Gráficos de uma função para análise e interpretação 1. (Insper 014) Um leitor enviou a uma revista a seguinte análise de um livro recém-lançado, de 400 páginas: O livro é eletrizante, muito envolvente mesmo! A cada página terminada, mais rápido eu lia a próxima! Não conseguia parar! Dentre os gráficos apresentados abaixo, o único que poderia representar o número de páginas lidas pelo leitor (N) em função do tempo (t) de modo a refletir corretamente a análise feita é a) b) c) d) e) www.nsaulasparticulares.com.br Página 1 de 30
. (Udesc 014) Considere a função cujo gráfico está representado na figura. Esta função pode ser expressa por: x, se x 0 cos(3x), se 0 x π a) f(x) ( π 1 x)(x 5), se x π ( π 5) c) e) x, se x 0 sen (x) 1, se 0 x π f(x) (x 5), se x π (5 π) x, se x 0 sen(3x) 1, se 0 x π f(x) (x 1 π)(x 5), se x π ( π 5) 3. (Ufpr 014) Suponha que um líquido seja despejado, a uma vazão constante, em um recipiente cujo formato está indicado na figura ao lado. Sabendo que inicialmente o recipiente estava vazio, qual dos gráficos abaixo melhor descreve a altura h, do nível do líquido, em termos do volume total V, do líquido despejado no recipiente? b) d) x, se x 0 sen(3x), se 0 x π f(x) (x 1 π)(x 5), se x π ( π 5) log( x), se x 0 sen(3x) 1, se 0 x π f(x) (x 5), se x π (5 π) a) b) c) d) e) www.nsaulasparticulares.com.br Página de 30
4. (Unicamp 013) A figura abaixo mostra a precipitação pluviométrica em milímetros por dia (mm/dia) durante o último verão em Campinas. Se a precipitação ultrapassar 30 mm/dia, há um determinado risco de alagamentos na região. De acordo com o gráfico, quantos dias Campinas teve este risco de alagamento? a) dias. b) 4 dias. c) 6 dias. d) 10 dias. 5. (Enem 013) Deseja-se postar cartas não comerciais, sendo duas de 100g, três de 00g e uma de 350g. O gráfico mostra o custo para enviar uma carta não comercial pelos Correios: O valor total gasto, em reais, para postar essas cartas é de a) 8,35. b) 1,50. c) 14,40. d) 15,35. e) 18,05. www.nsaulasparticulares.com.br Página 3 de 30
6. (Ufsj 013) Na figura a seguir, são dados os gráficos de y f x funções. e de outras quatro Com base no gráfico, é CORRETO afirmar que f x. a) (IV) representa a função b) (II) representa a função f x 4. c) (III) representa a função f x 3. d) (I) representa a função f x 4. 7. (Ufpr 01) Considere as funções f(x) x 1 e g(x) (x 1)(x ). 3 a) Esboce o gráfico de f(x) e g(x) no sistema cartesiano abaixo. b) Calcule as coordenadas (x, y) dos pontos de interseção dos gráficos de f(x) e g(x). www.nsaulasparticulares.com.br Página 4 de 30
8. (Uff 01) Esboce, no sistema de eixos coordenados abaixo, o gráfico de uma função real cujo domínio é o intervalo 1, e cuja imagem é o conjunto, 1,3. 9. (Upf 01) Na figura abaixo estão representadas no plano cartesiano duas funções, y f(x) e y g(x), ambas definidas no intervalo 0, 7. Seja E o conjunto de números reais definido por E {x f(x).g(x) 0}. Então, é correto afirmar que E é: a) {x 0 x 1} {x 5 x 7} b) {x 0 x } {x 4 x 6} c) {x 0 x } {x 5 x 7} d) {x 1 x 5} e) {x 0 x 6} www.nsaulasparticulares.com.br Página 5 de 30
10. (Enem 01) A figura a seguir apresenta dois gráficos com informações sobre as reclamações diárias recebidas e resolvidas pelo Setor de Atendimento ao Cliente (SAC) de uma empresa, em uma dada semana. O gráfico de linha tracejada informa o número de reclamações recebidas no dia, o de linha continua é o número de reclamações resolvidas no dia. As reclamações podem ser resolvidas no mesmo dia ou demorarem mais de um dia para serem resolvidas. O gerente de atendimento deseja identificar os dias da semana em que o nível de eficiência pode ser considerado muito bom, ou seja, os dias em que o número de reclamações resolvidas excede o número de reclamações recebidas. Disponível em: http://bibliotecaunix.org. Acesso em: 1 jan. 01 (adaptado). O gerente de atendimento pôde concluir, baseado no conceito de eficiência utilizado na empresa e nas informações do gráfico, que o nível de eficiência foi muito bom na a) segunda e na terça-feira. b) terça e na quarta-feira. c) terça e na quinta-feira. d) quinta-feira, no sábado e no domingo. e) segunda, na quinta e na sexta-feira. 