MICROSCOPIA. Prof a. Marta Gonçalves Amaral, Dra.

Documentos relacionados
MICROSCOPIA. Prof a. Marta Gonçalves Amaral, Dra.

Métodos de estudo em microscopia de luz e eletrônica

20/8/2012. Raduan. Raduan

03/02/2018 MÉTODOS DE ESTUDO: CÉLULAS E TECIDOS

MICROSCOPIAS Conceito, componentes e funções

BIOLOGIA O MUNDO MICROSCÓPICO. Prof. Dr. Feresin

Métodos de estudo e Técnicas: como estudar as células

Microscopia e o Espectro Eletromagnético

Noções Básicas em Microscopia Óptica

Procariotos x Eucariotos

O mundo microscópico Biologia - Frente B. Prof. Dr. Gabriel Feresin

O QUE QUERO OBSERVAR E PORQUÊ???

Observações Iniciais. Microscopia Aula Revisão. Observações Iniciais. Unidades de Medidas Usadas. Formação da Imagem. Unidades de Medidas Usadas

Aplica-se à observação de microorganismos vivos, sem preparação prévia (coloração)

Universidade de São Paulo Instituto de Física de São Carlos Bacharelado em Ciências Físicas e Biomoleculares Microbiologia 2017

Aula2 MICROSCÓPIO ÓTICO: RESOLUÇÃO E MODALIDADES DE OBSERVAÇÃO. Fabiana Silva Vieira

Microscópio. Microscopia de Luz Evolução do microscópio de luz. O microscópio é um instrumento que permite observar objetos não visíveis a olho nu.

Unidade II: Métodos de Estudo em Biologia Celular

HISTOLOGIA E SEUS MÉTODOS DE ESTUDO

Técnica Básicas para Análises de Células e Tecidos

DESCRIÇÃO E FUNCIONAMENTO DO MICROSCÓPIO ÓPTICO. Aprender como usar o microscópio;

Universidade de São Paulo Instituto de Física de São Carlos Bacharelado em Ciências Físicas e Biomoleculares Microbiologia 2018

AULA PRÁTICA SOBRE MICROSCOPIA PARTE 1

Interbits SuperPro Web

Técnicas de Caracterização de Materiais

Física. Óptica. Professor Alexei Muller.

Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc.

Ciências Naturais, 5º Ano. Ciências Naturais, 5º Ano FICHA DE TRABALHO 1. Escola: Nome: Turma: N.º:

Microscopia Óptica. Micro Magnet. ImageJ. ibiology Microscopy Course. Sugestões de práticas. Bibliografia. Manoel Luis Costa

Escola: Nome: Turma: N.º: Data: / / FICHA DE TRABALHO 1. Zacharias Janssen Knoll e Ruska ampliação de 200x. células ampliação de 30x Leeuwenhoek

MICROSCOPIA E O ESTUDO DA CÉLULA

2º trimestre TB- FÍSICA Data: Ensino Médio 1º ano classe: Prof. J.V. Nome: nº

Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio 3º ano classe: Prof.Evandro Nome: nº

BANCO DE QUESTÕES - FÍSICA - 1ª SÉRIE - ENSINO MÉDIO ==============================================================================================

n 1 x sen = n 2 x sen


Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Serrinha

Chamamos de instrumentos de projeção aqueles que fornecem uma imagem real, que pode, portanto, ser projetada em um anteparo, uma tela ou um filme.

FÍSICA:TERMODINÂMICA, ONDAS E ÓTICA

LISTA DE EXERCÍCIOS ÓPTICA: REFRAÇÃO PROF. PEDRO RIBEIRO

Lentes de Bordos Finos

CONCEITOS GERAIS 01. LUZ. c = km/s. c = velocidade da luz no vácuo. Onda eletromagnética. Energia radiante

ESTUDO DO MICROSCÓPIO ÓPTICO

ÓPTICA GEOMÉTRICA PREGOLINI

MICROSCÓPIO: UM MARCO NA HISTÓRIA DA CIÊNCIA

EXERCÍCIOS SOBRE REFRAÇÃO

II- O Microscópio Petrográfico e Tipos de Preparado para Análises

Embriologia e Histologia Animal I

Introdução à microscopia. Luis Lamber5 P. da Silva Departamento de Biologia Celular Faculdade de Medicina de Ribeirão Preto- USP

Aula 3 - Ondas Eletromagnéticas

Óptica Geométrica Séries de Exercícios 2018/2019

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

Capítulo 33. Ondas eletromagnéticas

Exercícios Dissertativos

ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.

