03/Mar/2017 Aula 3. 01/Mar/2017 Aula 2
|
|
|
- Leonor Varejão Antunes
- 8 Há anos
- Visualizações:
Transcrição
1 01/Mar/2017 Aula 2 Teoria Cinética dos Gases Teoria Cinética e Equação dos Gases Ideais Gás Ideal num Campo Gravitacional Distribuição de Boltzmann; distribuição de velocidades de Maxwell e Boltzmann Velocidades mais provável, média e quadrática média 03/Mar/2017 Aula 3 Calor e Primeira Lei da Termodinâmica Trabalho e energia mecânica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho e diagramas PV para um gás Processos reversíveis 1
2 Aula anterior Teoria Cinética dos Gases Energia cinética de um gás composto por N moléculas : E cin N 1 2 mv Nk B T 3 2 nrt A energia cinética média dum gás ideal é proporcional à temperatura PV 2N m vx 2N m v N Ecin N kb T N kb T PV N k T n RT B 2
3 Pressão (atm) Aula anterior Gás Ideal num Campo Gravitacional Pressão em função da altitude P P 0 e mg z k T B Altitude z (km) 3
4 Aula anterior Distribuição de velocidades de Maxwell-Boltzmann Selector de velocidades: Fonte Num gás de N moléculas, o número delas com velocidades entre v e v+dv é dado por: dn N f v dv Função de distribuição de velocidades de Maxwell- Boltzmann: m f ( v) 4 2 kb T 3/ 2 2 v e 2 mv 2kT B Distribuição de velocidades 4
5 Número de moléculas Número de moléculas Função de distribuição de velocidades de Maxwell f(v) Velocidade mais provável Velocidade média Vel. quadrática média Aula anterior Relação entre as várias velocidades: Velocidade molecular Velocidade molecular (m/s) Velocidade molecular (m/s) 5
6 Calor e energia térmica Caloria Quantidade de calor necessária para elevar a temperatura de 1 g de água de 14,5 ºC para 15,5 ºC. Podem existir alterações na temperatura de um sistema sem que tenha existido transferência de energia térmica, mas sim através de trabalho realizado sobre ou pelo sistema. Joule Estabeleceu a correspondência entre energia térmica e mecânica. 1 cal = 4,186 J. 6
7 Mais calor maior variação de temperatura (para a mesma substância) Maior massa menor variação de temperatura (mesma substância e quantidade de calor) Mais calor (mesma massa) Menos calor Menor massa Maior massa 7
8 Substâncias diferentes diferentes variações de temperatura (para a mesma quantidade de calor) Menor calor específico (c) Maior variação da temperatura Água vs álcool 8
9 Capacidade calorífica Capacidade calorífica e calor específico A troca de energia térmica com um sistema, que se mantém no mesmo estado, implica alterações na sua temperatura. A capacidade calorífica (C) de uma substância é definida através de Q C = ΔT Q= C ΔT sendo Q o calor trocado com a substância e T a diferença entre as temperaturas final e inicial. Calor específico (mássico) O calor específico (c) mássico de uma substância é a sua capacidade calorífica por unidade de massa Q c = m ΔT Q=m c ΔT sendo Q o calor trocado com a substância, T a diferença entre as temperaturas final e inicial e m a massa da amostra. 9
10 Substância Nome Calor específico [J/(kg.K)] Al Alumínio 900 Si Silício 703 C Carbono (grafite) 685 C Carb. (diamante) 520 Fe Ferro 448 Cu Cobre 387 Ag Prata 234 Au Ouro 129 Pb Chumbo 128 H 2 O (l) Água 4186 H 2 O (s) Gelo 2220 H 2 O (v) Vapor de água 2020 C 2 H 5 OH(l) Etanol 2460 Vidro
11 Geralmente, o calor específico depende da temperatura: T f Q =m Ti c dt Para além da temperatura, o calor específico (principalmente o dos gases) varia com a pressão e o volume. Portanto, para a mesma substância, pode existir um valor para o calor específico a pressão constante e outro para o calor específico a volume constante. 11
