PME 3344 Termodinâmica Aplicada
|
|
|
- Lavínia Mirandela Chagas
- 7 Há anos
- Visualizações:
Transcrição
1 PME 3344 Termodinâmica Aplicada 4) Trabalho e calor 1 v. 1.1
2 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas são interações energéticas entre um sistema e a sua vizinhança. Calor interação energética entre o sistema e a vizinhança provocada por uma diferença de temperatura. Trabalho interação energética entre o sistema e a vizinhança cujo único efeito sobre a vizinhança é equivalente ao levantamento de um peso. 2
3 Trabalho e calor Interações de trabalho e calor? Exemplo 1: Levantamento de um peso! Fronteira Resp. Trabalho. 3
4 Trabalho e calor Interações de trabalho e calor? Exemplo 2: Diferença de temperatura entre os gases, a parede do forno e a batata! Resp. Calor! 4
5 Trabalho e calor Interações de trabalho e calor? Exemplo 3 e 4: Resp. Calor! Resp. Trabalho! 5
6 Trabalho e calor 1. Trabalho e calor são fenômenos de fronteira. Ambos são observados na fronteira do sistema e são responsáveis pela transferência de energia entre o sistema e sua vizinhança; 2. Trabalho e calor são fenômenos transitórios. Os sistemas não possuem trabalho ou calor, isto é, ambos não são propriedades termodinâmicas; a. Ambos estão associados a um processo e não a um estado. Portanto não são propriedades termodinâmicas; b. Ambos são funções de caminho e não de ponto. 6
7 Trabalho e calor Função de ponto versus Função de caminho São Paulo Altitude = 767 m distância e altura? Altitude é uma função de ponto! Distância é uma função de caminho! Rodovias Anchieta (74,3km) Santos Altitude = 0 m Rodovias dos imigrantes (83km) 7
8 Definições Trabalho: W kj Calor: Q kj Diferenciais de funções de caminho: δw e δq Trabalho específico: w=w/m kj/kg Calor por unidade de massa: q=q/m kj/kg Taxa de Potência: W = δw/dt kw transferência Q = δq/dt kw de calor: 8
9 Trabalho Trabalho realizado na fronteira móvel de um sistema simples compressível Considere a figura: Em Mecânica: Assim: 9
10 Trabalho Trabalho realizado na fronteira móvel de um sistema simples compressível Deduzimos: considerando que a pressão na superfície inferior do pistão é uniforme Se o processo ocorrer lentamente (processo quase-estático) podemos dizer que um único valor de pressão é representativo do sistema! 10
11 Trabalho Trabalho realizado na fronteira móvel de um sistema simples compressível Note, ainda, que em um processo quase-estático, o módulo do trabalho é igual a área sob a curva em um diagrama P (sistema) - v: Observe, também, que se fossemos de um 1 a 2 por outros caminhos a área sob a curva seria diferente e, consequentemente, o trabalho. 11
12 Trabalho Trabalho realizado na fronteira móvel de um sistema simples compressível Trabalho pode ser negativo ou positivo. Recorde-se que em Mecânica ele é definido como o produto escalar entre força e deslocamento. W > 0 quando força e deslocamento têm o mesmo sentido, trabalho realizado pelo sistema sobre a vizinhança; W < 0 quando força e deslocamento têm sentidos opostos, trabalho realizado sobre o sistema pela vizinhança. 12
13 Trabalho Trabalho de fronteira móvel Na determinação da integral: Temos duas classes de problemas: Relação P-V obtida experimentalmente ou dada na forma gráfica; Relação P-V tal que possa ser ajustada por uma função analítica. O processo politrópico é um exemplo do segundo tipo. 13
14 Trabalho Processo politrópico Obedece a relação: P.V n = constante com n entre e - Isto é: P1.V1 n = P2.V2 n =... = constante Conhecida a relação entre P e V podemos realizar a integração: ou n 1 n=1 14
15 Trabalho Processo politrópico: P.V n = constante n = ± n =0 n =1 n = 0: pressão constante n = 1,3 n =1,3 n = ± : volume constante n = 1: isotérmico (se válido o modelo de Gás perfeito, PV = mrt) 15
16 Trabalho e calor Convenções de sinal Q > 0 quando o calor é transferido da vizinhança para o sistema; Q < 0 quando o calor é transferido do sistema para a vizinhança; W > 0 vizinhança; W < 0 vizinhança. trabalho realizado pelo sistema sobre a trabalho realizado sobre o sistema pela 16