11. (Enem PPL 01) Um jovem lança uma bola de borracha para observar sua trajetória e altura h (em metros) atingida ao longo de um certo intervalo de tempo t (em segundos). Nesse intervalo, a bola quica no chão algumas vezes, perdendo altura progressivamente. Parte de sua trajetória está descrita na figura a seguir. Em suas observações, quantas vezes o jovem pôde constatar que a bola atingiu a marca de 35 metros? a) Nenhuma. b) Uma vez. c) Duas vezes. d) Quatro vezes. e) Cinco vezes. www.nsaulasparticulares.com.br Página 6 de 30
1. (Ufpb 01) O gráfico a seguir representa a evolução da população P de uma espécie de peixes, em milhares de indivíduos, em um lago, após t dias do início das observações. No 150º dia, devido a um acidente com uma embarcação, houve um derramamento de óleo no lago, diminuindo parte significativa dos alimentos e do oxigênio e ocasionando uma mortandade que só foi controlada dias após o acidente. Com base no gráfico e nas informações apresentadas, julgue os itens a seguir: ( ) A população P de peixes é crescente até o instante do derramamento de óleo no lago. ( ) A população P de peixes está representada por uma função injetiva no intervalo 150,10. ( ) A população P de peixes atinge um valor máximo em t 150. 10,10, atinge um valor mínimo em t 10. ( ) A população P de peixes, no intervalo ( ) A população de peixes tende a desaparecer, após o derramamento de óleo no lago. 13. (Uftm 01) A figura indica o gráfico da função contínua f, de domínio [ 1, 16] e imagem [ 5, 16]. De acordo com o gráfico, o número de soluções da equação f(f(x)) = 5 é a) 3. b) 4. c) 5. d) 6. e) 7. www.nsaulasparticulares.com.br Página 7 de 30
14. (Enem 01) O gráfico fornece os valores das ações da empresa XPN, no período das 10 às 17 horas, num dia em que elas oscilaram acentuadamente em curtos intervalos de tempo. Neste dia, cinco investidores compraram e venderam o mesmo volume de ações, porém em horários diferentes, de acordo com a seguinte tabela. Investidor Hora da Compra Hora da Venda 1 10:00 15:00 10:00 17:00 3 13:00 15:00 4 15:00 16:00 5 16:00 17:00 Com relação ao capital adquirido na compra e venda das ações, qual investidor fez o melhor negócio? a) 1 b) c) 3 d) 4 e) 5 15. (Enem PPL 01) Uma empresa analisou mensalmente as vendas de um de seus produtos ao longo de 1 meses após seu lançamento. Concluiu que, a partir do lançamento, a venda mensal do produto teve um crescimento linear até o quinto mês. A partir daí houve uma redução nas vendas, também de forma linear, até que as vendas se estabilizaram nos dois últimos meses da análise. O gráfico que representa a relação entre o número de vendas e os meses após o lançamento do produto é a) b) c) d) e) www.nsaulasparticulares.com.br Página 8 de 30
16. (Uel 01) O gráfico de uma função f mostra o deslocamento vertical de um surfista sobre uma onda, em função do tempo. Com base no gráfico e nos conhecimentos sobre funções, considere as afirmativas a seguir. I. Para todo t (t 3,t 7) ; f é constante. II. Para todo t 0,t 3, f(t) cos(t). III. Para todo t (t 7,t 10 ) ; f(t) m t b, onde m 0. IV. A função f assume seu valor máximo em t t. Assinale a alternativa correta. a) Somente as afirmativas I e III são corretas. b) Somente as afirmativas I e IV são corretas. c) Somente as afirmativas II e III são corretas. d) Somente as afirmativas I, II e IV são corretas. e) Somente as afirmativas II, III e IV são corretas. 17. (Ufba 011) O gráfico representa uma projeção do valor de mercado, v(t), de um imóvel, em função do tempo t, contado a partir da data de conclusão de sua construção, considerada como a data inicial t = 0. O valor v(t) é expresso em milhares de reais, e o tempo t, em anos. Com base nesse gráfico, sobre o valor de mercado projetado v(t), pode-se afirmar: 01) Aos dez anos de construído, o imóvel terá valor máximo. 0) No vigésimo quinto ano de construído, o imóvel terá um valor maior que o inicial. 04) Em alguma data, o valor do imóvel corresponderá a 37,5% do seu valor inicial. 08) Ao completar vinte anos de construído, o imóvel voltará a ter o mesmo valor inicial. 16) Se v t 00. t10 100 igual na um oitavo do seu valor inicial., então, ao completar trinta anos de construído, o valor do imóvel será www.nsaulasparticulares.com.br Página 9 de 30
