2015 Dr. Walter F. de Azevedo Jr.

Tamanho: px
Começar a partir da página:

Download "2015 Dr. Walter F. de Azevedo Jr."

Transcrição

1 2015 Dr. Walter F. de Azevedo Jr

2 Cristalografia Etapas para resolução da estrutura 3D de macromoléculas biológicas por cristalografia 1. Cristalização. Para cristalizar uma macromolécula temos que leva-la a um estado de supersaturação, que favorece a formação de cristais, como os mostrados acima. Os cristais de moléculas biológicas normalmente apresentam dimensões inferiores a 1 mm de comprimento em cada aresta. 2. Coleta de dados de difração de raios X. Os cristais apresentam um arranjo ordenado de moléculas, como uma pilha de tijolos ordenados. Na analogia, cada tijolo representa uma molécula. As distâncias entre os átomos são da ordem de 1 Å (0,1 nm ou m), usando-se raios X (com comprimento de onda da odem de Å ) teremos difração. 5. Análise. A partir da estrutura resolvida procedemos a análise, onde relaciona-se a estrutura 3D à sua função biológica. 4. Resolução da estrutura. A partir da análise do padrão de difração é possível gerar mapas de densidade eletrônica (à direita). A interpretação de tais mapas gera a estrutura 3D de molécula. 3. Interpretação do padrão de difração de raios X. A figura abaixo é o registro da difração de raios X de um cristal. Os raios X interagem com o cristal, o que produz um padrão de difração. A análise desta informação possibilita a resolução de estrutura 3D. 2

3 Supersaturação Para cristalizarmos uma macromolécula biológica é necessário trazê-la a um estado de supersaturação. Consideremos uma proteína dissolvida em um tampão. Nesta situação, para que a proteína seja levada a formar cristais, é necessário que as moléculas da proteína sejam trazidas a uma situação onde as moléculas fiquem relativamente próximas umas das outras. Para levar a proteína a à supersaturação, podemos aumentar sua concentração (eixo vertical), ou aumentar a concentração do sal presente na solução da proteína. O diagrama ao lado ilustra as diferentes regiões de solubilidade da proteína. 3

4 Supersaturação O processo de cristalização da proteína normalmente deve ser lento, ou seja, considerando-se a proteína inicialmente numa região abaixo da curva de solubilidade, devemos aumentar a concentração salina, ou da proteína, de modo a trazê-la na região de supersaturação, de forma a propiciar um arranjo ordenado das moléculas. De uma forma geral, espera-se que o processo de cristalização demore horas, dias ou até meses. A partir o gráfico ao lado, vemos que na região de supersaturação teremos as moléculas da proteína próximas umas das outras, o que, em casos favoráveis, promoverá o aparecimento dos primeiros núcleos cristalinos. Esses microcristais servirão de base para o crescimento de cristais maiores, adequados para experimentos de difração de raios X. 4

5 Supersaturação Para cristalizarmos proteínas, normalmente usamos o método de difusão de vapor. Uma gota de proteína é colocada sobre uma lamínula. Na gota adicionamos uma solução contendo sal, ou outro agente precipitante, como polietileno glicol (PEG). Colocamos a lamínula sobre um poço, onde temos a solução do precipitante. Ao fecharmos esse sistema, ocorrerá difusão de moléculas de água da gota para o poço, levando a proteína, em casos favoráveis, a um estado de supersaturação, que pode levar à formação dos primeiros núcleos cristalinos. 5

6 Supersaturação Diversos fatores interferem com a solubilidade da proteína, entre eles a concentração salina. O aumento da solubilidade de uma macromolécula a baixa concentração salina (<0,5M) é chamada salting-in. Segundo a teoria de Debye-Hückel para soluções iônicas, um aumento na força iônica reduz a atividade dos íons em solução e aumenta a solubilidade do composto iônico. Uma forma alternativa de se tratar o fenômeno é considerar o salting-in como o resultado da competição entre grupos carregados na superfície da macromolécula e os íons em solução. Na ausência de íons no solvente, a macromolécula precipita devido à atração de eletrostática entre cargas opostas em diferentes partes da macromolécula. Se os íons são adicionados à solução, esses blindam os grupos carregados na macromolécula e aumentam a sua solubilidade. a) b) Fenômeno de salting-in. a) Macromolécula biológica sem a presença de íons dissolvidos na solução. A atração eletrostática entre os grupos carregados em duas os mais macromoléculas causa a aglomeração e precipitação. b) Íons blindam a interação eletrostática entre as macromoléculas, aumentando a solubilidade. 6

7 Método da Gota Suspensa (Hanging-drop) Solução do poço Sequência de eventos para a montagem de uma gota de cristalização: a) Coloca-se 1-2 l da solução da macromolécula biológica sobre a lamínula de vidro. b) Adiciona-se 1-2 l da solução do reservatório à gota com a solução da macromolécula biológica. c) Ao final temos uma gota (2+2) com a solução de macromolécula biológica mais a solução do reservatório. 7

