P (V )= nrt = constante.

Tamanho: px
Começar a partir da página:

Download "P (V )= nrt = constante."

Transcrição

1 Termodinâmica - FMT 59 Noturno, segundo semestre de 009 Exercícios em classe 8/09/008 As substâncias que tem o comportamento termodinâmico mais simpes são os gases. Já vimos que, não só para um gás, mas para qualquer fluido homogêneo, um estado de equilíbrio termodinâmico fica inteiramente determinado por qualquer par de variáveis P, ou T. Isto significa que a terceira dessas variáveis éuma função das outras duas, ou seja, que existe uma relação funcional do tipo f(p,, T) =0, que se chama equação de estado do fluido. A equação de estado assume um forma especialmente simples para um gás ideal, também chamado gás perfeito. Como o próprio nome está dizendo, trata-se de uma idealização do comportamento de um gás real, no limite de rarefação extrema. Quanto mais distante estiver a temperatura do gás da sua temperatura de liquefação, e quanto menor a pressão, mais ele se aproxima do comportamento de um gás ideal. Na prática, trata-se de uma excelente aproximação na maioria dos casos. Para um gás ideal, a equação de estado, relacionando P, e T édada por P = nrt, () onde n éonúmero de moles de gás e R éuma constante chamada constante universal dos gases. Essa equação também é conhecida como lei dos gases perfeitos. Embora nenhum gás obedeça exatamente a essa equação de estado, ela éuma boa aproximação para a maioria dos gases, tanto melhor quanto mais rarefeito estiver o gás, e mais longe estiver do seu ponto de liquefação. Esboçar, em um diagrama P-, transformações quase-estáticas quando P ou são constantes é trivial. Mas e quando a temperatura T é constante? Neste caso P e variam o tempo todo, e precisamos da equação de estado (relacionando P, e T) para descobrirmos a cara da função que relaciona P e nesse caso (e portanto a cara de uma isoterma em um diagrama P-. Se T éconstante, P = C (C = constante=nrt), e temos: P ( )= C, ou seja, a função P() se comporta como.. Faça um esboço do gráfico da função f(x) =/x, para x ]0, 8]. Extraído do livro texto, curso de Física Básica, vol., Moysés Nusseinsveig, cap. 9.

2 ,5 f(x)=/x 0, x. Esboce, em um diagrama P-, o gráfico de três diferentes isotermas. Isoterma significa à mesma temperatura. Portanto vamos fixar uma certa temperatura na lei dos gases ideais, obtendo a função P ( )= nrt = constante. Agora vamos esboçar essa função para diferentes temperaturas em unidade de nr. O resultado pode ser visto na figura T=300nR T=450nR T=600nR 3000 P ,5 3. A partir da equação de estado de um gás ideal, descubra qual deve seracurva que representa uma expansão isobárica em um diagrama T-. A partir da expressão (), se fixamos o valor de P, obtemos uma relação entre e T (a P constante). Ou seja, obtemos a função T ( ): T ( )=const.. Esta éa equação de uma reta, com coeficiente angular igual a const. e que passa pela origem. ale lembrar que a lei dos gases perfeitos éuma boa aproximação apenas longe do ponto de liquefação dos gases. Esta condição pode ser obtida no regime de rarefação extrema do gás, i. e., o gás ocupa um volume grande e é submetido a uma pressão pequena. O esboço dessa função pode ser visto abaixo

3 500,8 P=0,nR 500,6 T 500,4 500, Trabalho em uma expansão isobárica (P = constante): imos em aula que, como a pressão P éconstante, em uma expansão isobárica quase-estática, o trabalho realizado pelo gás (e que corresponde à área sob a curva em um gráfico P-) pode ser facilmente calculado: W = f P ( ) d = P f d = P ( f ). () Trabalho em uma expansão isocórica ( = constante): Calcular o trabalho em uma expansão isocórica quase-estática também é imediato: como não há variação de volume, não há realização de trabalho! Note que tanto no caso isobárico, quanto no caso isocórico, em nenhum momento precisamos utilizar a equação de estado do gás ideal. Portanto os cálculos acima continuam válidos mesmo no caso onde o comportamento do gás se distancia do de um gás ideal. Trabalho em uma expansão isotérmica (T = constante): Em uma expansão isotérmica quase-estática, no entanto, a pressão e o volume variam continuamente, de modo que para calcular o trabalho realizado pelo gás precisamos conhecer a forma como P varia com (ou seja, a função P() ) ao longo da transformação. E isso só épossível se conhecermos a equação de estado do gás. E não vamos escapar de resolver uma integral... No caso do gás ideal essa equação é P = nrt. Conhecendo a equação de estado de um gás ideal, podemos agora calcular o trabalho realizado por um gás ideal em uma expansão isotérmica: W = f P ( ) d = f C d = C f d = C ln f. (3) ComoC=nRT, o trabalho W realizado durante uma expansão isotérmica édado por W = nrt ln f. 4. 0, mol (n =0, mol) de um gás ideal, com c v = 3 R, descreve o ciclo representado na figura abaixo, no plano (P,T). 3