Microscopia eletrônica de Transmissão: Aspectos básicos e aplicações. Douglas Rodrigues Miquita Centro de Microscopia da UFMG

3. Câmeras digitais, como a esquematizada na figura, possuem mecanismos automáticos de focalização.

Ajustes do Microscópio Olympus IX83 Data de Elaboração 24/08/17

POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.

3 - Na figura a seguir, está esquematizado um aparato experimental que é utilizado. 1 - Dois raios de luz, um vermelho (v) e outro

PROCEDIMENTO OPERACIONAL PADRÃO TÍTULO: USO E MANUTENÇÃO DE MICROSCÓPIO ÓPTICO Código: ILMD-SLM-POP.005 Revisão/Ano: 00/2018 Classificação SIGDA:

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1

Faculdade de Tecnologia de Bauru Sistemas Biomédicos

LEI de SNELL - DESCARTES

Fís. Monitor: João Carlos

LUZ. A luz é uma forma de energia, que tem origem nos corpos luminosos e que se propaga em todas as direções.

d = t sen (θ a θ b ). b

Apresentação e Aplicações de Óptica Geométrica (ENEM/UERJ)

Fís. Fís. Monitor: João Carlos

LISTA EXERCÍCIOS ÓPTICA

Aplicações da Mecânica Quântica

LISTA EXERCÍCIOS ÓPTICA

EXERCÍCIO 3 - INTERFERÊNCIA

Ótica geométrica. Num sistema ótico arbitrário, um raio de luz percorre a mesma trajetória quando o seu sentido de propagação é invertido

BIOFÍSICA DA VISÃO E DA AUDIÇÃO

PROCEDIMENTO OPERACIONAL PADRÃO Microscópios Verticais do LAMEB: Cuidados Gerais e Focalização das Lâminas

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel. Refração da Luz. Disciplina: Física II Professor: Carlos Alberto

UNIVERSIDADE BRAZ CUBAS - Tecnologia em Óptica e Optometria Óptica Oftálmica aula 3

Produção: Lab. Biologia Celular Vegetal (Labcev) - Depto. BEG CCB UFSC. Apoio: (LAMEB) Lab. Multiusuário de Estudos em Biologia CCB - UFSC

Aulas 9 Espectroscopia

LISTA INTRUMENTOS ÓPTICOS PROFESSOR MARCUS VINÍCIUS

1-A figura 1 a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água.

Prof. Dr. Lucas Barboza Sarno da Silva

CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS

Edital lfsc-07/2013 Concurso Público Especialista em Laboratório

INTERVENÇÃO AULA PRÁTICA SOBRE MICROSCOPIA

EXERCÍCIOS PARA A LISTA 8 CAPÍTULO 22 ÓPTICA ONDULATÓRIA

Microscopia 1 Introdução limite de resolução mícron scapein


BANCO ÓTICO. Manual de Instruções e Guia de Experimentos

Exercícios 2 fase aula 2

FÍSICA MÓDULO 19 FENÔMENOS ONDULATÓRIOS II. Professor Ricardo Fagundes

Conceitos Básicos de Óptica Geométrica

CONCEITOS BÁSICOS DE ÓPTICA GEOMÉTRICA

CENTRO UNIVERSITÁRIO DE DESENVOLVIMENTO DO CENTRO-OESTE UNIDESC CURSOS DE MEDICINA VETERINÁRIA & CIÊNCIAS BIOLÓGICAS Disciplina de Biologia Celular


Exercícios DISCURSIVOS -1.

Comunicação de informação a longas distâncias

Transcrição:

MICROSCOPIA Prof a Marta Gonçalves Amaral, Dra.

HISTÓRICO Século XIV: uso lentes para correção da visão Galileu no século XVI criou a lupa Século XVI o holandês Antonie van Leeuwnhoek ("lêiven-ruk ) criou o primeiro microscópio

Microscópio de Leeuwenhoek POSTERIOR LATERAL

Século XVII o microscópio composto foi criado pelo holandês Zacharias Janssen. 2 lentes convergentes ocular objetiva

O nome "microscópio" surgiu em 1624, sugerido por Johann Giovanni Faber de Bamberg; médico, vivia em Roma, membro da Accademia Nazionale dei Lincei e trabalhava para o papa Urbano VII. São dois vocábulos de origem grega: Micros = pequeno Skopein = ver, examinar

Em 1655 Robert Hook descreve os poros da cortiça denominado de células

Unidades e medidas em microscopia MO= micrômetro (µm) ME= nanômetro (ηm) e angstrom (Å) 1 µm= 10-3 mm (0,001mm)= 10-6 m 1 ηm= 10-3 µm = 10-6 mm (0,000001mm) = 10-9 m 1 Å= 10-1 ηm = 10-4 µm = 10-7 mm (0,0000001mm) = 10-10 m