17 Exercícios 4.51: O conjunto cilindro-êmbolo contém, inicialmente, 0,2 m 3 de dióxido de carbono a 300 kpa e 100 o C. Os pesos são então adicionados a uma velocidade tal que o gás é comprimido segundo a relação p.v 1,2 =constante. Admitindo que a temperatura final seja igual a 200 o C determine o trabalho realizado neste processo. 17
18 Exercícios 4.51: Solução Hipóteses: 1. O sistema é o CO2 contido no conjunto; 2. O processo de 1 para 2 é de quase-equilíbrio; 3. Os estado 1 e 2 são estados de equilíbrio; 4. O gás se comporta como perfeito nos estados 1 e 2. 18
19 Exercícios 4.51: Solução Trabalho realizado considerando gás perfeito, P2V2 - P1V1 = m.rco2.(t2 T1) Temos as duas temperaturas mas precisamos calcular a massa. Esta pode ser obtida a partir da equação dos gases perfeito e o estado 1. m = P1V1 / RCO2T1 = 300.0,2/0, = 0,851 kg m = 0,851 kg 19
20 Exercícios 4.51: Solução Trabalho realizado considerando gás perfeito, W1-2 = mrco2(t2-t1) / (1-n) W1-2 = 0,851.0,189.( ) / (1-1,2) W1-2 = -80,4kJ Comentário O sinal negativo indica que a vizinhança realizou trabalho sobre o sistema. 20
21 Exercícios Extra 1: Considere o conjunto cilindro-êmbolo mostrado na figura. A massa do êmbolo é de 101 kg e sua área de 0,01 m 2. O conjunto contém 1 kg de água ocupando um volume 0,1m 3. Inicialmente, a temperatura da água é 20 o C e o pistão repousa sobre os esbarros fixados na parede do cilindro, com sua superfície externa exposta à pressão atmosférica (p0 = Pa). A que temperatura a água deve ser aquecida de modo a erguer o êmbolo? Se a água continuar a ser aquecida até o estado de vapor saturado, determine a temperatura final, o volume e o trabalho realizado no processo. Represente o processo em um diagrama p-v. 21
22 Exercícios Extra 1: Solução Temos dois processos e três estados. O estado 1 é o inicial, o 2 é quando o êmbolo não precisa mais do batente para se manter em repouso e o estado 3 é o final. Hipóteses: 1. O sistema é a água contida no conjunto; 2. Os processos são de quase-equilíbrio; 3. Os estados 1, 2 e 3 são estados de equilíbrio; 4. Não há atrito entre o pistão e o cilindro. 22
23 Exercícios Extra 1: Solução Estado 1: Definido, pois conhecemos v e T. v1 = 0,1/1 = 0,1 m 3 /kg Para identificar o estado 1 devemos consultar a tabela de saturação com T1 = 20 o C (Psat = 2,3385 kpa) e comparar o valor de v1 com vl e vv. Como vl < v1 < vv, temos líquido + vapor. Logo P1 = Psat. O título pode ser prontamente calculado, x1=(v1-vl)/(vv-vl) = 0,
24 Exercícios Extra 1: Solução Estado 2: Definido, pois conhecemos v e P. v2 = v1 = 0,1 m 3 /kg P2 = P0 + mg/a = 101, ,8/0,01 = 200 kpa Para identificar o estado 2 devemos consultar a tabela de saturação com P2 = 200 kpa (Tsat = 120,23 o C) e comparar o valor de v2 com vl=0, e vv=0,8857 m 3 /kg. Como vl < v2 < vv, temos líquido + vapor. Logo T2 = Tsat. Resp. A água deve ser aquecida até 120,23 o C para que o êmbolo comece a subir. 24
25 Exercícios Extra 1: Solução Estado 3: Definido, pois conhecemos P e x. x3 = 1 (vapor saturado) e P3 = P2 = 200kPa V3 = v3.m = 0, = 0,8857 m 3 Resp. O volume final é de 0,8857 m 3. 25
26 Exercícios Extra 1: Solução Diagrama P-v: Antes de calcular o trabalho é preciso traçar o diagrama P-v: Processo a v constante Processo a P constante 26
27 Exercícios Extra 1: Solução Trabalho realizado Pelo diagrama P-v podemos determinar o trabalho já que o processo é quase-estático. W13 = P2.(V3-V2)=157kJ W13 27
28 Substância pura: Exercícios Extra 1: Observações O sinal é positivo pois temos o sistema realizando trabalho sobre a vizinhança. O diagrama T-v tem exatamente o mesmo aspecto do P-v. Trace-o você mesmo! 28
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Trabalho e calor. v. 1.0
Termodinâmica Trabalho e calor 1! v. 1.0 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas são interações energéticas
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 4) Trabalho e calor. v. 2.1
Termodinâmica 4) Trabalho e calor 1 v. 2.1 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas são interações energéticas
Trabalho em uma transformação
Trabalho em uma transformação Trabalho (W) é uma medida da energia transferida pela aplicação de uma força ao longo de um deslocamento W = a b F dx A unidade de trabalho, no SI, é o Joule (J); 1 J = 1