12 Calor latente Calor latente A transferência de calor para um sistema pode não resultar numa variação da sua temperatura mas sim em mudanças de fase no sistema. O calor latente (L) de uma substância é definido através de Q L = m Q= m L sendo Q o calor trocado com a substância e m a massa da amostra. Os calores latentes podem ser de fusão ou de vaporização, consoante a substância passe de sólido para líquido (e vice-versa), ou de líquido para vapor (e vice-versa). 12
13 T (ºC) Diagrama de fases para a água Q =ml v vaporização Q 3 Q =m L f Q 2 fusão água + vapor vapor Q 1 gelo + água água gelo Q =mc Q =mc Q =mc T T T 1 gelo 1 2 água 2 3 vapor 3 Calor adicionado (J) 13
14 Um corredor de 65 kg gera 800 kj de calor em 30 minutos de corrida. Se este calor não for dissipado, qual é o aumento de temperatura sofrido? Valor médio do calor específico do corpo humano = 3500 J/(kg ºC) Q = m c T Q 8.10 J T= m c 65 kg 3500 J/ kgºc 5 T = 3,5ºC 14
15 Considere o aparelho de Joule. Cada massa é de 1,5 kg e o tanque tem 200g de água. Qual é o aumento de temperatura da água após as massas caírem de uma altura de 3 m? Calor específico da água (fase líquida) = 4186 J/(kg ºC) Q = m c T U = m g h água água Conservação da energia U = Q m c T = mg h água água m g h 2 1,5 kg 9,8 ms 3 m T = = = 0,105 º C m c -1 o 4186 Jkg C 0,2 kg água água -2 15
16 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 gelo vapor L v =22, J/kg c água = 4186 J/kg ºC vapor 0-20 L f =33, J/kg água gelo e água gelo c gelo = 2220 J/kg ºC água e vapor Q (J) 16
17 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 gelo a -20ºC gelo a 0ºC Q 1 = m c gelo T1 Q 1 = (0,01 kg) (2220 J/kg ºC) [0 - (-20 0 C)] Q 1 = 444 J 0-20 gelo c gelo = 2220 J/kg ºC Q (J) 17
18 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 gelo a 0ºC água a 0ºC (derreter o gelo) Q 2 = m L fusão Q 2 = (0,01 kg) (33, J/kg) Q 2 = 3350 J 0-20 gelo L f =33, J/kg gelo e água Q (J) 18
19 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 água a 0ºC água a 100ºC Q 3 = m c água T3 c água = 4186 J/kg ºC Q 1 = (0,01 kg) x (4186 J/kg ºC) x [100 ºC - 0 ºC] 0-20 gelo gelo e água água Q 3 = 4186 J Q (J) 19
20 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 água a 100ºC vapor a 100ºC Q 4 = m L vaporização L v =22, J/kg Q 4 = (0,01 kg) (22, J/kg) água e vapor 0-20 gelo gelo e água água Q 4 = J Q (J) 20
21 Determine a quantidade de calor necessária para converter totalmente 10g de gelo a -20ºC em vapor de água a 100ºC. c gelo = 2220 J/(kg ºC) c água = 4186 J/(kg ºC) c vapor = 2020 J/(kg ºC) L fusão do gelo = 33, J/kg L vaporização da água = 22, J/kg T (ºC) 100 gelo vapor 22, J/kg c água = 4186 J/kg ºC vapor 0-20 L f =33, J/kg água gelo e água gelo c gelo = 2220 J/kg ºC Q = Q 1 +Q 2 +Q 3 +Q 4 = = 30,58 KJ água e vapor Q (J) 21
22 Primeira Lei da Termodinâmica A energia total de qualquer sistema fechado é uma grandeza conservativa. Um sistema fechado troca energia com o exterior através de: realização de trabalho (W) fluxo de calor (Q) Q = d U + W Q adicionado ao sistema W realizado pelo sistema U Q positivo W positivo U Q W 22
23 Trabalho e diagramas PV para um gás Trabalho realizado pelo gás ao expandir-se e mover o êmbolo: dw = F dy = PA dy (A = secção do êmbolo) = P dv Trabalho realizado pelo gás quando o seu volume varia de V i para V f : Trabalho = área abaixo da curva P-V W V V i f P dv 23
24 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: P 1 P int =P ext P 1 P 2 P 1 V 1 V 2 T Admita que a pressão exterior varia muito lentamente de P1 para P2, de modo que a pressão interior é sempre igual à exterior ( processo infinitamente lento) 24
25 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: P ext P int =P ext P 1 P 2 P int V 1 V 2 T Admita que a pressão exterior varia muito lentamente de P1 para P2, de modo que a pressão interior é sempre igual à exterior ( processo infinitamente lento) 25