18. (Enem 011) Uma empresa de telefonia fixa oferece dois planos aos seus clientes: no plano K, o cliente paga R$ 9,90 por 00 minutos mensais e R$ 0,0 por cada minuto excedente; no plano Z, paga R$ 49,90 por 300 minutos mensais e R$ 0,10 por cada minuto excedente. O gráfico que representa o valor pago, em reais, nos dois planos em função dos minutos utilizados é a) b) c) d) e) 19. (Uff 011) Os gráficos I, II e III, a seguir, esboçados em uma mesma escala, ilustram modelos teóricos que descrevem a população de três espécies de pássaros ao longo do tempo. Sabe-se que a população da espécie A aumenta 0% ao ano, que a população da espécie B aumenta 100 pássaros ao ano e que a população da espécie C permanece estável ao longo dos anos. Assim, a evolução das populações das espécies A, B e C, ao longo do tempo, correspondem, respectivamente, aos gráficos a) I, III e II. b) II, I e III. c) II, III e I. d) III, I e II. e) III, II e I. www.nsaulasparticulares.com.br Página 10 de 30
0. (Uem 011) Considerando a figura abaixo, que ilustra o gráfico de uma função f : 8,4 em um sistema ortogonal de coordenadas cartesianas xoy, em que a porção referente ao subintervalo do domínio 8, 4é parte de uma parábola, e o restante do gráfico é uma linha poligonal, assinale o que for correto., então 01) Se 8 x 4, f x x 10x 1. 8 5 0) f. 3 3 f f 4 f f 1 04). 3 f x 1 possui apenas cinco raízes reais distintas. 08) A equação 16) Se x é solução da equação f x,, então 0 x 3. 1. (Ufpe 011) Na ilustração a seguir, temos parte dos gráficos das funções f: dada por f(x) 5 x e g: {0} dada por g(x). x Analise as afirmações a seguir referentes às duas funções. ( ) Um dos pontos de interseção dos gráficos de f e g e (, 1). ( ) As abscissas dos pontos de interseção dos gráficos de f e g são as raízes reais 3 da equação x 5x 0. (x )(x x 1) ( ) f(x) g(x), para x todo x real e diferente de zero. ( ) O ponto de interseção dos gráficos de f e g situado no terceiro quadrante tem ordenada (1 ). ( ) Os gráficos de f e g se interceptam em quatro pontos. www.nsaulasparticulares.com.br Página 11 de 30
. (Fgv 010) A figura indica o gráfico da função f, de domínio [ 7,5], no plano cartesiano ortogonal. O número de soluções da equação f(f(x)) = 6 é a). b) 4. c) 5. d) 6. e) 7 3. (Ufg 010) Grande parte da arrecadação da Coroa Portuguesa, no século XVIII, provinha de Minas Gerais devido à cobrança do quinto, do dízimo e das entradas (Revista de História da Biblioteca Nacional). Desses impostos, o dízimo incidia sobre o valor de todos os bens de um indivíduo, com uma taxa de 10% desse valor. E as entradas incidiam sobre o peso das mercadorias (secos e molhados, entre outros) que entravam em Minas Gerais, com uma taxa de, aproximadamente, 1,15 contos de réis por arroba de peso. O gráfico a seguir mostra o rendimento das entradas e do dízimo, na capitania, durante o século XVIII. Com base nessas informações, em 1760, na capitania de Minas Gerais, o total de arrobas de mercadorias, sobre as quais foram cobradas entradas, foi de aproximadamente: a) 1 000 b) 60 000 c) 80 000 d) 100 000 e) 750 000 www.nsaulasparticulares.com.br Página 1 de 30