4 P(atm) A C B T(K) (a) Represente este ciclo no plano (P,), indicando P (em atm) e (em l) associados aos pontos A,B e C. O processo AB érealizado à temperatura constante, portanto sua representação no diagrama P- éuma hiperbole analoga ao resultado da 0 questão. O processo BC érepresentado por um segmento de reta descrito pela função P (T )=const. T, por comparação com a lei dos gases ideais (), concluímos que esse processo éfeito à volume constante. Finalmente o processo CA éfeito a pressão constante, de maneira que sua representação no diagrama P- não se altera. Observe que não foi explicitado o valor da pressão constante em todo processo CA. amos obtê-la a partir da lei dos gases ideais P = nrt no ponto C, = nr C (600 K). Contudo, não sabemos qual o volume C. Porém sabemos que o volume do ponto C ( C )éigualaovolume do ponto B ( B ) tal que C = B nrt C = nrt B P B, 600 K = 300 K atm =atm, Admitindo que R 0, 08 atm l/mol K, obtemos os volumes A e B = C atravé sde B = C = nrt C =, 4 atm, A = nrt A P A =, atm. Portanto o diagrama P- desse ciclo é 4

5 P(atm) A C Isoterma,,4 B (l) (b) Calcule W, Q e ΔU para os processos AB, BC, CA e para o ciclo completo. No processo isotérmico AB (T = 300 K) a pressão varia apenas com o volume tal que P = P ( ). Assim o cálculo do trabalho nesse processo éanalogo ao visto na equação (3), isto é, W AB = B A nrt d = nrt ln ( B PA ) = nrt ln. A P B Admitindo que atm. l 00 J equer 0, 08 atm l/mol K teremos W AB, 66 atm. l = 66, 00 J, esse resultado éequivalente à área abaixo da curva AB (no diagrama P-). Ainda no processo AB, como a temperatura não varia, nada podemos afirmar sobre o valor de Q AB. Posteriormente, vamos obter seu valor sabendo que a variação da energia interna num ciclo fechado ézero. No processo isocórico BC (volume constante), temos que E o calor trocado durante esse processo é W BC =0J. Q BC = nc ΔT = 3 nr(600 K 300 K), Q BC 360 J. No processo isobárico CA o trabalho éanalogo ao cálculo do trabalho visto na equação () W CA = A C d = ( A C ), W CA 40 J, o modulo desse resultado é equivalente a área abaixo da curva CA (o sinal negativo se deve a compressão do gás). 5

6 Ainda tratando do processo CA, sabemos que a pressão éconstante durante o processo. Portanto, o calor trocado é Q CA = nc P ΔT. Como c P =5R/, portanto Q CA = 5 nr(300 K 600 K), Q CA 600 J. Finalmente sabemos que a variação da energia interna no ciclo ABCA ézero, tal que ΔU =ΔU AB +ΔU BC +ΔU CA =0, ΔU = Q AB W AB + Q BC W BC + Q CA W CA =0, ΔU = Q AB 66 J J 0 J +( 600 J) ( 40 J) =0. Assim obtemos o valor de Q AB Q AB 66 J. 6

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Gases Ideais Física II 2016 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P, V, T) uma relação funcional

Leia mais

Física do Calor. Primeira Lei da Termodinâmica

Física do Calor. Primeira Lei da Termodinâmica 4300159 Física do Calor Primeira Lei da Termodinâmica Um processo termodinâmico consiste em uma transformação que leve o sistema de um estado de equilíbrio inicial a um estado de equilíbrio final. Um processo

Leia mais

Primeira Lei da Termodinâmica. Prof. Marco Simões

Primeira Lei da Termodinâmica. Prof. Marco Simões Primeira Lei da Termodinâmica Prof. Marco Simões Calor e Trabalho A termodinâmica estuda a relação entre calor e trabalho Conforme determinado por Joule 1 cal=4,18 J esse é o equivalente mecânico do calor.

Leia mais

ESTUDOS DOS GASES. * Um dos estados físicos da matéria, com mais energia.

ESTUDOS DOS GASES. * Um dos estados físicos da matéria, com mais energia. ESTUDOS DOS GASES O QUE É UM GÁS??? * Um dos estados físicos da matéria, com mais energia. * Não possui forma nem volume definido. * Apresenta uma estrutura desorganizada. * É considerado um fluido por

Leia mais

18/Mar/2016 Aula 9. 16/Mar/ Aula 8

18/Mar/2016 Aula 9. 16/Mar/ Aula 8 16/Mar/2016 - Aula 8 Gases reais (não-ideais) Equação de van der Waals Outras equações de estado Isotérmicas, diagramas e transições de fase Constantes críticas. Diagramas PT e PT 18/Mar/2016 Aula 9 Processos

Leia mais

A) 2,5 B) 4 C) 5 D) 7,5 E) 10

A) 2,5 B) 4 C) 5 D) 7,5 E) 10 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica e passa para o estado B. A