26 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: P ext P 1 P int =P ext P 2 P int V 1 V 2 T Admita que a pressão exterior varia muito lentamente de P1 para P2, de modo que a pressão interior é sempre igual à exterior ( processo infinitamente lento) 26
27 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: P ext P 1 P int =P ext P 2 P int V 1 V 2 T Admita que a pressão exterior varia muito lentamente de P1 para P2, de modo que a pressão interior é sempre igual à exterior ( processo infinitamente lento) 27
28 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: P ext P 1 P int =P ext P 2 P int V 1 V 2 T Admita que a pressão exterior varia muito lentamente de P1 para P2, de modo que a pressão interior é sempre igual à exterior ( processo infinitamente lento) 28
29 Processos reversíveis Exemplo: expansão lenta mantendo a temperatura constante: w P 2 P 1 P 2 P 2 V 1 V 2 T O trabalho realizado pelo gás pode ser calculado a partir da área definida pela curva P-V. 29
30 O trabalho realizado depende do caminho percorrido (transformação): Num processo cíclico, o trabalho é dado pela área no interior da curva que representa o ciclo em coordenadas (P,V): 30
31 A energia transferida por calor para levar um sistema dum estado inicial i para um estado final f também depende do processo utilizado. Consideremos o estado inicial (V, P, T i ) e o estado final (2V, P/2, T i ) : A força no pistão é reduzida lentamente, de modo a manter a temperatura constante. Durante o processo, o gás realizou trabalho. A membrana é partida, de modo a permitir uma expansão rápida do gás. O gás não realizou trabalho (W = 0) nem houve transferência de calor (Q = 0). Logo, U = Q W = 0 31
2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3
6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho
1 Conceito de calorimetria. 2 Introdução. 3 Definição de caloria. 4 Calor específico. 5 Calorímetro (interativo) 6 Tabela de calores específicos
1 Conceito de calorimetria 2 Introdução 3 Definição de caloria 4 Calor específico 5 Calorímetro (interativo) 6 Tabela de calores específicos 7 Capacidade térmica 8 Trocas de calor 9 Calor latente 10 Curva
Elementos de Termodinâmica
TERMODINÂMICA ESCALAS DE TEMPERATURA Estuda as relações entre grandezas como a temperatura, a pressão, o volume, o calor e a energia interna Reparar na necessidade de definir uma escala de temperaturas
O sistema A é posto em contato térmico com T até atingir o equilíbrio térmico.
TERMODINÂMICA 18 TEMPERATURA, CALOR E PRIMEIRA LEI DA TERMODINÂMICA 18.2 TEMPERATURA Temperatura é uma das sete grandezas fundamentais do SI. Escala Kelvin (graduada em kelvins, K). Limite inferior de
1 Conceito de calorimetria 12 Mudança de fase. 2 Introdução 13 Leis gerais das mudanças de fase. 3 Definição de caloria 14 Mudança de fase da água
1 Conceito de calorimetria 12 Mudança de fase 2 Introdução 13 Leis gerais das mudanças de fase 3 Definição de caloria 14 Mudança de fase da água 4 Calor específico 15 Resumo das equações e unidades 5 Calorímetro
1 Conceito de calorimetria 12 Mudança de fase. 2 Introdução 13 Leis gerais das mudanças de fase. 3 Definição de caloria 14 Mudança de fase da água
1 Conceito de calorimetria 12 Mudança de fase 2 Introdução 13 Leis gerais das mudanças de fase 3 Definição de caloria 14 Mudança de fase da água 4 Calor específico 15 Resumo das equações e unidades 5 Calorímetro
2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.
FÍSICA BÁSICA II - LISTA 3 Termodinâmica 1. Uma substância possui calor específico dado por c = a+bt, em cal/g., com a = 0,1 cal/g., b = 0,005 cal/g. 2. Calcule o calor trocado por 100 g dessa substância
ELEMENTOS DE TERMODINÂMICA
ELEMENTOS DE TERMODINÂMICA TERMODINÂMICA ESCALAS DE TEMPERATURA Estuda as relações entre grandezas como a temperatura, a pressão, o volume, o calor e a energia interna Reparar na necessidade de definir
2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.
