álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos k, 0,π. e) e i j 4 k, c) c i j ( )k,.. Seja f a b e g i sen alcule: a) f g. b) f g. j cos k, com a i j e b i j ; 0 π.. Uma parícula se desloca no espaço. Em cada insane (>) o seu veor posição é dado por r i j k. a) Esboce a rajeória da parícula e deermine a posição da parícula nos insanes = ; b) Quando se aproxima de, o que ocorre com a posição da parícula? 4. alcule: 4 4 a) lim 6 i j b) lim i j k 5. Deerminar a derivada das seguines funções veoriais: a) f cos i g b) f sen cos i e j sen j k c) f e i e j k 5 d) f i ln j 5 k 6. Deermine as equações paraméricas da rea angene ao gráfico de r() no pono em que = o a) r() = i + ( ln) j; o = ; b) r() = cos i + sen j + k; o = / 7. Seja cos i 5sen r j k o veor posição de uma parícula em movimeno no espaço. Deermine os veores velocidade e aceleração para qualquer insane. Deerminar, ainda, o módulo deses veores no insane π 4. 8. Se cos i sen j r é o veor posição de uma parícula em movimeno, mosrar que o veor velocidade da parícula é perpendicular a r. 9. Um pono move-se sobre uma curva de modo que o veor posição r é igual ao veor angene r, para odo. Enconre as equações paraméricas de. 0. Se dois objeos viajam pelo espaço ao longo de duas curvas diferenes é imporane saber se eles vão colidir. Por exemplo, um míssil vai aingir seu alvo? Duas aeronaves vão colidir? As curvas podem se inercepar, mas precisamos saber se os objeos esarão na mesma posição no mesmo insane. Suponha que as rajeórias de duas parículas P e P sejam dadas respecivamene pelas seguines funções. veoriais r () i (7 ) j k e r () (4 ) i j (5 6) k a) Enconre o insane em que as duas parículas colidem e a posição nesse insane. b) alcule o veor velocidade de P e o veor aceleração de P no insane da colisão.
f. alcule a derivada direcional (Po ) sendo dados: u x a) f(x, ) = e, P 0 (,) e u = (, 4); x b) f (x, ) arcg ; P 0 (, ) e u, ; c) f (x, ) 5 ; P x 0 (, ) e u i j. d) x, f x; P 0 (,4 ) e u é o veor que faz ângulo θ π / com o eixo OX; e) f x, gx ; P 0 (π / 6, π / ) f) f x,, z x z; g) f x,, z lnx z ; Po, 4, ; u i. Deermine o veor posição r () x(), (). P 0 (,, ) e u = (, 0, ); u é o veor que faz ângulo θ 7π / 4 com o eixo OX; j k. de uma parícula em movimeno sabendo que o veor angene em cada pono da sua rajeória é igual a f, sendo f (x, ) 5 x e que no insane inicial do movimeno a parícula se enconrava no pono (,).. Deermine o gradiene de f no pono indicado: a) f x, x x P, ; b) f x, lnx P,4. 4. Esboce a curva de nível de f que passa por P e desenhe o veor gradiene em P. a) f x, 4x ; P, ; b) f x, x 4 ; P,0. 