Leia mais

Termodinâmica I - FMT 159 Segunda prova: 30/11/2009 Noturno

Termodinâmica I - FMT 159 Segunda prova: 30/11/2009 Noturno ermodinâmica I - FM 159 Segunda prova: 30/11/2009 Noturno AENÇÃO: JUSIFIQUE todas as suas respostas. Não destaque a folha de rascunho. empo de prova: 100 minutos. NOME: 1. (3,0) Em uma máquina térmica

Leia mais

20/Mar/2015 Aula 9. 18/Mar/ Aula 8

20/Mar/2015 Aula 9. 18/Mar/ Aula 8 18/Mar/2015 - Aula 8 Diagramas TS Entropia e a Segunda Lei da Termodinâmica; formulações de Clausius e de Kelvin-Planck Segunda Lei da Termodinâmica e reversibilidade Gases reais (não-ideais) Equação de

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Gases Ideais Física II 2015 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P,V,T) uma relação funcional

Leia mais

Conceitos Básicos sobre gases

Conceitos Básicos sobre gases Conceitos Básicos sobre gases ara este estudo não vamos fazer distinção entre gás e vapor, desta forma neste capítulo, o estado gasoso (gás ou vapor) será sempre referido como gás... ressão dos gases Suponha

Leia mais

Introdução à Termodinâmica

Introdução à Termodinâmica Introdução à Termodinâmica Miguel Almeida 1 Primeira lei da termodinâmica A primeira lei da Termodinâmica nada mais é que o princípio da conservação da energia mecânica particularizado a este estudo. A

Leia mais

Lista Básica Transformações Gasosas

Lista Básica Transformações Gasosas 1. (Pucrj 2017) Uma certa quantidade de gás ideal ocupa inicialmente um volume 0 com pressão P 0. Se sobre esse gás se realiza um processo isotérmico dobrando sua pressão para 2 P 0. qual será o volume

Leia mais

11/Mar/2016 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais

11/Mar/2016 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais 11/Mar/016 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: Lista de exercícios 20

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: Lista de exercícios 20 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: DISCIPLINA: FÍSICA I PROFESSOR: EDSON JOSÉ Lista de exercícios 20 1. Numa transformação sob pressão constante de 800 N/m

Leia mais

Física Experimental III. Compressão isotérmica de um gás ideal

Física Experimental III. Compressão isotérmica de um gás ideal Física Experimental III Compressão isotérmica de um gás ideal Lei dos Gases Ideias Definimos um gás ideal como um gás para o qual a razão PV/nT é constante em todas as pressões. Portanto, essas variáveis

Leia mais

LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON. PROF : José Lucas

LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON. PROF : José Lucas LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON PROF : José Lucas 1) Um gás ideal ocupa 6 litros em um recipiente, a pressão dentro do frasco é de 3 atm. Suponha que

Leia mais

Preencha a tabela a seguir, de acordo com as informações do texto.

Preencha a tabela a seguir, de acordo com as informações do texto. 1. Uma amostra de um gás está contida em um cilindro ao qual se adapta um êmbolo. A figura a seguir mostra o diagrama pressão X volume das transformações sofridas pelo gás. A energia interna do gás no

Leia mais

AULA 16 TERMODINÂMICA 1- INTRODUÇÃO

AULA 16 TERMODINÂMICA 1- INTRODUÇÃO AULA 16 TERMODINÂMICA 1- INTRODUÇÃO Neste capítulo estudaremos a relação entre duas formas de energia em trânsito. Uma delas é o calor, energia térmica em trânsito, e a outra é o trabalho, energia mecânica

Leia mais

18 1ª LEI DA TERMODINÂMICA

18 1ª LEI DA TERMODINÂMICA FÍSICA Professor Ricardo Fagundes MÓDULO 18 1ª LEI DA TERMODINÂMICA 1ª LEI DA TERMODINÂMICA Energia interna (U): a energia interna de um gás é a soma das energias cinéticas das partículas que o compõe

Leia mais

Física E Extensivo V. 4

Física E Extensivo V. 4 GBRIO Física E Extensivo V. 4 Exercícios 01) B 03) 04 energia cinética média de translação de uma molécula depende diretamente da temperatura, logo o gráfico deverá se comportar linearmente (função do

Leia mais

6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais

6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais 6/Mar/01 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis

Leia mais

Plano de Aulas. Física. Módulo 12 Gases e termodinâmica

Plano de Aulas. Física. Módulo 12 Gases e termodinâmica Plano de Aulas Física Módulo 1 Gases e termodinâmica Resolução dos exercícios propostos Exercícios dos conceitos 16 CAPÍTULO 1 1 a) Utilizando a lei de Boyle no processo isotérmico, temos: p A 3 V A 5

Leia mais

O ESTADO GASOSO - CARACTERÍSTICAS GERAIS

O ESTADO GASOSO - CARACTERÍSTICAS GERAIS Estado Gasoso O ESTADO GASOSO - CARACTERÍSTICAS GERAIS Os gases sempre tendem a ocupar todo o volume do recipiente que os contém (capacidade de expansão) Os gases têm massa (Volumes iguais de gases diferentes

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016 Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer

Leia mais

COLÉGIO SHALOM Ensino Médio 2 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.