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Primeira Lei da Termodinâmica. v. 1.1
Termodinâmica Primeira Lei da Termodinâmica 1 v. 1.1 1 a Lei da Termodinâmica Introdução Segundo Max Planck, a 1ª Lei da Termodinâmica nada mais é do que o princípio da conservação da energia aplicado
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 5) Primeira Lei da Termodinâmica 1 v. 1.3 1 a Lei da Termodinâmica Introdução Segundo Max Planck, a 1ª Lei da Termodinâmica nada mais é do que o princípio da conservação
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS CALOR E TRABALHO ALBERTO HERNANDEZ NETO 1/60 Calor (Q) : energia em trânsito devido a diferença de temperatura não associada a transferência de massa 1 B C A 2
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 3) Substâncias Puras 1 v. 2.0 Diagramas de propriedades Vamos elaborar um experimento para relacionar temperatura e volume específico a pressão constante. Pressão no fluido
Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados
Disciplina : Termodinâmica Aula 6 - Análise da Energia dos Sistemas Fechados Prof. Evandro Rodrigo Dário, Dr. Eng. Análise da Energia dos Sistemas Fechados Já vimos várias formas de energia e de transferência
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 5) Primeira Lei da Termodinâmica. v. 2.0
Termodinâmica 5) Primeira Lei da Termodinâmica 1 v. 2.0 1 a Lei da Termodinâmica Introdução Max Planck 1858-1947 Segundo Max Planck, a 1ª Lei da Termodinâmica nada mais é do que o princípio da conservação
Equações de estado para a fase vapor de uma substância simples
Aula 04 Equações de estado para a fase vapor de uma substância simples A partir de observações experimentais estabeleceu-se que o comportamento p-v-t dos gases a baixa massa específica é dado, com boa
TEA007 - Termodinâmica Ambiental
TEA007 - Termodinâmica Ambiental Lista de exercícios 3 1. Um aquecedor de ambientes opera por radiação térmica. A superfície aquecedora apresenta temperatura igual a 1000 K e ε = 0,8. Determine a área
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Propriedades: Parte II 2 Avaliando Propriedades Calores Específicos As propriedades intensivas c v e c p são definidas para substâncias
TERMODINÂMICA APLICADA CAPÍTULO 3
TERMODINÂMICA APLICADA CAPÍTULO 3 PRIMEIRA LEI DA TERMODINÂMICA: SISTEMAS FECHADOS Primeira Lei da Termodinâmica A Energia pode atravessar a fronteira de um sistema fechado na forma de Calor e/ou Trabalho.
Disciplina: Sistemas Térmicos
Disciplina: Sistemas Térmicos Definição de Substância Pura Equilíbrio de Fases Líquido-Vapor de uma Substância Pura Diagrama de Temperatura versus Volume Específico Título de uma Substância com Fases Líquida
c c podem ser eliminados e os dois calores específicos
ENERGIA INTERNA, ENTALPIA E CALORES ESPECÍFICOS DE SÓLIDOS E LÍQUIDOS Uma substância cujo volume específico (ou densidade) é constante é chamada de substância incompressível. Os volumes específicos de
SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS INTRODUÇÃO E CONCEITOS INICIAIS ALBERTO HERNANDEZ NETO PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas
UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas Princípios de Termodinâmica para Engenharia Capítulo 3 Parte 2 Tabelas de Saturação As Tabelas A-2 e A-3 listam os valores de propriedades para
Profa.. Dra. Ana Maria Pereira Neto
5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA LEONARDO DE QUEIROZ MOREIRA Propriedades de uma substância pura GOIÂNIA, 29 DE AGOSTO DE 2016. Objetivo Apresentar como algumas propriedades termodinâmicas se correlacionam: Temperatura;
EM 524 : aula 3. Capítulo 3 : Propriedades das. Substâncias Puras
EM 524 : aula 3 Capítulo 3 : Propriedades das 1. Definições; Substâncias Puras 2. Equilíbrio de fase; Diagrama temperatura volume; Título de uma mistura líquido-vapor; Diagrama pressão temperatura; Diagrama
m = P 1V 1 R T 1 = 0,697 kg
TEA007 - Termodinâmica Ambiental - Engenharia Ambiental - UFPR Data: 20/03/2017 Professor: Emílio G. F. Mercuri Gabarito P1 (1) (40,0 pontos) Ar dentro de um cilindro-pistão é submetido a dois processos.