4. (Ufc 010) Seja, 1 ] [1, ) R a função definida por afirmar que: a) f (1) =. b) f (x) = - x - c) f (x) = - x - x 1se x 1. x 1se x 1. d) f (x) = - x + x 1se x 1. e) f (x) = 0 para todo real x no domínio de f. f(x) x x 1. É correto 5. (Ibmecrj 010) Num certo país, o imposto de renda é cobrado da seguinte forma: os que têm rendimento até 1 500 u.m (unidades monetárias) são isentos: aos que possuem renda entre 1 500 u.m e 6 000 u.m, cobra-se um imposto de 10%; acima de 6 000 u.m, o imposto é de 0%. Qual dos gráficos melhor representa a situação acima descrita? a) b) c) d) 6. (Ufc 010) Sobre a função f : [0,+ ) [0,+ ) dada por f(x) = que: a) f é estritamente crescente. b) f é estritamente decrescente. c) o gráfico de f é uma parábola. d) f o f = f. e) f (a + b) = f (a) + f (b), para todos a, b [0, + ). x, é correto afirmar x 1 www.nsaulasparticulares.com.br Página 13 de 30
7. (Ufpb 010) Paulo é um zoólogo que realiza suas observações em um ponto, o de observação, e guarda seus equipamentos em um outro ponto, o de apoio. Em certo dia, para realizar seu trabalho, fez o seguinte trajeto: Partiu do ponto de apoio com destino ao de observação e, da metade do caminho, voltou ao ponto de apoio, para pegar alguns equipamentos que havia esquecido. Ali demorou apenas o suficiente para encontrar tudo de que necessitava. Em seguida, partiu novamente em direção ao ponto de observação, e lá chegou. Depois de fazer algumas observações e anotações, partiu com destino ao ponto de apoio. Após alguns minutos de caminhada, lembrou que havia esquecido o binóculo no ponto de observação e, nesse instante, retornou para pegá-lo. Ao chegar ao ponto de observação, demorou ali um pouco mais, pois avistou uma espécie rara e resolveu observá-la. Depois disso, retornou ao ponto de apoio, para guardar seus equipamentos, encerrando o seu trabalho nesse dia. O gráfico a seguir mostra a variação da distância do zoólogo ao ponto de apoio, em função do tempo, medido em minutos, a partir do instante em que ele deixou o ponto de apoio pela primeira vez. Com base nas informações apresentadas e no gráfico acima, identifique as afirmativas corretas: ( ) O zoólogo chegou ao ponto de apoio, para pegar os equipamentos que ali havia esquecido, 10 minutos depois de ter saído desse ponto pela primeira vez. ( ) O zoólogo chegou ao ponto de observação, pela primeira vez, 15 minutos depois de ter saído do ponto de apoio, após apanhar os equipamentos que ali havia esquecido. ( ) O zoólogo esteve no ponto de observação durante 0 minutos. ( ) O zoólogo notou que havia esquecido o binóculo, 5 minutos após deixar o ponto de observação. ( ) O tempo transcorrido da chegada do zoólogo ao ponto de observação, pela primeira vez, a sua chegada ao ponto de apoio, para encerrar o trabalho, foi de 50 minutos. www.nsaulasparticulares.com.br Página 14 de 30
8. (Enem simulado 009) A figura a seguir mostra a porcentagem de oxigênio (O ) presente na atmosfera, ao longo de 4,5 bilhões de anos, desde a formação da Terra até a era dos dinossauros. Considere que a escala de tempo fornecida seja substituída por um ano de referência, no qual a evolução química é identificada como 1º de janeiro à zero hora e a era dos dinossauros como dia 31 de dezembro às 3h59 min e 59,99 s. Desse modo, nesse ano de referência, a porcentagem de oxigênio (O ) presente na atmosfera atingiu 10% no a) 1º bimestre. b) º bimestre. c) º trimestre. d) 3º trimestre. e) 4º trimestre. 9. (Fgv 009) A figura a seguir representa parte do gráfico de uma função periódica f :. O período da função g(x) f(3x 1) é: a) 1 3 b) 3 c) d) 3 e) 6 www.nsaulasparticulares.com.br Página 15 de 30
30. (Enem cancelado 009) A importância do desenvolvimento da atividade turística no Brasil relaciona-se especialmente com os possíveis efeitos na redução da pobreza e das desigualdades por meio da geração de novos postos de trabalho e da contribuição para o desenvolvimento sustentável regional. No gráfico são mostrados três cenários pessimista, previsível, otimista a respeito da geração de empregos pelo desenvolvimento de atividades turísticas. De acordo com o gráfico, em 009, o número de empregos gerados pelo turismo será superior a a) 60.900 no cenário previsível. b) 660.000 no cenário otimista. c) 316.000 e inferior a 416.000 no cenário previsível. d) 35.700 e inferior a 353.800 no cenário pessimista. e) 516.000 e inferior a 616.000 no cenário otimista. 