8 Matriz Esparsa Com o aumento do número de macromoléculas biológicas cristalizadas com sucesso, tornou-se óbvio que muitas das condições de cristalização se assemelhavam, ou seja, havia uma concentração de resultados positivos de cristalização de macromoléculas biológicas usando-se número limitado de precipitantes, tampões e aditivos. Isto levou à proposição de diversos métodos de cristalização (Carter & Carter, 1979), onde um número limitado de condições de cristalização eram testados, usando-se pequenas quantidades da macromolécula biológica, geralmente por volta de poucos miligramas. 0,5mm 0,5mm 0,5mm Jancarik, J. & Kim, S. -H. (1991) J. Appl. Crystallogr. 24,

9 Matriz Esparsa A partir da observação dos resultados preliminares desses experimentos era possível determinar que tampão, aditivo e agente precipitante seriam os mais favoráveis e a partir daí proceder-se a sucessivos melhoramentos até se conseguir cristais adequados, ou ainda, em casos favoráveis, obter-se cristais adequados já na primeira tentativa com as condições padrões. Dentro deste raciocínio a Dra. Jaru Jancarick da University of California, Berkeley propôs o método da matriz esparsa ( Jancarick & Kim, 1991) onde diversas condições diferentes são tentadas para se cristalizar a macromolécula biológica. 0,5mm 0,5mm 0,5mm Jancarik, J. & Kim, S. -H. (1991) J. Appl. Crystallogr. 24,

10 Matriz Esparsa Parâmetros da matriz de cristalização (Jancarik & Kim, 1991) Agentes precipitantes Não-Voláteis Sais Voláteis Mistura MPD Tartarato de Na,K 2-Propanol Sulfato de NH 4 + PEG PEG 400 Fosfato de NH 4 2-Propanol + PEG PEG 4000 Sulfato de NH 4 PEG 8000 Acetato de Na Sulfato de Li Formiato de Na Fosfato de Na,K Citrato de Na Formiato de Mg Faixa de ph: 4,6; 5,6; 6,5; 7,5 e 8,5 Aditivos: Cloreto de Ca, Citrato de Na, Cloreto de Mg, Acetato de NH 4, Sulfato de NH 4, Acetato de Mg, Acetato de Zn e Acetato de Ca. 10

11 Matriz Esparsa Por tentativa e erro a matriz multimensional foi simplificada eliminando-se as condições que podem ser parcialmente representadas por resultados de outras condições, a proposta original apresenta 58 condições. Comercialmente a empresa Hampton Research, (USA) simplificou o método original, e disponibiliza um kit com 50 condições de cristalização. Comercialmente há outros kits usando-se como princípio a variação de ph, força iônica e agentes precipitantes. Imagem disponível em: < d=1&sid=17&pid=1 >. Acesso em: 8 de Abril de

12 Matriz Esparsa Um dos sistema usados para cristalização de proteínas é a placa linbro, mostrada acima. Essa placa apresenta 24 poços, que permite testarmos diversas condições de cristalização. As lamínulas são colocadas sobre cada um dos poços, e vedadas com graxa de vácuo. Fonte: 12

13 Coleta de Dados de Difração de Raios X Cristais de proteínas são frágeis, assim diversos cuidados são tomados na manipulação. Na coleta de dados de difração de raios X, uma forma possível de manipularmos os cristais é deixando-os saturados de solvente e inseri-los num capilar, como mostrado na figura acima. Os cristais, assim dispostos, podem ser 13 levados para coleta de dados de difração de raios X.

14 Coleta de Dados de Difração de Raios X Uma forma alternativa de coletarmos dados é transferir o cristal para uma solução com protetor criogênico (Polietileno glicol, glicerol entre outros). O cristal é então exposto a um fluxo de nitrogênio líquido e transferido para uma base metálica (cabeça goniométrica). O cristal fica pronto para a coleta de dados. As temperaturas criogênicas minimizam os dados causados pela radiação. 14

15 Coleta de Dados de Difração de Raios X Fonte: Na figura da esquerda vemos uma base de cobre usada como suporte para o cristal. À direita temos o cristal inserido num laço. A exposição ao nitrogênio líquido leva à formação de um filme rígido e transparente que mantém o cristal no laço. 15

16 Cristalização de Proteínas no Espaço Experimentos de cristalização no espaço normalmente geram cristais de melhor qualidade para estudos de difração de raios X. As condições de microgravidade do espaço, propiciam um empacotamento cristalino mais ordenado, gerando cristais que difratam à mais alta resolução. A proteína uropesina (Canduri et al., 2001) foi cristalizada em condições de microgravidade na missão STS- 95 do ônibus espacial Discovery ( Disponível em: < 9IFiQNY8mE >). Fonte: Crédito: NASA Cristal de uropepsina. 16