COLÉGIO SHALOM Ensino Médio 2 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. COLÉGIO SHALOM Ensino Médio 2 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: 03/08/2015 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega com atraso,

Leia mais

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2 Propriedades Moleculares dos Gases Estado Gasoso Dentre os três estados de agregação, apenas o estado gasosos

Leia mais

DO GAS IDEAL. W = Fdx = P Adx = PdV. P a. Assim, se imaginarmos o gás expandindo-se de um volume V 1 até um volume V 2, o trabalho total realizado é:

DO GAS IDEAL. W = Fdx = P Adx = PdV. P a. Assim, se imaginarmos o gás expandindo-se de um volume V 1 até um volume V 2, o trabalho total realizado é: 65 TERMODINÂMICA DO GAS IDEAL 4 4. Introdução Consideremos um gás ideal contido num cilindro com pistão como mostrado na Fig. 4.. Mediante a movimentação de êmbolo, é possível comprimir ou expandir tal

Leia mais

Atividades Física 2ª série do Ensino Médio

Atividades Física 2ª série do Ensino Médio Atividades Física 2ª série do Ensino Médio 01 - (UFTM 2006) Ao nível do mar e sob temperatura de 27ºC, 450 L de gás hélio, puro, preenchem o espaço interno de um balão. Admitindo-se que a parede do balão

Leia mais

Fenômenos Térmicos : primeiro conjunto de problemas

Fenômenos Térmicos : primeiro conjunto de problemas Fenômenos Térmicos - 2014: primeiro conjunto de problemas Termômetros, temperatura e escalas de temperatura 1. Suponha que em uma escala linear de temperatura X, a água ferva a 81.5 o X e congele a-190

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Upe-ssa 017) Um estudo do ciclo termodinâmico sobre um gás que está sendo testado para uso em um motor a combustão no espaço é mostrado no diagrama a seguir. Se D Eint representa a variação de energia

Leia mais

UFABC - Fenômenos Térmicos - Prof. Germán Lugones. AULA 5 Calor, Trabalho e Primeira lei da termodinâmica

UFABC - Fenômenos Térmicos - Prof. Germán Lugones. AULA 5 Calor, Trabalho e Primeira lei da termodinâmica UFABC - Fenômenos Térmicos - Prof. Germán Lugones AULA 5 Calor, Trabalho e Primeira lei da termodinâmica Experimento de Joule (1845): Equivalente mecânico do Calor o Num calorímetro (recipiente de paredes

Leia mais

c) qual o lado do cubo que ele teria que ocupar com essas bolinhas, de modo a representar 1cm 3 de gás? A) 1km B) 10km C) 100km D) 1000km E) 10000km

c) qual o lado do cubo que ele teria que ocupar com essas bolinhas, de modo a representar 1cm 3 de gás? A) 1km B) 10km C) 100km D) 1000km E) 10000km 1- Imagine que, na impossibilidade de reduzir seus alunos ao tamanho das moléculas de um gás, um professor resolva trazer as moléculas para o tamanho de seus alunos. Usa, para isso, bolinhas de gude, de

Leia mais

Aula 14 Equilíbrio de Fases: Substâncias Puras

Aula 14 Equilíbrio de Fases: Substâncias Puras Aula 14 Equilíbrio de Fases: Substâncias Puras 1. A condição de estabilidade Inicialmente precisamos estabelecer a importância da energia de Gibbs molar na discussão das transições de fase. A energia de

Leia mais

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei:

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei: Lei Zero da Termodinâmica 4300259 Termo- estatística REVISÃO DE TERMODINÂMICA Se dois sistema estão em equilíbrio térmico com um terceiro sistema, então eles também estão em equilíbrio entre si. Alguns

Leia mais

Apostila de Química 01 Estudo dos Gases

Apostila de Química 01 Estudo dos Gases Apostila de Química 01 Estudo dos Gases 1.0 Conceitos Pressão: Número de choques de suas moléculas contra as paredes do recipiente. 1atm = 760mHg = 760torr 105Pa (pascal) = 1bar. Volume 1m³ = 1000L. Temperatura:

Leia mais

Universidade de São Paulo Instituto de Física

Universidade de São Paulo Instituto de Física Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina

Leia mais

Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP

Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Pressão, temperatura, volume, coeficiente de expansão térmica, coeficiente de compressibilidade,

Leia mais

Unidade 11 - Termodinâmica

Unidade 11 - Termodinâmica Unidade 11 - Termodinâmica 1ª Lei da Termodinâmica 1ª Lei da Termodinâmica É simplesmente uma extensão do Princípio da Conservação da Energia, envolvendo transformações gasosas. Para podermos compreender