31. (Enem simulado 009) As condições de saúde e a qualidade de vida de uma população humana estão diretamente relacionadas com a disponibilidade de alimentos e a renda familiar. O gráfico I mostra dados da produção brasileira de arroz, feijão, milho, soja e trigo e do crescimento populacional, no período compreendido entre 1997 e 003. O gráfico II mostra a distribuição da renda familiar no Brasil, no ano de 003. Considere que três debatedores, discutindo as causas da fome no Brasil, chegaram às seguintes conclusões: www.nsaulasparticulares.com.br Página 16 de 30
Debatedor 1 O Brasil não produz alimento suficiente para alimentar sua população. Como a renda média do brasileiro é baixa, o País não consegue importar a quantidade necessária de alimentos e isso é a causa principal da fome. Debatedor O Brasil produz alimentos em quantidade suficiente para alimentar toda sua população. A causa principal da fome, no Brasil, é a má distribuição de renda. Debatedor 3 A exportação da produção agrícola brasileira, a partir da inserção do País no mercado internacional, é a causa majoritária da subnutrição no País. Considerando que são necessários, em média, 50 kg de alimentos para alimentar uma pessoa durante um ano, os dados dos gráficos I e II, relativos ao ano de 003, corroboram apenas a tese do(s) debatedor(es) a) 1. b). c) 3. d) 1 e 3. e) e 3. TEXTO PARA A PRÓXIMA QUESTÃO: A população mundial está ficando mais velha, os índices de natalidade diminuíram e a expectativa de vida aumentou. No gráfico seguinte, são apresentados dados obtidos por pesquisa realizada pela Organização das Nações Unidas (ONU), a respeito da quantidade de pessoas com 60 anos ou mais em todo o mundo. Os números da coluna da direita representam as faixas percentuais. Por exemplo, em 1950 havia 95 milhões de pessoas com 60 anos ou mais nos países desenvolvidos, número entre 10% e 15% da população total nos países desenvolvidos. 3. (Enem 009) Em 050,a probabilidade de se escolher, aleatoriamente, uma pessoa com 60 anos ou mais de idade, na população dos países desenvolvidos, será um número mais próximo de a) 1 b) 7 0 c) 8 5 d) 1 5 e) 3 5 www.nsaulasparticulares.com.br Página 17 de 30
33. (Enem 004) Para medir o perfil de um terreno, um mestre-de-obras utilizou duas varas (V I e V II), iguais e igualmente graduadas em centímetros, às quais foi acoplada uma mangueira plástica transparente, parcialmente preenchida por água (figura abaixo). Ele fez 3 medições que permitiram levantar o perfil da linha que contém, em sequência, os pontos P 1, P, P 3 e P. 4 Em cada medição, colocou as varas em dois diferentes pontos e anotou suas leituras na tabela a seguir. A figura representa a primeira medição entre P 1 e P. Vara I Vara II Diferença Medição Ponto Leitura Leitura Ponto L I (cm) L II (cm) (L I - L II ) (cm) 1ª P 1 39 P 164 75 ª P 189 P 3 14-5 3ª P 3 9 P 4 174 55 Ao preencher completamente a tabela, o mestre-de-obras determinou o seguinte perfil para o terreno: a) b) c) d) e) www.nsaulasparticulares.com.br Página 18 de 30
34. (Enem 003) Após a ingestão de bebidas alcoólicas, o metabolismo do álcool e sua presença no sangue dependem de fatores como peso corporal, condições e tempo após a ingestão. O gráfico mostra a variação da concentração de álcool no sangue de indivíduos de mesmo peso que beberam três latas de cerveja cada um, em diferentes condições: em jejum e após o jantar. Tendo em vista que a concentração máxima de álcool no sangue permitida pela legislação brasileira para motoristas é 0,6 g/l, o indivíduo que bebeu após o jantar e o que bebeu em jejum só poderão dirigir após, aproximadamente, a) uma hora e uma hora e meia, respectivamente. b) três horas e meia hora, respectivamente. c) três horas e quatro horas e meia, respectivamente. d) seis horas e três horas, respectivamente. e) seis horas, igualmente. 35. (Enem 001) O quadro apresenta a produção de algodão de uma cooperativa de agricultores entre 1995 e 1999. O gráfico que melhor representa a área plantada (AP) no período considerado é: Produção (em mil toneladas) Produtividade (em kg/hectare) Safra 1995 1996 1997 1998 1999 30 40 50 60 80 1.500.500.500.500 4.000 a) b) c) d) e) www.nsaulasparticulares.com.br Página 19 de 30