17 Caracterização de Cristais de Proteína Uma etapa inicial importante na elucidação da estrutura tridimensional de proteínas, por meio de cristalografia por difração de raios X, é determinação do conteúdo da cela unitária. Uma vez tenhamos determinado os parâmetros da cela unitária: a, b, c, alfa, beta e gama, temos que determinar quantas moléculas temos na unidade assimétrica. Para isto precisamos, além dos parâmetros da cela unitária, o massa molecular da proteína cristalizada. O método proposto por Matthews (1968) permite calcular o número de moléculas por unidade assimétrica. Matthews determinou que para cristais de proteínas a relação entre volume da cela unitária (V cell ) e a massa molecular da proteína cristalizada fica na faixa de 1,7 a 3,5 Å 3 /Da, com a maioria dos valores em torno de 2,15 Å 3 /Da. Tal volume é chamado de volume de Matthews (V M ), e definido pela equação abaixo: V M Vcell Z. MW onde Z é o número de moléculas na cela unitária, MW a massa molecular da proteína cristalizada e V cell o volume cela unitária, que para uma cela unitária qualquer é dada por: V cell = a.b.c [1 + 2 cos cos cos - cos 2 - cos 2 - cos 2 ] 1/2 17

18 Caracterização de Cristais de Proteína A fração de volume ocupada por proteína (V protein ) é dada por: protein 1,23 V A fração de volume de solvente no cristal é dada por: V M V solvent 1,23 1 V M O V protein pode também ser determinado por: V protein Volume 3 EspecíficodaProteína(g/cm ) V M 18

19 Principais seções de um artigo de cristalização de proteínas: 1) Clonagem, expressão e purificação da proteína 2) Cristalização 3) Coleta de dados de difração de raios X 4) Outros (teste de atividade, sequenciamento, solução da estrutura e refinamento cristalográfico parcial. 19

20 20

21 The purifed MtCS was concentrated and dialyzed against 50 mm Tris±HCl buffer ph 7.8 (Hampton Research, USA). The final protein concentration was about 10 mg.ml -1. Crystallization was performed by the hangingdrop vapour-diffusion and sparse-matrix methods (Jancarik & Kim, 1991) using tissueculture multiwell plates with covers (Linbro, ICN Biomedicals, Inc, USA) at a temperature of 293 K. Each hanging drop was prepared by mixing 1 ml each of protein solution and reservoir solution and was placed over 700 l reservoir solution. Initial conditions were screened using Crystal Screen I and II kits (Hampton Research, USA). Hexagonal crystals of MtCS. Approximate dimensions are mm. Fonte: Dias MV, Ely F, Canduri F, Pereira JH, Frazzon J, Basso LA, Palma MS, de Azevedo WF Jr, Santos DS. Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 11):

22 A data set was collected at a wavelength of Å using a synchrotron-radiation source (Station PCr, LNLS, Campinas- Brazil). The data set was collected from a single MtCS crystal using a MAR CCD imageplate system. The crystal was looped out from the drop and flash-cooled. The PEG 400 present in the crystallization conditions served as a cryoprotectant, X-ray diffraction data were collected at a temperature of 100 K under a cold nitrogen stream generated and maintained with an Oxford Cryosystem. The crystal was rotated through a total of 160 o, with a 1 o oscillation range per frame, a crystal-to-detector distance of 130 mm and an exposure time of 60 s. Data were processed on a Silicon Graphics Octane2 computer using the programs MOSFLM (Leslie, 1990) and SCALA (CCP4, 1994). A typical diffraction pattern of the MtCS crystal with 1 oscillation range. The crystal diffracts to 2.8 Å resolution. Fonte: Dias MV, Ely F, Canduri F, Pereira JH, Frazzon J, Basso LA, Palma MS, de Azevedo WF Jr, Santos DS. Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 11):

23 Summary of data-collection statistics. X-ray wavelength (A ) Space group P or P Unit-cell parameters (Å ) a = , b = , c = Highest resolution shell (Å) Asymmetric unit content 2 molecules Total reflections measured Number of independent reflection Completeness (%) 97.9 (97.9) Rmerge (%) 5.6 (16.5) Values in parentheses are for the highest resolution shell ( Å). Fonte: Dias MV, Ely F, Canduri F, Pereira JH, Frazzon J, Basso LA, Palma MS, de Azevedo WF Jr, Santos DS. Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 11):

24 Aplicações 1) Determinação do conteúdo da unidade assimétrica da corismato sintase de Mycobacterium tuberculosis (Dias et al., 2004). A partir dos dados de difração de raios X foi determinado os parâmetros da cela unitária. a = 129,74 Å b = 129,74 Å c = 156,77 Å Grupo espacial: P ou P MW = 41,800 kda Para cela hexagonal: V cell = a.b.c.sen ( ) V cell = 129, , ,77. sen(120 o ) = ,31 Å 3 24

25 Para determinarmos o conteúdo da unidade assimétrica, calcularemos o volume de Matthews para diferentes possibilidades de unidade assimétrica e verificaremos qual valor fica mais próximo da faixa de 1,7 a 3,5 Å 3 /Da, como segue: V M Vcell Z. MW Z V M (Å 3 /Da) 1 54,67 6 9, , , , ,82 25