Leia mais

Aulas 17 a 19. Aula 20. Colégio Jesus Adolescente. atm.. atmosfera, a pressão por ele exercida nas paredes do

Aulas 17 a 19. Aula 20. Colégio Jesus Adolescente. atm.. atmosfera, a pressão por ele exercida nas paredes do Colégio Jesus Adolescente Aulas 17 a 19 Ensino Médio 2º Bimestre Disciplina Física Setor B 1) Num recipiente de volume igual a 41 acham-se 5,0 mols de um gás perfeito a temperatura de 300. Determine a

Leia mais

Física Teórica 3. 1 a prova - 2º período de /09/2018. =4186 J/(kg K) c gelo. = 10 3 kg/m 3 c água

Física Teórica 3. 1 a prova - 2º período de /09/2018. =4186 J/(kg K) c gelo. = 10 3 kg/m 3 c água t Física Teórica 3 1 a prova - 2º período de 2018 22/09/2018 Atenção: Leia as recomendações abaixo antes de fazer a prova. 1. A prova consiste em 15 questões de múltipla escolha, e terá duração de 2 horas

Leia mais

LISTA DE EXERCÍCIOS 3º ANO

LISTA DE EXERCÍCIOS 3º ANO Condições iniciais do gás: v0 vp0 pè0 è Condições finais do gás: vf 0,v p f? èf è Letra E p0 v0 pf vf p v pf 0, v p f 2 èo èf è è p0 a) Como foi informado que o processo ocorre em temperatura constante,

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física P.58 a) Do gráfico: V 3 0 3 m 3 ; V 0 3 m 3 Dado: 300 K p p V V 3 0 300 3 3 0 00 K b) área do gráfico é numericamente igual ao 8 p ( 0 3 N/m ) N $ módulo do trabalho no processo: base altura

Leia mais

3ª Aula do cap. 19 Primeira Lei da Termodinâmica

3ª Aula do cap. 19 Primeira Lei da Termodinâmica 3ª Aula do cap. 19 Primeira Lei da Termodinâmica AT - Antes da termodinâmica. A máquina de Denis Papin 1647-1712 Roda d água - forma mais eficiente de geração da energia antes do calor. Máquina de Newcomen

Leia mais

1 a Lei da Termodinâmica

1 a Lei da Termodinâmica 1 a Lei da Termodinâmica Processos termodinâmicos. Gases ideais. Calor específico de gases ideais. Equação para processos adiabáticos de gases ideais. 1 a Lei da Termodinâmica Calor, Trabalho e Energia

Leia mais

1) Trabalho de um gás (W) F A. Para F = cte: cos. F = cte. p = cte. Variação de Volume. Para p = cte.

1) Trabalho de um gás (W) F A. Para F = cte: cos. F = cte. p = cte. Variação de Volume. Para p = cte. TERMODINÂMICA 1) Trabalho de um gás () p F A Para F = cte: F p. A F d cos F = cte. p Ad V Variação de Volume d V Ad p = cte. p V Para p = cte. 1) Trabalho de um gás () N/m = Pa Joule p V m 3 p V Expansão:

Leia mais

Estudo da Física. Fale com o Professor: Facebook: Raylander Borges

Estudo da Física. Fale com o Professor:   Facebook: Raylander Borges Estudo da Física Prof. Railander Borges Fale com o Professor: Email: rayllander.silva.borges@gmail.com Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: PRIMEIRA LEI TERMODINAMICA 1. Um

Leia mais

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei.

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei. Capítulo 10 Segunda Lei da Termodinâmica É muito comum e popular enunciar a 2ª Lei dizendo simplesmente que calor não pode ser totalmente transformado em trabalho. Está errado. Podemos fazer uma expansão

Leia mais

Resolução do Vestibular UDESC 2019/1

Resolução do Vestibular UDESC 2019/1 1 Resolução Comentada pelo Professor George I Verdadeira, fazer análise da segunda lei de Newton (F m.a. II Verdadeira, lembrar da primeira lei de Newton (inércia), força resultante igual a zero implica

Leia mais

Ciclo e máquinas térmicas

Ciclo e máquinas térmicas Questão 01 - (UFJF MG) Em um experimento controlado em laboratório, uma certa quantidade de gás ideal realizou o ciclo ABCDA, representado na figura abaixo. desenho abaixo. As transformações FG e HI são

Leia mais

12,0 C J 4,0. 20 C, existe um resistor ôhmico, imerso na água, de resistência elétrica R 1, alimentado

12,0 C J 4,0. 20 C, existe um resistor ôhmico, imerso na água, de resistência elétrica R 1, alimentado 1. (Espcex (Aman)) Um painel coletor de energia solar é utilizado para aquecer a água de uma residência e todo o sistema tem um rendimento de 60%. Para aumentar a temperatura em de uma massa de água de

Leia mais

Descrição Macroscópica de um Gás ideal

Descrição Macroscópica de um Gás ideal Descrição Macroscópica de um Gás ideal O gás não tem volume fixo ou uma pressão fixa O volume do gás é o volume do recipiente A pressão do gás depende do tamanho do recipiente A equação de estado relaciona