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
TERMODINÂMICA. Propriedades Independentes de uma Substância Pura
UNIVERSIDADE FEDERAL RURAL DO SEMI - ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS TERMODINÂMICA Um motivo importante para a introdução do conceito de substância pura é que o estado de uma substância pura
Disciplina : Máquinas Térmicas e de Fluxo. Aula 2 Propriedades Termodinâmicas
Disciplina : Máquinas Térmicas e de Fluxo Aula 2 Propriedades Termodinâmicas Prof. Evandro Rodrigo Dário, Dr. Eng. Líquido comprimido Considere-se um dispositivo de cilindropistão contendo água na fase
17/08/ /08/2011 Prof. Dr. Ricardo A. Mazza 3
Propriedades de Uma Substância Pura Prof. Dr. Ricardo A. Mazza DE/FEM/UNICAMP 17/08/2011 Prof. Dr. Ricardo A. Mazza 1 Substância Pura Substância pura é a aquela que tem composição química invariável e
ESZO Fenômenos de Transporte
Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Propriedades Termodinâmicas Propriedades Termodinâmicas
Aula 3 Análise de energia de sistemas fechados
Universidade Federal do ABC P O S M E C Aula 3 Análise de energia de sistemas fechados MEC0 O trabalho de um pistão Uma forma de trabalho mecânico frequentemente encontrada na prática está associada com
Capítulo 2 Propriedades de uma Substância Pura
Capítulo 2 Propriedades de uma Substância Pura 2.1 - Definição Uma substância pura é aquela que tem composição química invariável e homogênea. Pode existir em mais de uma fase Composição química é igual
Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia
Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia Processos Politrópicos Processos reais podem ter a pressão e o volume relacionados pela seguinte
Disciplina : Máquinas Térmicas e de Fluxo Aula 3 Conceitos de Trabalho e calor e Primeira lei da Termodinâmica
Disciplina : Máquinas Térmicas e de Fluxo Aula 3 Conceitos de Trabalho e calor e Primeira lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Revisando Conceitos de Energia Professor Dr. Evandro
Disciplina: Sistemas Térmicos
Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica
Problema 1 Problema 2
1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir
Disciplina : Termodinâmica. Aula 16 Entropia
Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,
Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos
Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius
MÁQUINAS TÉRMICAS E DE FLUXO Prof. Dr. Charles Assunção
MÁQUINAS TÉRMICAS E DE FLUXO Prof. Dr. Charles Assunção CONTEÚDO Energia Trabalho Calor 1º lei da termodinâmica ENERGIA Definição: capacidade de produzir um efeito Formas: térmica, mecânica, cinética,
Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.
Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se
Utilizando Gráficos de Entropia
Módulo IV Variação da Entropia em Substâncias Puras, Relações Termodinâmicas (Tds), Diagramas T-s e h-s, Entropia em Substâncias Incompressíveis, Entropia em Gás Ideal. Utilizando Gráficos de Entropia
TERMODINÂMICA APLICADA CAPÍTULO 2
TERMODINÂMICA APLICADA CAPÍTULO 2 PROPRIEDADES DAS SUBSTÂNCIAS PURAS SUMÁRIO Neste capítulo o conceito de substância pura é introduzido e as várias fases, bem como as propriedades físicas dos processos
Propriedades de uma Substância Pura
Propriedades de uma Substância Pura Nesta aula, nossa atenção estará voltada para substâncias puras, consideraremos algumas das fases em que uma substância pura pode existir, o número de propriedades independentes
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente
Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos
UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos 1 a Lista de Exercícios (2014) ZEA 0466 TERMODINÂMICA Profa. Alessandra Lopes de Oliveira
Capítulo 3: Propriedades de uma Substância Pura
Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas
Essa relação se aplica a todo tipo de sistema em qualquer processo
Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas
Disciplina : Termodinâmica. Aula 4
Disciplina : Termodinâmica Aula 4 Prof. Evandro Rodrigo Dário, Dr. Eng. SUBSTÂNCIA PURA Uma substância que tem a mesma composição química em toda a sua extensão é chamada de substância pura. A água, o
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Propriedades de uma substância pura
Propriedades de uma substância pura Substância pura possui composição química invariável e homogênea, independentemente da fase em que está. Ex.: água Equilíbrio de fases em uma substância pura, as fases
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 6) Primeira Lei da Termodinâmica para volume de controle. v. 2.6
Termodinâmica 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.6 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as expressões a seguir
UFABC - Fenômenos Térmicos - Prof. Germán Lugones. AULA 5 Calor, Trabalho e Primeira lei da termodinâmica
UFABC - Fenômenos Térmicos - Prof. Germán Lugones AULA 5 Calor, Trabalho e Primeira lei da termodinâmica Experimento de Joule (1845): Equivalente mecânico do Calor o Num calorímetro (recipiente de paredes
A primeira lei da termodinâmica
A primeira lei da termodinâmica Estudamos até agora 2 formas de transferência de energia: Trabalho (W) *Equivalente a o levantamento de um peso Calor (Q) *Causado por diferenças de Temperatura Ainda, vimos
BC1309 Termodinâmica Aplicada
Universidade Federal do ABC BC309 Termodinâmica Aplicada Prof. Dr. Jose Rubens Maiorino [email protected] Calor, Trabalho e Primeira Lei da Termodinâmica Conceitos q Calor Definição Meios
Propriedades das substâncias puras simples compressíveis
Propriedades das substâncias puras simples compressíveis Substâncias puras: possuem composição química uniforme e invariável, independentemente da fase. Sistemas simples: pode se desprezar efeitos de superfície,
Descrição Macroscópica de um Gás ideal
Descrição Macroscópica de um Gás ideal O gás não tem volume fixo ou uma pressão fixa O volume do gás é o volume do recipiente A pressão do gás depende do tamanho do recipiente A equação de estado relaciona
TERMODINÂMICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS UNIDADE II PROPRIEDADES TERMODINÂMICAS
1 TERMODINÂMICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS Instruções: Tenha sempre em mãos uma Calculadora Científica, pois a mesma será utilizada exaustivamente no curso
Capítulo 3: Propriedades de uma Substância Pura
Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Substância Pura Substância pura é a aquela que tem composição química invariável
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
Disciplina : Termodinâmica. Aula 7 - Análise da Energia dos Sistemas Fechados
Disciplina : Termodinâmica Aula 7 - Análise da Energia dos Sistemas Fechados Prof. Evandro Rodrigo Dário, Dr. Eng. CALORES ESPECÍFICOS Calor específico é definido como a energia necessária para elevar
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke / Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
03/Mar/2017 Aula 3. 01/Mar/2017 Aula 2
01/Mar/2017 Aula 2 Teoria Cinética dos Gases Teoria Cinética e Equação dos Gases Ideais Gás Ideal num Campo Gravitacional Distribuição de Boltzmann; distribuição de velocidades de Maxwell e Boltzmann Velocidades
Introdução à Termodinâmica
Introdução à Termodinâmica Definição de Termodinâmica De maneira sucinta, Termodinâmica é definida como a ciência que trata do calor e do trabalho, e daquelas propriedades das substâncias relacionadas
Questão 04) Questão 01)
Questão 01) O valor da temperatura de uma amostra de gás perfeito é consequência: a) da radiação emitida por suas moléculas. b) da energia potencial total de suas moléculas. c) da energia potencial média
Física Experimental III. Compressão isotérmica de um gás ideal
Física Experimental III Compressão isotérmica de um gás ideal Lei dos Gases Ideias Definimos um gás ideal como um gás para o qual a razão PV/nT é constante em todas as pressões. Portanto, essas variáveis
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Conceito de Energia Energia é um conceito fundamental da termodinâmica e um dos aspectos mais significantes de
Estudo da Física. Prof. Railander Borges
Estudo da Física Prof. Railander Borges Fale com o Professor: Email: [email protected] Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: GASES 1. Uma panela de pressão com
NOTAS DE AULA. O conceito familiar de Trabalho em Mecânica pode servir como ponto de partida: O trabalho elementar realizado por uma força F r
Trabalho e Calor Departamento de Engenharia Naval e Oceânica EPUSP PNV-3 Termodinâmica e Transferência de Calor NOTAS DE AULA Introdução Vamos aqui introduzir os conceitos de Trabalho e Calor em Termodinâmica.