5. Uma chapa de meal esá siuada em um plano x, de modo que a emperaura T em (x,) seja inversamene proporcional à disância da origem, e a emperaura em P(,4) é 00 o F. a) Ache a axa de variação de T em P na direção de i+j; b) Em que direção T aumene mais rapidamene em P? c) Em que direção T decresce mais rapidamene em P? d) Em que direção a axa de variação é nula? 6. Se um poencial elérico em um pono (x,) do plano x é V(x,) enão o veor de inensidade elérica x em um pono (x,) é E Vx,. Suponha que Vx, e cos. Deermine o veor inensidade elérica em, 0 e verifique que, em cada pono do plano, o poencial elérico decresce mais rapidamene 4 na direção e senido do veor E. 7. O poencial elérico V em um pono P(x,,z) num sisema de coordenadas reangulares é dado por V x 4 9z. Deermine a axa de variação de V em P(,, ) na direção de P para a origem. Deermine a direção e senido que produz axa máxima de variação de V em P. Qual a axa máxima de variação em P? 8. Deermine div F e ro F nos seguines casos a) F(x,,z) = x i j + z k b) F(x,,z) = 7 z i 8x z 5 j x 4 k c) F(x,, z) (x i j z k) x z d) F(x,,z) = x z i + x j + ( + z ) k
9. Sendo F(x,,z) = x i + j + 4 k e G(x,,z) = x i + j z k, calcule. ( F G ) 0. Sendo F(x,,z) = senx i + cos(x ) j + z k, calcule. ( F). Sendo F(x,,z) = x j + xz k, calcule ( F). Define-se o operador =. = x escalar chamada de Laplaciano de f, dada por f (x,,z) / x z. Se opera sobre f(x,,z) produz uma função z f f f. Mosre que o Laplaciano da função x z é zero, ou seja, a função saisfaz a equação de Laplace = 0. Funções que saisfazem a equação de Laplace são chamadas de funções harmônicas e desempenham papel imporane nas aplicações físicas.. Ache um campo veorial conservaivo que enha o poencial indicado a) f(x, ) = arcg (x ); b) f(x,,z) = x + 4z ; c) f(x,,z) = sen( x + + z ) 4. onfirme que u(x,) é uma função poencial de F a) u(x,) = + x x e F(x,) = (6x ) i + (4 + x x ) j. b) u(x,,z) = xsenz + senx + zsen e F(x,,z) = (senz + cosx) i + (senx + zcos) j + (x cosz + sen) k. 5. Verifique se os campos veoriais são conservaivos e em caso afirmaivo deermine uma função poencial para os mesmos a) F(x,) = xi + j b) F(x,) = x i + 5x j c) F(x,) = (cos + cosx)i + (senx xsen) j d) f (x z, x z, x ) e) f = (cosx + e x ) i +(xcosx + xe x ) j + k f) f = (z + cosx) i +(xz sen) j +x k 6. alcule ( x )ds, sendo : x = ; = ; 0 7. Seja a curva dada pelas equações x = ; = ( 0 ). alcule as seguines inegrais de linha ao longo de : a) ( x )dx b) ( x )d 8. alcule as seguines inegrais curvilíneas ao longo de a) 6 x dx xd é o gráfico de = x + de (,0) a (,). b) ( x )dx xd é o gráfico de x = de (0,0) a (,). c) xzdx ( z)d xdz é o gráfico de x = e ; = e ; z = e 0. d) ( x z)ds é o segmeno de rea que liga A(,,) a B(,0,). e) ( x z)ds é o quadrado de vérices (,0,), (,,), (0,,) e (0,0,).