Leia mais

Fís. Professor: Leo Gomes Monitor: Guilherme Brigagão. Fís

Fís. Professor: Leo Gomes Monitor: Guilherme Brigagão. Fís . Semana 18 Professor: Leo Gomes Monitor: Guilherme Brigagão Gases perfeitos 21 jun RESUMO Gases perfeitos ou ideais são aqueles cujas moléculas se movem ao acaso, todas com a mesma velocidade média, cujas

Leia mais

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os

Leia mais

GABARITO. Física E 09) E. = n o de avogadro N A. = 3 2 KT, em que K = R N A = 3. R. T 2. N A. E c. , em que RT = pv n. , em que n. N. = 3 2.

GABARITO. Física E 09) E. = n o de avogadro N A. = 3 2 KT, em que K = R N A = 3. R. T 2. N A. E c. , em que RT = pv n. , em que n. N. = 3 2. Física E Extensivo V. 4 Exercícios 01) B 03) 04 energia cinética média de translação de uma molécula depende diretamente da temperatura, logo o gráfico deverá se comportar linearmente (função do 1 o grau).

Leia mais

Fís. Fís. Monitor: Guilherme Brigagão

Fís. Fís. Monitor: Guilherme Brigagão Fís. Professor: Leonardo Gomes Monitor: Guilherme Brigagão Termodinâmica 18/20 jun RESUMO Termodinâmica é parte da Física que estuda as leis que regem as relações entre calor, trabalho e outras formas

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão

Leia mais

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Termodinâmica Aula 1 Professora: Melissa Soares Caetano Disciplina QUI 217 Termos termodinâmicos: Sistema:

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 17 (pág. 88) AD TM TC. Aula 18 (pág. 88) AD TM TC. Aula 19 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 17 (pág. 88) AD TM TC. Aula 18 (pág. 88) AD TM TC. Aula 19 (pág. Física Setor B Prof.: Índice-controle de Estudo ula 17 (pág. 88) D TM TC ula 18 (pág. 88) D TM TC ula 19 (pág. 90) D TM TC ula 20 (pág. 90) D TM TC ula 21 (pág. 92) D TM TC ula 22 (pág. 94) D TM TC Revisanglo

Leia mais

FÍSICA LICENCIATURA (NOTURNO)

FÍSICA LICENCIATURA (NOTURNO) assinatura do(a) candidato(a) ADMISSÃO PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR.ª DCS/0 LEIA COM ATENÇÃO AS INSTRUÇÕES ABAIXO. Prova Dissertativa Ao receber este caderno, confira atentamente se os dados

Leia mais

Termodinâmica. Prof.: POMPEU

Termodinâmica. Prof.: POMPEU 1. DEFINIÇÃO A estuda a relação entre calor e trabalho que um sistema (por exemplo, um gás) troca com o meio exterior. 2. ENERGIA INTERNA (U) É a soma das várias formas de energia das moléculas que constituem

Leia mais

Capítulo 3: Propriedades de uma Substância Pura

Capítulo 3: Propriedades de uma Substância Pura Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas

Leia mais

As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana.

As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana. Estudo dos gases Gás Ideal As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana. As moléculas não exercem força uma sobre as outras, exceto quando

Leia mais

= 6, mol de moléculas de um gás possui aproximadamente 6, moléculas deste gás, ou seja, seiscentos e dois sextilhões de moléculas;

= 6, mol de moléculas de um gás possui aproximadamente 6, moléculas deste gás, ou seja, seiscentos e dois sextilhões de moléculas; TEORIA CINÉTICA DOS GASES PROF. LEANDRO NECKEL NÚMERO DE AVOGADRO Mol é a quantidade de substância de um sistema que contém tantas entidades elementares quanto são os átomos contidos em 0,012 quilograma

Leia mais

Aula 9: Entropia e a Segunda Lei da Termodinâmica

Aula 9: Entropia e a Segunda Lei da Termodinâmica UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 9: Entropia e a Segunda Lei da Termodinâmica Sadi Carnot [1796-1832] R. Clausius [1822-1888] W. Thomson (Lord Kelvin) [1824-1907] Quando um saco de pipocas

Leia mais

CALOR E PRIMEIRA LEI DA TERMODINÂMICA. Calor é a energia transferida de um corpo para outro em virtude, basicamente, de uma diferença de temperatura.