Variação de Entropia do Sistema Durante um Processo Irreversível
Núcleo de Engenharia érmica e Fluidos ermodinâmica I (SEM33) Prof. Oscar M.H. Rodriguez Variação de Entropia do Sistema Durante um Processo Irreversível Aplicando a desigualdade de Clausius: S S (b) (a)
1a Questão (***): 2a Questão (**): 3a Questão (**): 4a Questão (**): 5a Questão (**):
1 a Questão (***): Considere o arranjo cilindro-pistão mostrado na figura ao lado. O pistão do arranjo pode deslizar livremente e sem atrito entre dois esbarros. Quando o pistão repousa sobre os esbarros
Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade
Atividades Física 2ª série do Ensino Médio
Atividades Física 2ª série do Ensino Médio 01 - (UFTM 2006) Ao nível do mar e sob temperatura de 27ºC, 450 L de gás hélio, puro, preenchem o espaço interno de um balão. Admitindo-se que a parede do balão
DRAFT. Termodinâmica CONCURSO PETROBRAS. Questões Resolvidas ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - MECÂNICA
CONCURSO PETROBRAS ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - MECÂNICA ENGENHEIRO(A) JÚNIOR - ÁREA: MECÂNICA PROFISSIONAL JÚNIOR - ENG. MECÂNICA Termodinâmica Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS
Análise Energética para Sistemas Abertos (Volumes de Controles)
UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente
2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3
6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho
b) Qual o menor fluxo de calor que deve ser retirado ao tanque de água para que todo o sistema funcione e retire 1kW à casa.
Termodinâmica I 1º Exame 13 de Janeiro de 2005 (Duração da Prova : 180 min) Problema 1 (6 valores) Pretende-se manter a temperatura de uma casa em 20ºC, quando o ar exterior está a 32ºC, com uma máquina
Módulo II Energia, Calor e Trabalho
Módulo II Energia, Calor e Trabalho Energia A energia pode se manifestar de diversas formas: mecânica, elétrica, térmica, cinética, potencial, magnética, química e nuclear. A energia total de um sistema
Disciplina : Termodinâmica. Aula 1
Disciplina : Termodinâmica Aula 1 Prof. Evandro Rodrigo Dário, Dr. Eng. Definição de Termodinâmica De maneira sucinta, Termodinâmica é definida como a ciência que trata do calor e do trabalho, e daquelas
Capítulo 3: Propriedades de uma Substância Pura
Capítulo 3: Propriedades de uma Substância Pura Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas Princípio de estado O número de propriedades independentes requerido
Energia e a Primeira Lei da Termodinâmica
UTFPR Termodinâmica 1 Energia e a Primeira Lei da Termodinâmica Princípios de Termodinâmica para Engenharia Capítulo 2 Energia Formas de Energia Mecânica (Cinética e Potencial) Térmica Química Elétrica,
1 a Lei da Termodinâmica e Expansão Térmica
1 a Lei da Termodinâmica e Expansão Térmica Anselmo E. de Oliveira Instituto de Química, UFG, 74690-900, Goiânia, GO, Brazil Resumo Essa aula prática tem como objetivo o estudo do processo termodinâmico
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.4 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as
TRABALHO PRÁTICO 1 CONVERSOR DE UNIDADES
TRABALHO PRÁTICO 1 CONVERSOR DE UNIDADES Elaboração de uma ferramenta de cálculo, em linguagem de programação à escolha do aluno, que expresse rapidamente: a) Um valor de temperatura dado em ºC, ºF, K
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Exercícios Sugeridos (14 de novembro de 2008) A numeração corresponde ao Livro Texto. 16.19 Um balão de ar quente
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
A 1 a lei da termodinâmica para um sistema transiente é:
TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime
Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel
Escola Politécnica da Universidade de São Paulo Aula 12 Ciclo Otto e Ciclo Diesel Ciclo de Potência dos Motores Alternativos Deslocamento de todos cilindros: V desl =N ciclo (V max V min )=N ciclo A ciclo
