5, 6 e 7, satisfazendo à seguinte regra: O número não pode ter algarismos repetidos, exceto quando iniciar com 1 ou 2, caso em que o 7 (e apenas o 7) pode aparecer mais de uma vez. Assinale o resultado obtido. 48. (Ufpe) De quantas maneiras podemos classificar os 4 empregados de uma micro-empresa nas categorias A ou B, se um mesmo empregado pode pertencer às duas categorias? 49. Um paralelepípedo reto de dimensões 3, 4, 5 é decomposto em cubos de aresta 1 como ilustrado na figura a seguir. Calcule o número n de formas distintas que se pode ir de A até B, utilizando um menor caminho possível, e mantendo-se sempre sobre as arestas dos cubos de aresta 1 construídos. Indique a soma dos dígitos de n. a) 204 b) 206 c) 208 d) 210 e) 212 45. (UFPE) O mapa a seguir representa a divisão do Brasil em suas regiões. O mapa deve ser colorido de maneira que regiões com uma fronteira em comum sejam coloridas com cores distintas. Determine o número (n) de maneiras de se colorir o mapa, usando-se 5 cores. Indique n/10. 50. (Ita) Quantos números de seis algarismos distintos podemos formar usando os dígitos 1, 2, 3, 4, 5 e 6, nos quais o 1 e o 2 nunca ocupam posições adjacentes, mas o 3 e o 4 sempre ocupam posições adjacentes? a) 144. b) 180. c) 240. d) 288. e) 360. GABARITOS 46. (Ita) Considere os números de 2 a 6 algarismos distintos formados utilizando-se apenas 1, 2, 4, 5, 7 e 8. Quantos destes números são ímpares e começam com um dígito par? a) 375 b) 465 c) 545 d) 585 e) 625 47. Em um grupo de 60 mulheres e 40 homens existem exatamente 25 mulheres e 12 homens que tocam algum instrumento musical. De quantas maneiras podemos formar uma dupla de um homem e uma mulher de modo que pelo menos uma das pessoas da dupla toque algum instrumento? a) 300 b) 720 c) 1.000 d) 1.420 e) 1.720 7