CALOR E PRIMEIRA LEI DA TERMODINÂMICA. Calor é a energia transferida de um corpo para outro em virtude, basicamente, de uma diferença de temperatura. CALOR E PRIMEIRA LEI DA TERMODINÂMICA Calor é a energia transferida de um corpo para outro em virtude, basicamente, de uma diferença de temperatura. Capacidade Calorífica e Calor Específico A quantidade

Leia mais

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica Cap. 20 A Entropia e a Segunda Lei da Processos Irreversíveis e Entropia; Variação de Entropia; A Segunda Lei da ; Entropia no Mundo Real: Máquinas Térmicas; Entropia no Mundo Real: Refrigeradores; Eficiência

Leia mais

Duas ilustrações do teorema de Carnot

Duas ilustrações do teorema de Carnot Duas ilustrações do teorema de Carnot 1 mol de um gás ideal monoatômico executa o ciclo: C V = 3R 2 p 2p 0 2 3 T 1 = T 0 (= p 0 V 0 /R) T 2 = 2T 0 C p = 5R 2 p 0 1 V 0 4 2V 0 Q in : Q 12 + Q 23 V T 3

Leia mais

O que será cobrado na P3

O que será cobrado na P3 O que será cobrado na P3 1. Cap 19: Temperatura, Calor e a 1ª Lei da Termodinâmica i. TODAS 2. Cap 20: A Teoria Cinética dos Gases i. (20.1) Uma nova maneira de Olhar para os Gases ii. (20.2) O número

Leia mais

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0,

2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0, ermodinâmica Ano Lectivo 00/0 ª LEI, ENROIA E FORMALISMO ERMODINÂMIO ) Um gás perfeito de capacidades térmicas constantes p =, ocupando inicialmente o volume 0, expande-se adiabaticamente até atingir o

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

FÍSICA PROFº JAISON MATTEI

FÍSICA PROFº JAISON MATTEI FÍSICA PROFº JAISON MATTEI 1. Um sistema termodinâmico constituído de n mols de um gás perfeito monoatômico desenvolve uma transformação cíclica ABCDA representada no diagrama a seguir. De acordo com o

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 4) Trabalho e calor 1 v. 1.1 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas

Leia mais

Terceira Prova de Física

Terceira Prova de Física Terceira Prova de Física 2-7600006 - 2017.2 Aluno: Número USP: Turma: Prof.: Atenção: Leia cuidadosamente as questões. A interpretação do texto também é parte da avaliação. i) Não adianta apresentar contas

Leia mais

Reservatório a alta temperatura T H. Ciclos reversíveis

Reservatório a alta temperatura T H. Ciclos reversíveis 15/Mar/017 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho

Leia mais

Calcule o valor mínimo de M para permitir o degelo (e recongelação) do bloco à medida que é atravessado pela barra.

Calcule o valor mínimo de M para permitir o degelo (e recongelação) do bloco à medida que é atravessado pela barra. Termodinâmica Aplicada (PF: comunicar eventuais erros para pmmiranda@fc.ul.pt) Exercícios 7. Uma barra metálica rectangular fina, com 0 cm de comprimento e mm de largura, está assente num bloco de gelo

Leia mais

Gases. Reis, Oswaldo Henrique Barolli. R375g Gases / Oswaldo Henrique Barolli. Varginha, slides : il.

Gases. Reis, Oswaldo Henrique Barolli. R375g Gases / Oswaldo Henrique Barolli. Varginha, slides : il. Gases Reis, Oswaldo Henrique Barolli. R375g Gases / Oswaldo Henrique Barolli. Varginha, 2015. 21 slides : il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Dinâmica dos gases.

Leia mais

Reservatório a alta temperatura T H. Ciclos reversíveis

Reservatório a alta temperatura T H. Ciclos reversíveis 9/Mar/016 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica:

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica: Esta aula tratará de gases e termodinâmica: Estudando a matéria, os cientistas definiram o mol. Um mol corresponde a 6,02. 10 " unidades de algo, número conhecido por N A, número de Avogadro. A importância

Leia mais

Q m cvapor Tvapor Lvapor cágua Tágua Lfusão

Q m cvapor Tvapor Lvapor cágua Tágua Lfusão Capacidade calorífica específica, calor específico Determine a quantidade de calor que deve ser removida quando 100g de vapor de água a 150ºC são arrefecidos até se tornarem em 100 g de gelo a 0 ºC. Dados:

Leia mais

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos 4/Mar/05 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos Transformações termodinâmicas e gases ideais Tipos de transformações

Leia mais

Mas, o trabalho realizado é igual à diferença entre as quantidades de calor recebido pela fonte quente e cedido para a fonte fria:

Mas, o trabalho realizado é igual à diferença entre as quantidades de calor recebido pela fonte quente e cedido para a fonte fria: Resolução fase aula 1 Gabarito: Resposta da questão 1: 4J 1cal 4.000 J 1.000 cal Q P mcδθ 1.000 m 1 (60 0) 1.000 m 1.000 m 5 g s 40 1min 60 s 1L 1000 g m 1500 g min m 1,5 L min Resposta da questão : a)

Leia mais

QUÍMICA Profº JAISON

QUÍMICA Profº JAISON QUÍMICA Profº JAISON GASES O gás ideal As equações que utilizamos para estudar o comportamento dos gases nunca fornecem valores exatos. Na tentativa de nos aproximarmos mais do valor exato, estabelecemos

Leia mais

Estudo Estudo da Química

Estudo Estudo da Química Estudo Estudo da Química Prof. Railander Borges Fale com o Professor: Email: rayllander.silva.borges@gmail.com Instagram: @rayllanderborges Facebook: Raylander Borges Aula 11 Estudo Geral dos Gases 1.