FÍSICA - LISTA 4 Termodinâmica 1. Uma substância possui calor específico dado por c = a+bt, em cal/g., com a = 0,1 cal/g., b = 0,005 cal/g. 2. Calcule o calor trocado por 100 g dessa substância se a temperatura
Fisica do Corpo Humano ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01. Temperatura Aula 5 e 1/2 da 6
Fisica do Corpo Humano (4300325) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B01 Temperatura Aula 5 e 1/2 da 6 1. Existem em torno de uma centena de átomos 2. Cada átomo
25/Fev/2015 Aula 2. 20/Fev/2015 Aula 1
/Fe/15 Aula 1 Temperatura e a Lei Zero da Termodinâmica Sistema Termodinâmico Termómetros e Escalas de Temperatura Descrição macroscópica dos gases ideais Equação dos gases ideais 5/Fe/15 Aula Teoria Cinética
Q m cvapor Tvapor Lvapor cágua Tágua Lfusão
Capacidade calorífica específica, calor específico Determine a quantidade de calor que deve ser removida quando 100g de vapor de água a 150ºC são arrefecidos até se tornarem em 100 g de gelo a 0 ºC. Dados:
C m Q C T T 1 > T 2 T 1 T 2. 1 cal = 4,184 J (14,5 o C p/ 15,5 o C) 1 Btu = 252 cal = 1,054 kj
A teoria do calórico (~1779) Para atingir o estado de equilíbrio térmico, T 1 T 2 T 1 > T 2 -Substância fluida - invisível - peso desprezível T a quantidade de calórico Esta teoria explicava um grande
AULA 8 Teoria Cinética dos Gases II
UFABC - BC0205 Prof. Germán Lugones AULA 8 Teoria Cinética dos Gases II James Clerk Maxwell 1831-1879 A Distribuição de Velocidades Moleculares A velocidade média quadrática V rms nos fornece uma ideia
Descrição Macroscópica de um Gás ideal
Descrição Macroscópica de um Gás ideal O gás não tem volume fixo ou uma pressão fixa O volume do gás é o volume do recipiente A pressão do gás depende do tamanho do recipiente A equação de estado relaciona
Energia: Capacidade de realizar trabalho.
Energia: Capacidade de realizar trabalho. Formas de energia: Matéria: - Cinética (movim. macroscópico, térmica, etc) - Potencial (elétrica, gravitacional, elástica, etc) Tudo que tem massa e ocupa lugar
Disciplina: Sistemas Térmicos
Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica
Temperatura Calor Transmissão de calor 1 a Lei da Termodinâmica
Temperatura Calor Transmissão de calor 1 a Lei da Termodinâmica Temperatura Temperatura Temperatura: é o grau de agitação das partículas (átomos, moléculas) de um corpo. Lei zero da termodinâmica Se dois
Primeira Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trabalho de expansão Trocas térmicas Entalpia Termodinâmica Estudo das transformações de
UFABC - Fenômenos Térmicos - Prof. Germán Lugones. AULA 5 Calor, Trabalho e Primeira lei da termodinâmica
UFABC - Fenômenos Térmicos - Prof. Germán Lugones AULA 5 Calor, Trabalho e Primeira lei da termodinâmica Experimento de Joule (1845): Equivalente mecânico do Calor o Num calorímetro (recipiente de paredes
Teoria Cinética dos Gases
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II Teoria Cinética dos Gases Prof. Bruno Farias Introdução Termodinâmica é o estudo das transformações
Física II. 2º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães
Física II º Semestre de 01 Instituto de Física - Universidade de São Paulo Professor: aldir Guimarães E-mail: [email protected] Fone: 3091-7104 Aula alor e Primeira Lei da termodinâmica Pode-se resfriar
CALOR E PRIMEIRA LEI DA TERMODINÂMICA. Calor é a energia transferida de um corpo para outro em virtude, basicamente, de uma diferença de temperatura.