TEXTO PARA A PRÓXIMA QUESTÃO: Um boato tem um público-alvo e alastra-se com determinada rapidez. Em geral, essa rapidez é diretamente proporcional ao número de pessoas desse público que conhecem o boato e diretamente proporcional também ao número de pessoas que não o conhecem. Em outras palavras, sendo R a rapidez de propagação, P o público-alvo e x o número de pessoas que conhecem o boato, tem-se: R(x) = k. x. (P - x), onde k é uma constante positiva característica do boato. 36. (Enem 000) O gráfico cartesiano que melhor representa a função R(x), para x real, é: a) b) c) d) e) 37. (Enem 1999) Para convencer a população local da ineficiência da Companhia Telefônica Vilatel na expansão da oferta de linhas, um político publicou no jornal local o gráfico I, abaixo representado. A Companhia Vilatel respondeu publicando dias depois o gráfico II, onde pretende justificar um grande aumento na oferta de linhas. O fato é que, no período considerado, foram instaladas, efetivamente, 00 novas linhas telefônicas. Analisando os gráficos, pode-se concluir que a) o gráfico II representa um crescimento real maior do que o do gráfico I. b) o gráfico I apresenta o crescimento real, sendo o II incorreto. c) o gráfico II apresenta o crescimento real, sendo o I incorreto. d) a aparente diferença de crescimento nos dois gráficos decorre da escolha das diferentes escalas. e) os dois gráficos são incomparáveis, pois usam escalas diferentes. www.nsaulasparticulares.com.br Página 0 de 30
Gabarito: Resposta da questão 1: [B] Segundo a análise feita, o único gráfico que possui concavidade apenas para cima, ou seja, aceleração positiva, e apresenta velocidade crescente de leitura das páginas é o da alternativa [B]. Resposta da questão : [E] Como f é crescente no intervalo ], 0], só pode ser x f(x). Além disso, o ponto ( π,1) pertence ao gráfico de f. Daí, tem-se que f(x) sen(3x) 1, se x ]0, π[. Com essas informações, segue-se o resultado. Resposta da questão 3: [D] De acordo com a figura, a primeira parte do gráfico não pode ser uma reta, pois a variação da altura no cone não é constante. A segunda parte do gráfico deverá ser uma reta, pois a variação da altura no cilindro é constante. O único gráfico que obedece a essas condições é o da alternativa [D]. Resposta da questão 4: [B] Observando o gráfico podemos notar que em quatro dias Campinas teve risco de alagamento. Resposta da questão 5: [D] De acordo com o gráfico, segue que o resultado pedido é 1,7 3,65 4 R$ 15,35. Resposta da questão 6: [D] Função (I): f(x + 4) Função (II): f(x 4) Função (III): f(x) + 3 Função (IV): f(x) Portanto, a alternativa [D] é a correta. www.nsaulasparticulares.com.br Página 1 de 30
Resposta da questão 7: a) A função f é uma função do afim; logo, seu gráfico é uma reta. Para construir o gráfico de f, basta obter as coordenadas de pontos. Para x 0 y 1 Portanto Para x 1 y 0 A função g é uma função quadrática; logo, seu gráfico é uma parábola com concavidade voltada para cima (a > 0). Para construir o gráfico de 4 g(x) (x 1)(x ) g(x) x x, temos: 3 3 3 4 Intercepta y (0,c) 0, 3 Intercepta x (x 1,0) e (x,0) (1,0) e (,0), onde x1 e x são as raízes de g(x) Coordenadas do vértice: b ( x 6) 3 v xv a () 4 ( ) 4 Δ 3 3 1 yv yv 4a 6 4 3 Portanto, localizando os pontos no Plano Cartesiano, obtemos a representação abaixo: 3 b) f(x) g(x) x 1 x 1 x x 9x 7 0 Logo, os pontos de interseção entre f(x) e g(x) são: 7 5 1,0 e, x 1 y 0 7 5 x y www.nsaulasparticulares.com.br Página de 30
Resposta da questão 8: Resposta da questão 9: [B] Como f(x) 0 para todo x 0, 4 e g(x) 0 para todo x 0, 6, 7, f(x) g(x) 0 para todo x 0,. Além disso, como f(x) 0 para todo x 4, 7 para todo x, 6, vem que f(x) g(x) 0 para todo x 4, 6. Portanto, E x 0 x x 4 x 6. segue que e g(x) 0 Resposta da questão 10: [B] Observando os gráficos é fácil verificar que o nível de eficiência foi muito bom na terça e na quarta-feira. www.nsaulasparticulares.com.br Página 3 de 30