26 Os valores dentro da caixa estão na faixa prevista por Matthews, contudo sabemos que o grupo espacial é hexagonal primitivo, o que significa que temos 6 unidades assimétricas, assim esperamos um número de moléculas múltiplo de 6, ou seja, 12, 18, 24, 30.., sendo o valor mais provável 24. Assim temos: V protein = 1,23/V M = 0,5395 e V solvent = 0,4605 Z V M (Å 3 /Da) 1 54,67 6 9, , , , ,82 26

27 27

28 C. roseum seeds were ground to a fine powder in a coffee mill. The powder was stirred with 0.15 M NaCl [1:10(w:v)] at room temperature for 4 h and then centrifuged at g for 20 min at 278 K. The resultant supernatant was applied onto a Sepharose-4B-mannose column ( cm) equilibrated with 0.15 M NaCl containing 5 mmcacl2 and 5 mmmncl2. After removing unbound material, the lectin was eluted with 0.1 M glycine, 0.15 M NaCl ph 2.6. Purified CRL was monitored by SDS PAGE as described by Laemmli (1970) and was used to perform further characterization. N-terminal sequence analysis was performed using an Applied Biosystems pulsed-liquid phase 477A protein sequencer with a 120A PTH aminoacid analyzer, following the method described by the manufacturer. Fonte: Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62):

29 Fonte: Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62):

30 The lyophilized purified CRL was dissolved to a concentration of 12 mg ml -1 in 20 mm Tris HCl ph 8.0 containing 0.5 mm CaCl 2 and MnCl 2 and used for crystallization trials. Crystallization screening by the hanging-drop vapourdiffusion method was performed in Linbro plates at 293 K using Hampton Research Crystal Screens I and II, SaltRx, Index and PEG/Ion Screens (Hampton Research, Aliso Viejo, CA, USA). The drops were composed of equal volumes (2 ml) of protein solution and reservoir solution and were equilibrated against 500 ml reservoir solution. An example of a crystal of CRL is shown in Fig. 1(a). Fonte: Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62):

31 A crystal was transferred to a cryoprotectant solution consisting of 30% glycerol in the crystallization reservoir solution. Data were collected at 1.42 A wavelength at a synchrotron-radiation source (beamline MX1, CPr station, Laboratório Nacional de LuzSíncrotron LNLS, Campinas, Brazil) using a MAR Research CCD imaging plate at a crystalto-detector distance of 70 mm. A set of oscillation images was recorded (an image is shown in Fig. 1b). Diffraction data were indexed, integrated and scaled using MOSFLM and SCALA (Collaborative Computational Project, Number 4, 1994). Fonte: Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62):

32 Summary of data-collection statistics for CRL. X-ray wavelength (A ) Space group P Unit-cell parameters (A ) a = 67.82, b = , c = Resolution limits (A ) Asymmetric unit content 4 molecules Total reflections measured Unique reflections measured Completeness (%) (97.0) Rmerge (%) 5.4 (32.5) Values in parentheses are for the highest resolution shell ( A ). Fonte: Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62):

33 Aplicações 1) Determinação do conteúdo da unidade assimétrica da Lectina de Cymbosema roseum seeds (Cavada et al., 2006). A partir dos dados de difração de raios X foram determinados os parâmetros da cela unitária. a = 67,82 Å b = 103,14 Å c = 122,09 Å Grupo espacial: P MW = 25kDa V cell = 67, , ,09 = ,03 Å 3 33

34 Para determinarmos o conteúdo da unidade assimétrica calcularemos o volume de Matthews para diferentes possibilidades de unidade assimétrica e verificaremos qual valor fica mais próximo da faixa de 1,7 a 3,5 Å 3 /Da, como segue: V M Vcell Z. MW Z V M (Å 3 /Da) 1 34, , ,38 4 8,53 5 6,83 6 5,69 7 4,88 8 4,27 Z V M (Å 3 /Da) 9 3, , , , , , , ,14 Z V M (Å 3 /Da) 17 2, , , , , , , ,42 34

35 Os valores dentro das caixas estão na faixa prevista por Matthews, contudo sabemos que o grupo espacial é ortorrômbico primitivo, o que significa que temos 4 unidades assimétricas, assim teremos um número de moléculas múltiplo de 4, ou seja, 12, 16 ou 20, sendo o valor mais provável 16. Assim temos: V protein = 1,23/V M = 0,575 e V solvent = 0,425 Z V M (Å 3 /Da) 1 34, , ,38 4 8,53 5 6,83 6 5,69 7 4,88 8 4,27 Z V M (Å 3 /Da) 9 3, , , , , , , ,14 Z V M (Å 3 /Da) 17 2, , , , , , , ,42 35

36 36

37 The phea gene (Rv3838c) encoding prephenate dehydratase from M. tuberculosis was amplified by the polymerase chain reaction (PCR) from genomic DNA. The forward (5 - TGCATATGGTGCGTATCGCTTACCTCGGTCC- 3 ) and reverse (5 - ACAAGCTTTCATGCTTGCGCCCCCTGGTCG- 3 ) synthetic oligonucleotide primers were based on the amino-terminal coding and carboxyterminal non-coding strands of the phea gene (Cole et al., 1998) containing 50 NdeI and 30 HindIII restriction sites, respectively. The PCR product was cloned into pet-23a(+) expression vector (Novagen) and the recombinant plasmid was sequenced to confirm the identity of the cloned DNA fragment and to ensure that no mutations had been introduced by the PCR amplification step.... Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62:

38 The supernatant was loaded onto a Q- Sepharose Fast Flow ( cm) anionexchange column (GE Healthcare) and fractionated using a M NaCl linear gradient. The fractions were pooled and ammonium sulfate was added to a final concentration of 0.6 M; the mixture was then loaded onto a HiLoad 16/10 Phenyl Sepharose HP hydrophobic interaction column (GE Healthcare). The active fractions were loaded onto a Mono Q HR 16/10 anion-exchange column (GE Healthcare) and eluted using a M NaCl linear gradient. Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62:

39 Crystallization trials were initially performed by the hanging-drop vapourdiffusion method at 292 K. Hampton Crystal Screen and Crystal Screen 2 kits (Hampton Research) were used to determine the initial crystallization conditions. Hanging drops were prepared by mixing 1 ml of a solution containing 10 mg ml1 recombinant protein in 50 mm Tris HCl ph 7.8 and 1 ml reservoir solution. Crystals were obtained with a reservoir solution containing 0.1 M HEPES ph 7.5, 28%(v/v) PEG 400, 0.2 M calcium chloride. Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62:

40 The data set for recombinant M. tuberculosis prephenate dehydratase was collected at a wavelength of Å using a synchrotronradiation source (Station MX1, LNLS, Campinas) and a MAR CCD detector. The crystal was flash-frozen at 100 K in liquid nitrogen. The oscillation range used was 0.8, the crystal-todetector distance was 150 mm and the exposure time was 90 s. The crystal diffracted to 3.2 Å resolution. All data were processed and scaled using the programs MOSFLM and SCALA from the CCP4 program suite (Collaborative Computational Project, Number 4, 1994). Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62:

41 Summary of data-collection statistics for M. tuberculosis prephenate dehydratase X-ray wavelength (A ) Temperature (K) 100 Resolution range (A ) ( ) Total/unique reflections 71611/23215 Space group I222 or I Matthews coefficient (Å 3 Da -1 ) 2.7 Unit-cell parameters a (Å) b (Å ) c (Å ) Mosaicity () 0.43 Data completeness (%) 94.4 (97.2) Average I/(I) 5.7 (1.5) Multiplicity 3.1 (3.0) Rmerge(%) (0.434) Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62:

42 Aplicações 1) Determinação do conteúdo da unidade assimétrica da MtPD. A partir dos dados de difração de raios X foi determinado que os parâmetros da cela unitária. a = 98,26 Å b = 133,22 Å c = 225,01 Å Grupo espacial: I222 ou I MW = 33,6 kda V cell = 98, , ,01 = ,3 Å3 Fonte: Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. F62, ,

43 Para determinarmos o conteúdo da unidade assimétrica calcularemos o volume de Matthews para diferentes possibilidades de unidade assimétrica e verificaremos qual valor fica mais próximo da faixa de 1,7 a 3,5 Å 3 /Da, como segue: V M Vcell Z. MW Z V M (Å 3 /Da) 1 87, , , , , , ,83 43

44 Os valores dentro das caixas estão na faixa prevista por Matthews, contudo sabemos que o grupo espacial é ortorrômbico com centragem I, o que significa que temos 16 unidades assimétricas, assim teremos um número de moléculas múltiplo de 16, ou seja, 16, 32,, sendo o valor mais provável 32. Assim temos: V protein = 1,23/V M = 0,4489 e V solvent = 0,5511 Z V M (Å 3 /Da) 1 87, , , , , , ,83 44

45 Material Adicional (Artigo Indicado) Artigo indicado Segue um artigo de revisão sobre cristalografia de proteínas: Canduri F, de Azevedo WF. Protein crystallography in drug discovery. Curr Drug Targets. 2008; 9(12):

46 Referências Canduri F, de Azevedo WF. Protein crystallography in drug discovery. Curr Drug Targets. 2008; 9(12): Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LA, Nascimento KS, Sampaio AH, Moreno FB, Rustiguel JK, Canduri F, de Azevedo WF Jr, Debray H. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 1(62): Dias MV, Ely F, Canduri F, Pereira JH, Frazzon J, Basso LA, Palma MS, de Azevedo WF Jr, Santos DS. Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 11): Drenth, J. (1994). Principles of Protein X-ray Crystallography. New York: Springer-Verlag. Moreno FBMB, Delatorre P, Freitas BT, Rocha BAM, Souza EP, Facó F, Canduri F, Cardoso ALH, Freire VN, Lima Filho JL, Sampaio AH, Calvete JJ, De Azevedo Jr. WF, Cavada BS. Crystallization and preliminary X-ray diffraction analysis of the lectin from Canavalia gladiata seed. Acta Cryst. 2004; D60: Moreno FBMB, Martil DE, Cavada BS, de Azevedo Jr. WF. Crystallization and preliminary X-ray diffraction analysis of an anti-h(o) lectin from Lotus tetragonolobus seeds. Acta Cryst. 2006; F62: Rhodes, G. (2000). Crystallography Made Crystal Clear. 2 nd ed.san Diego: Academic Press. Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination. A Practical Guide. 2nd ed. New York: John Wiley & Sons. Vivan AL, Dias MVB, Schneider CZ, de Azevedo Jr. WF, Basso LA, Santos DS. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; F62: Última atualização em: 12 de abril de