CALOR E PRIMEIRA LEI DA TERMODINÂMICA Calor é a energia transferida de um corpo para outro em virtude, basicamente, de uma diferença de temperatura. Capacidade Calorífica e Calor Específico A quantidade
Fenômenos Térmicos : primeiro conjunto de problemas
Fenômenos Térmicos - 2014: primeiro conjunto de problemas Termômetros, temperatura e escalas de temperatura 1. Suponha que em uma escala linear de temperatura X, a água ferva a 81.5 o X e congele a-190
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Exercícios Sugeridos (14 de novembro de 2008) A numeração corresponde ao Livro Texto. 16.19 Um balão de ar quente
UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 6: calor, trabalho e a primeira lei da Termodinâmica
UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 6: calor, trabalho e a primeira lei da Termodinâmica Calor: definição Calor é a energia transferida entre um sistema e o seu ambiente devido a uma diferença
Calor e equilíbrio térmico. Prof. Marco Simões
Calor e equilíbrio térmico Prof. Marco Simões Definição Joule é o autor da descoberta que o calor não é uma substância, mas uma forma de energia, que pode ser transferir ou converter. James Presco> Joule
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da
Calor e Temperatura, Trocas de Calor Bibliografia e figuras desta aula: Fundamentos da Física, Halliday, Resnick e Walker, 8a Ed., vol 2 pág
Calor e Temperatura, Trocas de Calor Bibliografia e figuras desta aula: Fundamentos da Física, Halliday, Resnick e Walker, 8a Ed., vol 2 pág2 188-190 Até agora aprendemos: O conceito de temperatura A lei
QB70C:// Química (Turmas S71/S72) Termodinâmica. Prof. Dr. Eduard Westphal ( Capítulo 8 Atkins (5ª ed.
QB70C:// Química (Turmas S71/S72) Termodinâmica Prof. Dr. Eduard Westphal (http://paginapessoal.utfpr.edu.br/eduardw) Capítulo 8 Atkins (5ª ed.) Entalpia Em um sistema rígido (onde não exista outra forma
DEGGE, 2012 Pedro M A Miranda Termodinâmica Aplicada Exame 2
DEGGE, 2012 Pedro M A Miranda Termodinâmica Aplicada Exame 2 Justifique, sucintamente, todos os cálculos e aproximações. Parte 1 1. O comporta-se como um gás de van der Waals com. Considere um dispositivo
TEMPERATURA, CALOR E A PRIMEIRA LEI DA TERMODINÂMICA
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II TEMPERATURA, CALOR E A PRIMEIRA LEI DA TERMODINÂMICA Prof. Bruno Farias Bibliografia HALLIDAY,
Termodinâmica A primeira Lei
Departamento de Química e Bioquímica Termodinâmica A primeira Lei Cap. 7 Atkins FUNDAMENTOS DE QUÍMICA Termodinâmica Estudo das transformações de energia entre as suas diferentes formas Sistema + Vizinhança
TEMPERATURA. Os constituintes da matéria (moléculas, átomos etc.) movem-se continuamente em um movimento de agitação.
TEMPERATURA Os constituintes da matéria (moléculas, átomos etc.) movem-se continuamente em um movimento de agitação. É possível associar a existência de uma energia à energia cinética média desses constituintes
Temperatura, Calor e a Primeira Lei da Termodinâmica
Temperatura, Calor e a Primeira Temperatura; A Lei Zero da Termodinâmica; Medindo a Temperatura; Escala Celsius e Fahrenheit; Dilatação Térmica; Temperatura e Calor; Absorção de Calor por Sólidos e Líquidos;
Calor, Trabalho e a Primeira Lei da Termodinâmica
Calor, Trabalho e a Primeira Lei da Termodinâmica Bibliografia e figuras: Halliday, Resnick e Walker, vol 2, 8a. Edição Vamos estudar como a energia pode ser transferida em forma de calor e trabalho de
Aquecimento de um sistema
Aquecimento de um sistema Aquecimento de diferentes quantidades de água Quando se fornece, num dado intervalo de tempo, a mesma quantidade de energia a dois sistemas, A e B, que diferem apenas na sua massa.