9. alcule x dx (x )d ao longo de cada curva abaixo de (0,0) aé (,). a) b) c) d) 0. Se a força em (x, ) é dada por F(x,) = x i + x j, enconre o rabalho realizado por F ao longo das curvas do exercício 7 a) e d). A força em um pono (x,,z) é dada por F(x,,z) = i + z j + x k. Ache o rabalho realizado por F(x,,z) ao longo da cúbica reversa x = ; = ; z = de ( 0,0,0) aé (,4,8). a) Mosre que a inegral de linha dx xd é independene do caminho b) alcule a inegral ao longo do segmeno de rea de (,) para (,) (,) c) alcule a inegral dx xd usando a função poencial para confirmar que o valor é o (,) mesmo obido na pare b). Mosre que as inegrais a seguir são independenes do caminho e calcule o seu valor (4,0) a) dx xd b) xe dx x e (,) (,0) c) (, ) (,,) (,) (0,0) (,0,) x dx x d d) xdx x d dz e) d dz f) (,0,0) (0,,) (,,) (,0,0) e dx (xe d e z )d (e 4. onfirme que o campo de força F é conservaivo em uma região D do plano e calcule o rabalho realizado pelo campo de força numa parícula que se move de P para Q ao longo de uma curva suave de P para Q conida em D. a) F(x,) = x i + x j ; P(,) e Q(0,0) b) F(x,) = e x i + xe x j P(,) e Q(,0) xz xz xz 5. Deermine o rabalho realizado pela força f (ze,e, xe ) para deslocar uma parícula ao longo da curva, do pono A(,, 0) ao B(,, 0). Esse rabalho é maior, menor ou igual ao x realizado pela mesma força para deslocar uma parícula em linha rea de A aé B? 6. alcule o rabalho realizado pela força f (x z 4) i ( z ) j (x z) k, sobre uma parícula, ao longo de, de A(,4,) a B(,0,0), onde é a) o segmeno de rea AB; b) a parábola = z no plano x = z e z )dz 4
7. Use o Teorema de Green para calcular as seguines inegrais curvilíneas a) x dx (4x )d ao longo do riângulo de vérices (0,0), (,) e (,0) no senido anihorário. b) (ln x )dx (x e ) d c) ( (4 x )dx (ln 4x)d ao longo da elipse x no senido horário. 9 ao longo do reângulo de vérices (0,0), (,0),(,) e (0,), no senido ani-horário. d) ( x )dx xd ao longo do círculo x + = 4, no senido ani-horário. e) f dr, sendo f (,0) é o riângulo de vérices A(0,); B(,) e (,) no senido horário. Resposas. a) segmeno de rea; b) elipse no plano = 4; c) parábola no plano x = ; d) rea; e) parábola no plano =. a) i sen j cos k, 0 π. b) sen, 0 π. a) (,, ) 4. a) j. b) i k 5. a) cos sen i sec j sen cos k. b) cos sen c) e i e j. d) 9 6. a) x = + ; = ; b) x π; π; z 5. i i e 7. v sen i 5cos j; vπ 4 9 ; a cos i 5sen j; a π 4 9 9. x = ae ; = be ; z = ce, a, b e c consanes arbirárias. 0. a) As parículas colidem no insane = e esão na posição ( 9,9,9) b) v () (6,7,6) ; a () (0,,0). a) -/5; b) zero; c) -6/69; d) e). f) ; g) 6 ;. r () e,e 8. a) -6i-j; b) 4i+4j. 4. a) a curva de nível é a rea = x e o veor gradiene (4, -) b) a curva de nível é a elipse x + 4 = 4 e o gradiene ( 4,0) 5. a) 8/ ; b) a direção de -i -6j; c) a direção de i +6j; d) a direção de 4i -j. π 78 6. e i. 7. ; 4i - 8j + 54k, 996 ; 8. a) div F = x + ; ro F = z i 4 b) div F = 0; ro F = ( 40x z 4 x ) i + (4 z + 4 ) j (6xz 5 + z ) k c) div F = ; ro F = 0; d) div F = xz + x + ; ro F = i + x j + k x z j. j..
9. 0; 0. 0;. ( + ) i + x j; x. a) F(x, ) i j ; b) F(x,,z) = x i 6 j + 8z k; x x c)f(x,,z) = x cos(x + +z ) i + cos(x + +z ) j + z cos(x + +z ) k x 5. a) conservaivo; u(x, ) ; b) e d) não conservaivo c) conservaivo; u(x,) = xcos +senx + ; e) conservaivo; u = senx + e x +z + f) conservaivo; u = xz + senx + cos + 6. 4 ( ) ; 5. a) 0; b) / 8. a) 4/7; b) 0; c) c)(/) (e 4 + 6e e + 8e 5 ); d) ; e) 8 9. a) 5/; b) 6; c) 7; d) 9/4 ; 0. 9/ nos dois casos;. 4/5. a) 6; b) 9e ; c) ; d) 0; e) 5; f) e + e 4. a) W = /; b) W = e 5. ; o rabalho é igual; 6. a) e b) /; 7. a) 8; b) ; c) 6; d) 8 ; e) / 6