47 Trabalho Calcule o volume de Matthews (V M ), a fração de volume ocupada por proteína (V protein ), a fração de volume de solvente no cristal (V solvent ) e o número de moléculas de proteína na cela unitária para os cristais descritos nos seguintes artigos: 1) Moreno FBMB, Martil DE, Cavada BS, de Azevedo Jr. WF. Crystallization and preliminary X-ray diffraction analysis of an anti-h(o) lectin from Lotus tetragonolobus seeds. Acta Cryst. 2006; F62: ) Moreno FBMB, Delatorre P, Freitas BT, Rocha BAM, Souza EP, Facó F, Canduri F, Cardoso ALH, Freire VN, Lima Filho JL, Sampaio AH, Calvete JJ, De Azevedo Jr. WF, Cavada BS. Crystallization and preliminary X-ray diffraction analysis of the lectin from Canavalia gladiata seed. Acta Cryst. 2004; D60: Indique o desenvolvimento do cálculo, como mostrado na aula de hoje, onde é calculado o V M para diversos valores de Z e selecionado aquele que se encontra dentro da faixa esperada de V M de 1,7 a 3,5 Å 3 /Da. Data da entrega: 23 de abril de

Biologia Estrutural. Técnicas de Cristalização de Macromoléculas Biológicas. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.

Biologia Estrutural. Técnicas de Cristalização de Macromoléculas Biológicas. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com. Biologia Estrutural Técnicas de Cristalização de Macromoléculas Biológicas Prof. Dr. Walter Filgueira de Azevedo Jr. Diagrama de Fases Para cristalizarmos uma macromolécula biológica é necessário trazê-la

Leia mais

Biofísica. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr.

Biofísica. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr. 2019 Dr. Walter F. de Azevedo Jr. Biofísica Métodos Experimentais em Biofísica - Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. 1 Cristalografia de Proteínas Etapas para resolução da estrutura

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Bioquímica. Prof. Dr. Walter F. de Azevedo Jr.

2018 Dr. Walter F. de Azevedo Jr. Bioquímica. Prof. Dr. Walter F. de Azevedo Jr. 2018 Dr. Walter F. de Azevedo Jr. Bioquímica Prof. Dr. Walter F. de Azevedo Jr. 1 Cristalografia de Proteínas Etapas para resolução da estrutura 3D de macromoléculas biológicas por cristalografia 1. Cristalização.

Leia mais

Biofísica Molecular. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr.

Biofísica Molecular. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr. Biofísica Molecular Métodos Experimentais em Biofísica - Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. 1 2017 Dr. Walter F. de Azevedo Jr. Biofísica e sua Relação com Outras Disciplinas

Leia mais

Bioinformática Estrutural

Bioinformática Estrutural Bioinformática Estrutural Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. Bioinformática Estrutural Resumo Diagramas de fases Salting-in e Salting-out Montagem de Gotas de Cristalização

Leia mais

Cristalização de Macromoléculas Biológicas

Cristalização de Macromoléculas Biológicas Cristalização de Macromoléculas Biológicas Laboratório de Sistemas Biomoleculares Departamento de Física IBILCE-UNESP Aspectos Gerais A cristalografia de raios X revela as posições tridimensionais da maioria

Leia mais

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Espaço Recíproco e a Esfera de Ewald Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Índices de Miller Índices de Direções Espaço Recíproco Esfera de Ewald Esfera Limite Número de

Leia mais

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo da Densidade Eletrônica Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Cálculo da densidade eletrônica Densidade eletrônica de um cristal unidimensional Densidade

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo dos Fatores de Estrutura Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Extinção Sistemática para Cela Unitária de Face Centrada (F) Fator de Estrutura na Forma Complexa Cálculo

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier

2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier 208 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 00000000000000000000000000 0000000000000000000 000000000000000 000000000000000 000000000000000000

Leia mais

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Solução do Problema da Fase Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Problema da fase Função de Patterson Aplicação da função de Patterson Método da Substituição

Leia mais

CRISTALOGRAFIA DE PROTEÍNAS Crescimento de cristais

CRISTALOGRAFIA DE PROTEÍNAS Crescimento de cristais Crescimento de cristais Referências: Crystallization of Nucleic Acids and Proteins. A Practical Approach. Second Edition. Edited by A.Ducruix e R.Giegé.Oxford University Press. 1999. Protein Crystallization:

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Problema da Fase

2018 Dr. Walter F. de Azevedo Jr. Problema da Fase 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Ondas e Lei de Bragg Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fenômenos Ondulatórios Pulso de Ondas Ondas Onda Eletromagnética Radiação Eletromagnética Interferência Representação