Resposta da questão 11: [D] Gabarito Oficial: [A] Gabarito SuperPro : [D] O jovem pode constatar com certeza que a bola atingiu 35m em quatro pontos mostrados pela intersecção de sua trajetória com a reta h = 35. No ponto assinalado como dúvida, o jovem não pode afirmar com certeza que a bola atingiu 35m. Resposta da questão 1: V - V - V - F - F. (V) Ver gráfico. (V) Cada elemento da imagem está associado a um único elemento do domínio. (V) Ver gráfico (F) Seu mínimo será para t = 10. (F) Tende a 1 milhões (ver gráfico). Resposta da questão 13: [D] Do gráfico, temos que f( 1) 5, f( 7) 5, f(5) 5 e f(13) 5. Assim, queremos calcular para quantos valores de x se tem f(x) 1, f(x) 7, f(x) 5 ou f(x) 13. Portanto, como f(x) 5 tem 4 soluções e f(x) 13 tem soluções, segue que f(f(x)) 5 tem 4 6 soluções. Resposta da questão 14: [A] Tabela obtida com as informações da tabela dada. Investidor compra venda ganhou perdeu 1 150 460 310-150 00 50-3 380 460 80-4 460 100-360 6 100 00 100 - Portanto, o investidor 1 fez o melhor negócio. Resposta da questão 15: [E] Gabarito Oficial: [D] Gabarito SuperPro : [E] O único gráfico que apresenta uma função linear crescente, uma função afim decrescente e uma função constante, nessa ordem, é o da alternativa [E]. www.nsaulasparticulares.com.br Página 4 de 30
Resposta da questão 16: [B] I. Correta. Para todo t (t 3, t 7), f(t) 1,5. II. Errada. Do gráfico, temos que f(0) 0. Por outro lado, f(0) cos0 1 3 0. III. Errada. Para todo t (t 7, t 10), f(t) m t b, com m 0. IV. Correta. Do gráfico, temos que 0 f(t), para todo t [0, t 10]. Além disso, f(t ). Resposta da questão 17: 01) Verdadeira, para t = 10, o gráfico assume seu ponto máximo. 0) Falsa, o valor para t = 0 é igual o valor para t = 0. 04) Verdadeira, pois existe um valor de t que corresponde a 37,5. 08) Verdadeira, o valor para t = 0 é igual o valor para t = 0. 16) Verdadeira, v 30 00. v(30) 00. v(30) 1,50 4 3010 100 Que corresponde a um oitavo de 100. Resposta da questão 18: [D] 9,90 se 0< t 00 No plano k: y = 9,90 + (t- 00).0,0 se t >00 49,90 se 0< t 300 No plano z: y = 49,90 + (t- 300).0,0 se t >300 Portanto, a resposta correta é a letra [D]. Resposta da questão 19: [E] Sejam P, P e 0A 0B P 0 C, respectivamente, as populações iniciais das espécies A, B e C. De acordo com as informações do enunciado temos: P (t) P (1,), A 0A t P B(t) P0 B 100 t e P C(t) P 0 C, em que P A(t), P B(t) e P C(t) indicam a população das espécies A, B e C após t anos. Portanto, como P A é uma função exponencial, P B é uma função afim e P C é uma função constante, segue que a alternativa correta é a letra (e). www.nsaulasparticulares.com.br Página 5 de 30
Resposta da questão 0: 01 + 0 + 04 = 07. 01) Correto. Seja f a função definida por f(x) ax bx c. Temos que os pontos ( 8, 5), ( 7, 0) e ( 4, 3) pertencem ao gráfico de f. Assim, 64a 8b c 5 a 1 49a 7b c 0 b 10. 16a 4b c 3 c 1 Portanto, f(x) x 10x 1, com 8 x 4. 8 0) Correto. Temos que 3. Como o gráfico de f no subintervalo [, 4] é um segmento 3 de reta que passa pelos pontos (, 3) e (4, 1), segue que a lei de f nesse intervalo é da forma f(x) ax b. Calculando a taxa de variação e o valor inicial, obtemos: 3 1 a 4 e 3 b b 7. Portanto, 8 8 5 f 7. 3 3 3 04) Correto. Do gráfico sabemos que f() 3, f(4) 1 e f( 1) 1. Assim, f() f(4) 3 ( 1) 5 3 1 f() f( 1). 3 3 3 08) Incorreto. Do gráfico, temos que existem infinitos valores reais de x no intervalo ] 4, 1] para os quais f(x) 1. 16) Incorreto. Existe um valor de x no intervalo [ 8, 4] para o qual f(x). Resposta da questão 1: V V F V F. Temos que f() 5 1 e g() 1. Logo, f() g() e, portanto, o ponto (,1) é um dos pontos de intersecção dos gráficos de f e g. As abscissas dos pontos de intersecção dos gráficos de f e g são tais que 3 f(x) g(x) 5 x x 5x 0. x Temos que f(x) g(x) 5 x x 3 x 5x x (x )(x x 1) (x )(x x 1). x x Como x é raiz da equação 3 x 5x (x )(x x 1) 0, segue que as raízes de www.nsaulasparticulares.com.br Página 6 de 30