Primeira Lei da Termodinâmica
Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia
Curso de Engenharia Civil
Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que
QUÍMICA GERAL Termodinâmica
QUÍMICA GERAL Termodinâmica Prof. Dr. Anselmo E. de Oliveira Instituto de Química, UFG anselmo.quimica.ufg.br [email protected] 18 de Setembro de 2018 Agronomia Sistemas, Estados e Energia
FÍSICA TÉRMICA TEMPERATURA, DILATAÇÃO TÉRMICA, CALORIMETRIA E TRANSMISSÃO DE CALOR
FÍSICA TÉRMICA TEMPERATURA, DILATAÇÃO TÉRMICA, CALORIMETRIA E TRANSMISSÃO DE CALOR TEMPERATURA Grandeza Fundamental do S.I. Medida aproximada de agitação média de moléculas Unidade Principal: (Kelvin)
4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos
4/Mar/05 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos Transformações termodinâmicas e gases ideais Tipos de transformações
TC 1 Revisão UECE 1 a. fase Física Prof. João Paulo
1. (IFCE 2011) Um estudante de Física resolveu criar uma nova escala termométrica que se chamou Escala NOVA ou, simplesmente, Escala N. Para isso, o estudante usou os pontos fixos de referência da água:
Essa relação se aplica a todo tipo de sistema em qualquer processo
Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas
Termodinâmica. Prof.: POMPEU
1. DEFINIÇÃO A estuda a relação entre calor e trabalho que um sistema (por exemplo, um gás) troca com o meio exterior. 2. ENERGIA INTERNA (U) É a soma das várias formas de energia das moléculas que constituem
Termodinâmica Calor Movimento
Termodinâmica Calor Movimento Revolução Industrial (Século XVIII) Revolução Industrial Nasceram as fábricas e as grandes cidades, os novos meios de transporte, as novas ideologias e doutrinas econômicas,
Propagação do Calor e Calorimetria
Condução Térmica Física 3 - Capítulo 3 Propagação do Calor e Calorimetria Propagação de calor em que a energia térmica passa de partícula para partícula, sem transporte de matéria. Ocorre nos materiais
Capítulo 1. Introdução à Termodinâmica Aplicada
Capítulo Introdução à Termodinâmica Aplicada Objetivos Na disciplina de Fundamentos da Termodinâmica, você aprendeu inúmeros conceitos físicos importantes. O objetivo da disciplina de Termodinâmica Aplicada
Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Termodinâmica Aula 1 Professora: Melissa Soares Caetano Disciplina QUI 217 Termos termodinâmicos: Sistema:
Capitulo-4 Calor e Temperatura
Capitulo-4 Calor e Temperatura www.plantaofisica.blogspot.com.br 1 Resumo de aula: Termometria. 1- Temperatura Termometria é a parte da física que se preocupa unicamente em formas de se medir a temperatura
1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?
BC0303: Fenômenos Térmicos - 1 a Lista de Exercícios Termômetros, Temperatura e Escalas de Temperatura 1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X.
20/Mar/2015 Aula 9. 18/Mar/ Aula 8
18/Mar/2015 - Aula 8 Diagramas TS Entropia e a Segunda Lei da Termodinâmica; formulações de Clausius e de Kelvin-Planck Segunda Lei da Termodinâmica e reversibilidade Gases reais (não-ideais) Equação de
Dados. = 1, W/m 2 v som ar = 343 m/s v luz vácuo = c = m/s k B. = 1, J/mol K u massa
Física 3 1 a prova 04/06/2016 A Atenção: Leia as recomendações antes de fazer a prova. 1 Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2 Leia os enunciados com atenção. 3 Analise sua
FCAV/ UNESP NOÇÕES DE TERMODINÂMICA
FCAV/ UNESP NOÇÕES DE TERMODINÂMICA Profa. Dra. Luciana Maria Saran 1 1.TERMODINÂMICA Compreende o estudo da energia e suas transformações. Em grego, thérme-; calor, dy namis, energia. Termoquímica: área
Trabalho em uma transformação
Trabalho em uma transformação Trabalho (W) é uma medida da energia transferida pela aplicação de uma força ao longo de um deslocamento W = a b F dx A unidade de trabalho, no SI, é o Joule (J); 1 J = 1
Observação Calor x Temperatura
Prof. Jackson Alves Definição Parte da química que estuda a energia na forma de calor envolvido, seja nos processos químicos ou físicos. Observação Calor x Temperatura Instrumento de medição: Calorímetro
BC1309 Termodinâmica Aplicada
Universidade Federal do ABC BC309 Termodinâmica Aplicada Prof. Dr. Jose Rubens Maiorino [email protected] Calor, Trabalho e Primeira Lei da Termodinâmica Conceitos q Calor Definição Meios
A teoria Cinética dos Gases
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II A teoria Cinética dos Gases Prof. Bruno Farias Gases Um gás é formado de átomos (isolados