Leia mais

2018 Dr. Walter F. de Azevedo Jr.

2018 Dr. Walter F. de Azevedo Jr. 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Estrutura de proteínas

Estrutura de proteínas Estrutura de proteínas Prof. Dr. Walter F. de Azevedo Jr. Laboratório de Sistemas BioMoleculares. Departamento de Física. UNESP São José do Rio Preto. SP. Resumo Classificação de proteínas SCOP Exemplos

Leia mais

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Fatores de Estrutura Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fator de Espalhamento Atômico Fator de Estrutura Cálculo Computacional do Fator de Estrutura Arquivos PDB Fator

Leia mais

Biofísica. Métodos Experimentais em Biofísica - Espectrometria de Massas - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr.

Biofísica. Métodos Experimentais em Biofísica - Espectrometria de Massas - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr. 2015 Dr. Walter F. de Azevedo Jr. Biofísica Métodos Experimentais em Biofísica - Espectrometria de Massas - Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. 1 Espectrometria de Massas (Fundamentos)

Leia mais

2015 Dr. Walter F. de Azevedo Jr.

2015 Dr. Walter F. de Azevedo Jr. 015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

proteína purificada Proteínas: da extração à estrutura 3D Bioinformática I Passos necessários para estrutura 3D Julio Zukerman Schpector

proteína purificada Proteínas: da extração à estrutura 3D Bioinformática I Passos necessários para estrutura 3D Julio Zukerman Schpector 1BIT 768 BIOINFORMÁTICA IIgnez Caracelli & Julio Zukerman Proteínas: da extração à estrutura 3D Ignez Caracelli BioMat DF Bioinformática I Julio Zukerman Schpector LaCrEMM DQ UFSCar Passos necessários

Leia mais

Passos na análise de cristais de proteínas por difração de raios-x. Cristalização de Proteinas

Passos na análise de cristais de proteínas por difração de raios-x. Cristalização de Proteinas Passos na análise de cristais de proteínas por difração de raios-x Cristalização de Proteinas Glaucius Oliva Instituto de Física de São Carlos - USP Centro de Biotecnologia Molecular Estrutural - CEPID/FAPESP

Leia mais

Aula 8 Proteínas: da extração à estrutura 3D

Aula 8 Proteínas: da extração à estrutura 3D Introdução a Bioquímica: Biomoléculas Passos necessários para estrutura 3D proteína purificada Aula 8 Proteínas: da extração à estrutura 3D Ignez Caracelli BioMat DF UNESP/Bauru Julio Zukerman Schpector

Leia mais

BOTUCATU, SP - RUBIÃO JUNIOR Fone (0xx14) fax

BOTUCATU, SP - RUBIÃO JUNIOR Fone (0xx14) fax Universidade Estadual Paulista Instituto de Biociências Seção de Pós-Graduação BOTUCATU, SP - RUBIÃO JUNIOR - 18618-000 - Fone (0xx14) 68026148 - fax 68023744 e-mail:posgraduacao@ibb.unesp.br Curso de

Leia mais

2018 Dr. Walter F. de Azevedo Jr.

2018 Dr. Walter F. de Azevedo Jr. 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Determinação da Estrutura de Proteínas

Determinação da Estrutura de Proteínas Centro Brasileiro-Argentino de Biotecnologia Introdução à Biologia Computacional Determinação da Estrutura de Proteínas Paulo enrique C. Godoi Bioinformática objetivo principal é determinar a função de

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X

2018 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Cristalografia para não-cristalógrafos

Cristalografia para não-cristalógrafos Cristalografia para não-cristalógrafos Interpretando a Estrutura Cristalina dos Materiais MC-7 01, 02 e 03 de Agosto de 2018 (14:00-16:00h) Leonardo H. R. Dos Santos Departamento de Química UFMG leonardohrs@ufmg.br

Leia mais

Métodos de determinação da estrutura. de macromoléculas

Métodos de determinação da estrutura. de macromoléculas Métodos de determinação da estrutura de macromoléculas Cristalografia de raios X Purificação da proteína Obtenção de cristais de proteína Recolha de dados Determinação das fases Refinamento da estrutura

Leia mais

Cristalografia 2. Laboratório de Sistemas BioMoleculares. Departamento de Física. Câmpus Rio Preto.