Microscópio óptico ou composto Microscópios ópticos mais usados 1. Microscópio de luz 2. Microscópio de campo escuro 3. Microscópio de contraste de fase 4. Microscópio de contraste interferencial 5. Microscópio de polarização 6. Microscópio de fluorescência 7. Microscópio confocal a laser

Microscópio de luz M E C Â N I C A Ó P T I C A

Formação da imagem

Ampliação OBJETIVA x OCULAR = AMPLIAÇÃO

Poder de resolução PODER DE RESOLUÇÃO: é o mais importante, SÃO OS DETALHES QUE PODEMOS OBSERVAR PR comprimento de onda da luz (λ) abertura numérica da objetiva (NA) LIMITE DE RESOLUÇÃO: menor distância entre 2 pontos, percebida pelo olho humano que é 0,1mm ou 10-1 µm

LR é inversamente proporcional ao PR Quanto < o LR da lente > é o PR do microscópio LR = K λ AN K= uma constante avaliada em 0,61 λ= comprimento de onda da radiação AN= abertura numérica

AN = n x senα n= índice de refração do espaço entre a preparação e a objetiva sen α = seno do semi-ângulo de abertura da objetiva n

Objetiva de imersão Óleo de imersão: tem IR (1,5)semelhante ao vidro Função: evitar a dispersão dos raios luminosos, que atravessam a lâmina-óleo, permitindo a entrada de um grande cone de luz na objetiva.

Distância ocular Deve ser ajustada de acordo com a distância inter-pupilar do observador

Ajuste da dioptria Dioptria: popularmente conhecido como grau, este ajuste permite corrigir o foco de acordo com a acuidade visual de cada um.

CAMPO MICROSCÓPICO Centro do campo

Cuidados com o microscópio 1. Transporte o microscópio na posição vertical, com as 2 mãos, uma segurando no braço e a outra apoiando a base. 2. NUNCA toque nas lentes oculares e objetivas! 3. Não arraste o microscópio na bancada. 4. Limpeza das lentes com pano limpo, macio e seco, que não solte fibras, se necessário usar álcooléter (v/v) 5. Ao final da observação, diminuir a intensidade luminosa, desligar a lâmpada, baixar a mesa e girar o revolver com a menor objetiva para baixo.

Microscópio de campo escuro É usado um condensador especial que inclina a luz, ela não atravessa o objeto estudado. A luz é dispersa pela superfície dos materiais que tem diferentes índices de refração, capaz de fazer com que somente os raios luminosos que atingirem um objeto na lâmina entrem na objetiva Quando a luz atinge o objeto ela desvia pelo resto do sistema (objetivas e oculares) formando a imagem. Usado para o estudo de material não corado suspensos em líquidos: bactérias, plâncton,etc.

Treponema denticola figura 1 A e B (barra = 5 µm) microscopia de campo escuro patógeno periodontal Trofozoíto no LCR microscopia de campo escuro 1000X

Microscópio de contraste de fase Desenvolvido em 1950 pelo holandês Zerniké É baseado na difração da luz O caminho do feixe luminoso na formação da imagem sofre um retardo óptico, permitindo a visualização de materiais biológicos sem coloração

O retardo óptico da luz é feito por 2 anéis metálicos colocados no caminho da luz, um no condensador e outro nas objetivas (Ph)

Usado para estudo de células vivas, bactérias, algas, protozoários, etc. Paramecuim aurelia 200x Microscópio de luz Microscópio contraste de fase

Microscópio de contraste interferencial/ Nomarski O microscópio de Nomarski é o interferêncial mais conhecido, permite o aumento do relevo das superfícies do objeto analisado. Usado em materiais não corados como cultura de células e parasitologia

Tem dois prismas ópticos colocados no caminho da luz, para modificar a fase da onda luminosa, que contrasta com o meio onde está o material a ser analisado

Contraste de fase: ácaro Aponychus chiavegatoi Contraste interferêncial de Normarski: ácaro Aponychus chiavegatoi

Cultura células crista neural Microscópio óptico de luz Microscópio contraste fase Microscópio contraste interferêncial de Nomarski

Amoeba verrucosa,contraste fase Nomarski, algas no interior, 200x Amoeba verrucosa, contraste fase 200X

Microscópio de polarização Semelhante ao microscópio de luz, acrescido de dois prismas ou dois discos polaróides: 1. Polarizador: fica entre a fonte de luz e o condensador. 2. Analisador: fica entre a objetiva e a ocular Os filtros conduzem o feixe luminoso em uma só direção, é o PPL, plano de luz polarizada. Polarizador Analisador