Termodinâmica. Lucy V. C. Assali
Termodinâmica Calor Física II 2016 - IO Calor Final do século XVIII: duas hipóteses alternativas 1) Fluido indestrutível (calórico) que preencheria os poros dos corpos, escoando-se de um corpo mais quente
Interpretação Molecular da Temperatura de um Gás Ideal
Interpretação Molecular da Temperatura de um Gás Ideal Já vimos que a pressão está relacionada com a energia cinética média das moléculas. Agora relacionaremos a temperatura à uma descrição microscópica
Física 20 Questões [Médio]
Física 20 Questões [Médio] 01 - (UFRRJ ) Uma pessoa retira um botijão de gás de um local refrigerado e o coloca em um outro lugar, sobre o qual os raios solares incidem diretamente. Desprezando qualquer
Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia
Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia Sistemas Em termodinâmica, o universo é formado
Física Geral e Experimental III. Dilatação
Física Geral e Experimental III Dilatação 6. Em um dia quente em Las Vegas um caminhão-tanque foi carregado com 37.000 L de óleo diesel. Ele encontrou tempo frio ao chegar a Payson, Utha, onde a temperatura
2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F
1. Considere um bloco de gelo de massa 300g encontra-se a 0 C. Para que todo gelo se derreta, obtendo água a 0 C são necessárias 24.000 cal. Determine o calor latente de fusão do gelo. 2. Considere um
19.2 Número de Avogadro mol número de átomos em uma amostra de 12g do carbono-12. Num mol de qualquer substância existem
Cap. 19 Um gás consiste em átomos que preenchem o volume de seu recipiente. As variáveis volume, pressão e temperatura, são conseqüências do movimento dos átomos. Volume resultado da liberdade dos átomos;
CALORIMETRIA (CONTINUAÇÃO)
CALORIMETRIA (CONTINUAÇÃO) Calor latente Nem toda a troca de calor existente na natureza se detém a modificar a temperatura dos corpos. Em alguns casos há mudança de estado físico destes corpos. Neste
18/Mar/2016 Aula 9. 16/Mar/ Aula 8
16/Mar/2016 - Aula 8 Gases reais (não-ideais) Equação de van der Waals Outras equações de estado Isotérmicas, diagramas e transições de fase Constantes críticas. Diagramas PT e PT 18/Mar/2016 Aula 9 Processos
A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.
lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa
Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica
Termodinâmica: estuda a energia térmica. Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica O que é temperatura: mede o grau de agitação das moléculas. Um pedaço de metal a 10 o C e
Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM
Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM CALORIMETRIA TEMPERATURA Todo corpo que esteja a uma temperatura acima do zero absoluto é constituído de partículas
Trabalho e calor. 1º Princípio da termodinâmica. Entalpia.
Trabalho e calor. 1º Princípio da termodinâmica. Entalpia. 1. O volume de um gás aumenta de 2,0 L até 6,0 L a temperatura constante. Calcule o trabalho feito pelo gás se ele se expandir: a) contra o vácuo
Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados
Disciplina : Termodinâmica Aula 6 - Análise da Energia dos Sistemas Fechados Prof. Evandro Rodrigo Dário, Dr. Eng. Análise da Energia dos Sistemas Fechados Já vimos várias formas de energia e de transferência
Física Experimental III. Compressão isotérmica de um gás ideal
Física Experimental III Compressão isotérmica de um gás ideal Lei dos Gases Ideias Definimos um gás ideal como um gás para o qual a razão PV/nT é constante em todas as pressões. Portanto, essas variáveis
Termodinâmica. Lucy V. C. Assali
Termodinâmica Calor Física II 2016 - IO O Equivalente Mecânico da Caloria A relação entre a caloria (unidade de quantidade de calor em termos da variação de temperatura que produz numa dada massa de água)
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 4) Trabalho e calor 1 v. 1.1 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas
Física e Química A 10.º ano
Energia, fenómenos térmicos e radiação II Física e Química A 10.º ano 1. Responde às seguintes questões. Num dia de inverno, a temperatura no exterior é de - 3ºC e a temperatura no interior de um apartamento
CALORIMETRIA. 1) Um bloco de zinco de capacidade igual a 20 Cal/ o C recebe 100 Cal. Calcule a variação de temperatura do bloco.