x x 1 0 são as abscissas dos outros pontos de intersecção dos gráficos de f e g. Assim, x x 1 0 (x 1) 11 0 (x 1) x 1. Portanto, a ordenada pedida é dada por f( 1 ) 5 ( 1 ) 5 (1 ) (1 ). Conforme mostrado acima, os gráficos de f e g se intersectam em três pontos. Resposta da questão : [D] Observando o gráfico, concluímos que os valores de x para os quais f(x) = 6 são - e 1 (reta r). Considerando agora f(x) = -, temos dois valores de x, pois a reta t intercepta o gráfico da função em dois pontos. Considerando agora f(x) = 1, temos quatro valores de x, pois a reta t intercepta o gráfico da função em quatro pontos. Logo, a equação proposta possui 6 soluções. Resposta da questão 3: [D] Em 1760 o valor das entradas foi de 100 000 + 50000 = 11 500 contos de reis. 4 Dividindo 11 500 por 1,15(taxa de 1 arroba) = 100 000 arrobas www.nsaulasparticulares.com.br Página 7 de 30
Resposta da questão 4: [C] Para x 1 (pertencente ao domínio) x + x 1 assume valores negativos Logo f(x) x x 1 = - x - x 1se x 1. Resposta da questão 5: [A] O gráfico A representa melhor a situação, possui o primeiro intervalo nulo, o segundo uma reta crescente (y = 0,1x) e o terceiro uma reta crescente (y = 0,x) com inclinação maior que a anterior (porcentagem maior). Resposta da questão 6: A função é estritamente crescente para X maior ou igual a zero. Como mostra parte de seu gráfico. Resposta da questão 7: V - F - V - V - V. (V) A imagem do 10 é o zero; (F) 5 15 = 10 minutos; (V) Pois, (35-5) + (55-45) = 0 minutos; (V) 40 35 = 5 minutos; (V)75 5 (apoio) 0 (observação) = 50 minutos. Resposta da questão 8: [D] 4 bilhões de anos atrás - 1 de janeiro( primeiro trimestre). 3 bilhões de anos atrás - 1 de abril( segundo trimestre). bilhões de anos atrás - 1 de julho( terceiro trimestre). 1 bilhão de anos atrás - 1 de outubro( quarto trimestre). Eucariontes atuais entre 1 e dois milhões de anos atrás. Portanto no terceiro trimestre. Resposta da questão 9: [B] www.nsaulasparticulares.com.br Página 8 de 30
Resposta da questão 30: [E] De acordo com o gráfico em 009 no cenário otimista o número de empregos será maior que 516.000 e menor que 616.000. Resposta da questão 31: [B] A quantidade de alimentos produzidos é suficiente para alimentar a população. Em 003 a produção de alimentos foi de 84 milhões de toneladas. Isto daria para alimentar aproximadamente 3,3 bilhões de pessoas. No gráfico, nota-se uma má distribuição de rendas (pessoas sem rendimento). Resposta da questão 3: No gráfico o número procurado se encontra entre 30% e 35% Escrevendo todas as frações na forma decimal temos: ½ = 50% 7/ 0 = 35% 8/5 = 3% 1/5 = 0% 3/5 = 1% Então o valor procurado é de 3%( ou seja 8/5) Resposta da questão 33: [A] De acordo com as informações da tabela, temos o seguinte gráfico: www.nsaulasparticulares.com.br Página 9 de 30
Resposta da questão 34: [C] Observando o gráfico, temos: Após o jantar 3 horas. Em jejum 4,5 horas Resposta da questão 35: [A] Área = Produção em kg dividida pela produtividade. Em 1995 --------- 0.000 hectares Em 1996 --------- 16.000 hectares Em 1997 --------- 0.000 hectares Em 1998 --------- 4.000 hectares Em 1996 --------- 16.000 hectares Em 1999 --------- 0.000 hectares Portanto, o gráfico que melhor representa esta variação de área é o da alternativa A. Resposta da questão 36: [E] Pode-se dizer que a função, que representa a rapidez da propagação, é de segundo grau. R(x) kx k P x Como k é positivo, k será negativo, logo seu gráfico é uma parábola com concavidade para baixo. Alternativa E. Resposta da questão 37: [D] É fácil observar que o crescimento é o mesmo nos dois gráficos. Ou seja, 50 linhas por trimestre. Portanto, a aparente diferença de crescimento nos dois gráficos decorre da escolha das diferentes escalas. www.nsaulasparticulares.com.br Página 30 de 30