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 3) Substâncias Puras 1 v. 2.0 Diagramas de propriedades Vamos elaborar um experimento para relacionar temperatura e volume específico a pressão constante. Pressão no fluido

Leia mais

Reescrever a equação de Clapeyron, viabilizando sua utilização em sistemas abertos; Mostrar a variação da massa molecular do ar em função da altitude;

Reescrever a equação de Clapeyron, viabilizando sua utilização em sistemas abertos; Mostrar a variação da massa molecular do ar em função da altitude; 113 Curso Básico de Mecânica dos Fluidos Objetivos da Aerostática - unidade 2: Reescrever a equação de Clapeyron, viabilizando sua utilização em sistemas abertos; Mostrar a variação da massa molecular

Leia mais

Física do Calor. Processos Termodinâmicos Quase Estáticos

Física do Calor. Processos Termodinâmicos Quase Estáticos 4300159 Física do Calor Processos Termodinâmicos Quase Estáticos Gás Ideal Monoatômico Energia Interna: U(T )= 3 2 Nk BT = 3 2 nrt Calor específico molar a volume constante (C V ): dq = du ) nc V dt =

Leia mais

Primeira Lei da Termodinâmica

Primeira Lei da Termodinâmica Primeira Lei da Termodinâmica Na termodinâmica existem dois princípios que precisam ser enfatizados.um deles é o princípio da conservação da energia e o segundo princípio é a inerente irreversibilidade

Leia mais

Luis Eduardo C. Aleotti. Química. Aula 38 - Transformações Gasosas

Luis Eduardo C. Aleotti. Química. Aula 38 - Transformações Gasosas Luis Eduardo C. Aleotti Química Aula 38 - Transformações Gasosas TRANSFORMAÇÕES GASOSAS Gás e Vapor - Gás: Substância gasosa em temperatura ambiente. - Vapor: Estado gasoso de uma substância líquida ou

Leia mais

2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica

2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica 2 Temperatura Empírica, Princípio de Carnot e Temperatura Termodinâmica 2.1 Temperatura empírica: medidas de temperatura Termômetro: Sistema com uma propriedade mensurável que varia com a temperatura (propriedade

Leia mais

GASES PERFEITOS AULA INTRODUÇÃO

GASES PERFEITOS AULA INTRODUÇÃO AULA 5 GASES PERFEIOS - INRODUÇÃO Neste capítulo, vamos estudar as transformações gasosas e as leis elaboradas por Boyle e ariotte, Clapeyron, Gay-Lussac e Charles, que regem estas transformações. Vamos

Leia mais

Física do Calor. Entropia II

Física do Calor. Entropia II 4300159 Física do Calor Entropia II Entropia, Processos Reversíveis e Irreversíveis Os processos naturais são irreversíveis. Apenas processos idealizados que ocorrem na condição de quase equilíbrio (processos

Leia mais

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI

Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI 1º EM E.M. FÍSICA Aluno (a): nº: Professor: Fernanda Tonetto Surmas Data: / /2015 Turma: ORIENTAÇÕES DE ESTUDO REC 2º TRI VERIFICAR DATA e HORÁRIO da PROVA de REC de FÍSICA!!!!!!! /09 ª feira Física CONTEÚDO

Leia mais

Física do Calor. Entropia e Segunda Lei II

Física do Calor. Entropia e Segunda Lei II 4300159 Física do Calor Entropia e Segunda Lei II C A = C B = C A B f f A > B ds = dq rev S A = R dq rev = C A R f A d = C ln f A < 0 S B = R dq rev = C B R f B d = C ln f B > 0 S sis = S A + S B = C ln

Leia mais

Aplicações das Relações de Maxwell

Aplicações das Relações de Maxwell Aplicações das Relações de Maxwell Compressão Adiabática Considere um sistema de componente simples de uma quantidade definida de matéria caracterizada por um número de mols N, fechada por uma parede adiabática.

Leia mais

Aula 2 Termodinâmica de substâncias puras: diagramas de fase

Aula 2 Termodinâmica de substâncias puras: diagramas de fase Uniersidade Federal do ABC P O S M E C Aula 2 Termodinâmica de substâncias puras: diagramas de fase MEC202 Susbtância Pura Uma substancia que tem uma única composição. Exemplo: N 2, álcool, CO 2. Pode

Leia mais

Princípio de Carnot. 2.1 Temperatura. Processo isotérmico

Princípio de Carnot. 2.1 Temperatura. Processo isotérmico Capítulo 2 Princípio de Carnot 2.1 Temperatura Processo isotérmico Quando dois corpos são colocados em contato térmico, o corpo mais quente cede calor ao corpo mais frio. Enquanto as temperaturas forem

Leia mais