CALORIMETRIA 1) Um bloco de zinco de capacidade igual a 20 Cal/ o C recebe 100 Cal. Calcule a variação de temperatura do bloco. R: 5ºC 2) Uma esfera de ferro tem capacidade térmica de 40 Cal/ o C. Ao receber
Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei:
Lei Zero da Termodinâmica 4300259 Termo- estatística REVISÃO DE TERMODINÂMICA Se dois sistema estão em equilíbrio térmico com um terceiro sistema, então eles também estão em equilíbrio entre si. Alguns
Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B03. Primeira Lei da Termodinâmica
Fisica do Calor (4300159) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP B03 Primeira Lei da Termodinâmica Data Programa do curso August 9 August 12 August 16 August 19 August
Física Geral e Experimental III 1ª prova 25/04/2014 A
Física Geral e Experimental III 1ª prova 25/04/2014 A NOME: TURMA: MATRÍCULA: PROF. : NOTA: Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas. Leia os enunciados
25/Mar/2015 Aula /Mar/2015 Aula 9
20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia
MÁQUINAS TÉRMICAS E DE FLUXO Prof. Dr. Charles Assunção
MÁQUINAS TÉRMICAS E DE FLUXO Prof. Dr. Charles Assunção CONTEÚDO Energia Trabalho Calor 1º lei da termodinâmica ENERGIA Definição: capacidade de produzir um efeito Formas: térmica, mecânica, cinética,
Profa.. Dra. Ana Maria Pereira Neto
5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0
18 1ª LEI DA TERMODINÂMICA
FÍSICA Professor Ricardo Fagundes MÓDULO 18 1ª LEI DA TERMODINÂMICA 1ª LEI DA TERMODINÂMICA Energia interna (U): a energia interna de um gás é a soma das energias cinéticas das partículas que o compõe
UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física
01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A VI Capítulo 19 Temperatura, Calor e a
Primeira Lei da Termodinâmica. Prof. Marco Simões
Primeira Lei da Termodinâmica Prof. Marco Simões Calor e Trabalho A termodinâmica estuda a relação entre calor e trabalho Conforme determinado por Joule 1 cal=4,18 J esse é o equivalente mecânico do calor.
Universidade de São Paulo Instituto de Física
Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina
Termologia: Calorimetria
Termologia: Calorimetria Física_9 EF Profa. Kelly Pascoalino Nesta aula: Temperatura x Calor; Processos de propagação de calor; Calor específico; Calor Latente e mudanças de estado. TEMPERATURA X CALOR
Dados: calor latente do gelo Lg = 80cal/g, calor específico da água c(h O) = 1,0 cal g C, calor específico do alumínio c(aø) = 0,22 cal g C.
1. (Unicamp 95) Numa câmara frigorífica, um bloco de gelo de massa m=8,0kg desliza sobre rampa de madeira da figura a seguir, partindo do repouso, de uma altura h=1,8m. a) Se o atrito entre o gelo e a
Aula anterior: Esta Aula: Próxima aula:
Aula anterior: Composição da atmosfera: do que é composta; fontes e sumidouros; como alcançou o estado atual. Breve discussão sobre pressão, densidade, temperatura. Esta Aula: Temperatura, pressão e densidade
MEDINDO TRABALHO E CALOR
MEDINDO TRABALHO E CALOR 1 Eixo III: Energia - Aplicações Tema 7: Calculando a energia térmica Tópicos / Habilidades 18 Medindo Trabalho e Calor 18.1 Saber distinguir situações em que há transferência
TERMODINÂMICA APLICADA CAPÍTULO 3
TERMODINÂMICA APLICADA CAPÍTULO 3 PRIMEIRA LEI DA TERMODINÂMICA: SISTEMAS FECHADOS Primeira Lei da Termodinâmica A Energia pode atravessar a fronteira de um sistema fechado na forma de Calor e/ou Trabalho.
Temperatura e Calor. Leis da Termodinâmica
Temperatura e Calor Leis da Termodinâmica Temperatura O conceito de temperatura está intuitivamente ligado a ideia de quente e frio. Para se medir a temperatura, é necessário uma escala. Para determinar
Equação do Gás Ideal
Capítulo 5 Gases Substâncias que Existem como Gases Pressão de um Gás Leis dos Gases Equação do Gás Ideal Estequiometria com Gases Lei de Dalton das Pressões Parciais Teoria Cinética Molecular dos Gases
Resolução das questões objetivas* da 1ª e da 2ª Prova de Física II Unificada do Período UFRJ
Resolução das questões objetivas* da ª e da ª Prova de Física II Unificada do Período 0.-UFRJ *Assuntos: Termodinâmica, Hidrodinâmica e Hidrostática. Resolução: João Batista F. Sousa Filho (Graduando Engenharia
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