Anisotrópico: são birrefringentes Isotrópico: não é refringente Músculo estriado esquelético, corte longitudinal, HE, microscópio óptico 400X Músculo estriado esquelético, corte longitudinal, Picro-sirius, microscópio luz polarizada 200X Usado para o estudo do músculo estriado parede celular, espermatozóides, osso, esmalte dentário, dentina e DNA

Dente humano, MO 100x Dente humano, polarização 100x

Osso, MO, 40X Osso, Luz polarizada, 100X Osso, MO, 400X

Microscópio de fluorescência Neste microscópio há um sistema óptico que interage pouco com a luz. A luz é de mercúrio de alta pressão, com picos de 312 a 579nm. Tem um sistema de filtros que detectam o brilho do material contra um fundo negro. São filtros de excitação e filtros de barragem. Filtros de excitação ficam logo após a saída da fonte de luz e antes do condensador, selecionam o comprimento de onda desejado. Filtros de barragem estão entre a objetiva e a ocular, após o objeto, permitem a passagem da luz fluorescente emitida pelo espécime analisado, barrando assim a luz de excitação. O material fluoresce contra um fundo escuro. Os filtros de barragem são selecionados pelo observador na hora do uso de acordo com o fluorocromo usado.

Os fluorocromos se combinam com estruturas celulares, tornando-as fluorescentes, permitindo a sua identificação e localização. Ex.: alaranjado de acridina se liga ao DNA e fica amarelo e ao RNA que fica vermelho FÓTONS DE COMPRIMENTO DETERMINADO LUZ FLUORESCENTE EMITIDA PELO OBJETO FÓTONS DA FONTE DE LUZ DE ALTA PRESSÃO FILTRO DE EXCITAÇÃO FILTRO DE BARRAGEM

Artéria muscular,he, evidência a fluorescência da limitante elástica interna e externa

Microscópio confocal por varredura a laser Desde 1987, usado em materiais espessos, sem coloração, vivos ou pré-fixados. Os microscópios tradicionais trabalham com imagens analógicas, o confocal a laser usa imagem digital. A óptica é igual ao de microscópio de fluorescência, mas usa laser como fonte de luz A iluminação não ocorre em todo o campo, ocorre em pequenos pontos de iluminação pelo laser.

Acima da objetiva há um orifíco chamado pinhole ou íris, que bloqueia a luz proveniente de objetos que estejam fora do plano focal. SÓ UM PLANO DO CORTE É ANALISADO DE CADA VEZ Estuda-se o detalhe das estruturas subcelulares que não tem limite de resolução compatível ao da MO fluorescente convencional. Ex.: microtúbulos, elementos fibrilares do citoesqueleto e elementos finos da matriz extracelular.

Cílios traquéia 40x Elementos fibrilares do citoesqueleto Neurônios 40X Glomérulo 60X

Microscópio eletrônico Em 1931, Max Knoll e Ernest Ruska construíram o primeiro microscópio eletrônico. Os princípios da óptica da ME são os mesmos do microscópio de luz, com algumas diferenças 1. a fonte geradora dos feixes de elétrons fica na porção superior do aparelho 2. a imagem não é invertida.

MO x ME

ME transmissão

Os elétrons têm que interagir com o objeto para gerar a imagem, o objeto tem que ser extremamente fino para permitir a passagem de elétrons. Os elétrons saem de uma fonte geradora, passam por lentes eletromagnéticas, disposta em uma coluna um sistema de alto vácuo. Os feixes de elétrons são acelerados e se desprendem do filamento por diferença de potencial. Os elétrons saem da fonte geradora, são encaminhados para a lente condensadora dos feixes, que os direciona para o objeto. A lente intermediária e a lente projetora ampliam o padrão de transparência dos elétrons.

Após a ampliação da imagem ela é projetada sobre um anteparo fluorescente, uma placa fluorescente, um negativo fotográfico ou câmera CCD (monitor). Quando os elétrons encontram elementos como ferro, ósmio, chumbo ou ouro, formam uma imagem eletrondensa ou escura. Quando encontra elementos como o hidrogênio, carbono, nitrogênio ou oxigênio a imagem é eletrolúcida ou clara.

ME Varredura

Revela superfícies topográficas com grande nitidez de detalhes. As imagens são tridimensionais e são obtidos por elétrons secundários ou refletidos, eles partem da superfície da amostra quando ela é bombardeada pelo feixe eletrônico.

É formado por um sistema de geração de elétrons que varre a superfície do espécime, quando ocorre a formação do sinal que dará origem imagem. Um sistema de captação de elétrons secundários coleta o sinal e o amplifica, finalmente um sistema para compor a imagem final, que é visualizada em um monitor de vídeo.

Formiga

Hemácias e leucócitos em scanning Hemácias e leucócitos em scanning, coloridos por software

OBRIGADA!