Cristalografia 2. Laboratório de Sistemas BioMoleculares. Departamento de Física. Câmpus Rio Preto. Cristalografia 2 Prof. Dr. Walter F. de Azevedo Jr. Laboratório de Sistemas BioMoleculares. Departamento de Física. UNESP São José do Rio Preto. SP. Apresentação 1) Biocristalografia 2) Coleta de dados

Leia mais

2015 Dr. Walter F. de Azevedo Jr. azevedolab.net. Qualidade de Modelos Estruturais de Proteínas

2015 Dr. Walter F. de Azevedo Jr. azevedolab.net. Qualidade de Modelos Estruturais de Proteínas 05 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 00000000000000000000000000000000000000 00000000000000000000000000000 0000000000000000000000000000000

Leia mais

Biologia Estrutural. Qualidade de modelos estruturais Prof. Dr. Walter F. de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Qualidade de modelos estruturais Prof. Dr. Walter F. de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Qualidade de modelos estruturais Prof. Dr. Walter F. de Azevedo Jr. Biologia Estrutural Resumo SCOP Modelagem molecular SCOP A primeira versão do SCOP foi liberada em 29 de outubro

Leia mais

Purificação de Proteínas

Purificação de Proteínas Purificação de Proteínas Propriedades usadas na purificação de proteínas através de cromatografia líquida Na separação a amostra contendo a mistura de proteínas é preparada em solução aquosa, a solução

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Purificação de Proteínas

Purificação de Proteínas Purificação de Proteínas Recuperação da atividade enzimática Etapa de purificação 100 mu 80 mu 2ml de lisado contendo 50 mu/ml 10ml de material contendo 8 mu/ml Recuperação = 80% = 80 mu/100 mu Recuperação:

Leia mais

Purificação de Proteínas

Purificação de Proteínas Purificação de Proteínas Recuperação da atividade enzimática Etapa de purificação 100 mu 80 mu 2ml de lisado contendo 50 mu/ml 10ml de lisado contendo 8 mu/ml Recuperação = 80% = 80 mu/100 mu Recuperação:

Leia mais

PURIFICAÇÃO PARCIAL DOS ANTICORPOS PRESENTES NO SORO NORMAL ATRAVÉS DA PRECIPITAÇÃO DA FRAÇÃO GAMA- GLOBULINA COM SULFATO AMÔNIO

PURIFICAÇÃO PARCIAL DOS ANTICORPOS PRESENTES NO SORO NORMAL ATRAVÉS DA PRECIPITAÇÃO DA FRAÇÃO GAMA- GLOBULINA COM SULFATO AMÔNIO PURIFICAÇÃO PARCIAL DOS ANTICORPOS PRESENTES NO SORO NORMAL ATRAVÉS DA PRECIPITAÇÃO DA FRAÇÃO GAMA- GLOBULINA COM SULFATO AMÔNIO Priscila Diniz Lopes Doutoranda em MV, área de concentração Patologia Animal

Leia mais

Fotografia de vários cristais de fluorita CaF 2 3-0

Fotografia de vários cristais de fluorita CaF 2 3-0 Arranjos Atômicos Fotografia de vários cristais de fluorita CaF 2 3-0 Conceito de Cristalinidade Cristalinidade corresponde a forma de organização da estrutura em um modelo ordenado e repetitivo de longo

Leia mais

Visualização de Hélices

Visualização de Hélices Grupo: Curso: Turma: Data: Visualização de Hélices Objetivos Visualizar a estrutura tridimensional de hélices presentes na estrutura de proteínas e peptídeos, usandose recursos computacionais. Analisar

Leia mais

EQUILÍBRIO SÓLIDO-LÍQUIDO NA PRECIPITAÇÃO DE LISOZIMA COM SAIS BIODEGRADÁVEIS

EQUILÍBRIO SÓLIDO-LÍQUIDO NA PRECIPITAÇÃO DE LISOZIMA COM SAIS BIODEGRADÁVEIS EQUILÍBRIO SÓLIDO-LÍQUIDO NA PRECIPITAÇÃO DE LISOZIMA COM SAIS BIODEGRADÁVEIS J. S. LÓPEZ VÉLEZ 1, P. A. PESSOA FILHO 2 1,2 Universidade de São Paulo / Escola Politécnica / Departamento de Engenharia Química

Leia mais

DIFRAÇÃO DE RAIOS X BIOLOGIA ESTRUTURAL Aula 8 Prof. Dr. Valmir Fadel

DIFRAÇÃO DE RAIOS X BIOLOGIA ESTRUTURAL Aula 8 Prof. Dr. Valmir Fadel Raios X são radiações eletromagnética com energias na faixa de 100 ev - 100 kev. Para aplicações em difração, são usados os raios X de comprimento de ondas curtos (hard x-rays) na faixa de poucos angstroms

Leia mais

Abordagens experimentais para caracterização, fracionamento, purificação, identificação e quantificação de Proteínas.

Abordagens experimentais para caracterização, fracionamento, purificação, identificação e quantificação de Proteínas. Abordagens experimentais para caracterização, fracionamento, purificação, identificação e quantificação de Proteínas Rafael Mesquita Estabilidade das proteínas A estabilidade das proteínas pode ser afetada

Leia mais

Aula 2: Purificação de Proteínas (revisão) e Determinação de Estruturas (difração de raio-x)

Aula 2: Purificação de Proteínas (revisão) e Determinação de Estruturas (difração de raio-x) Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal Universidade Estadual Paulista Júlio de Mesquita Filho Disciplina de Engenharia de Proteínas Curso de Ciências Biológicas 2º Semestre de 2018

Leia mais

Parte 1. Diagrama de fases ternário

Parte 1. Diagrama de fases ternário Parte 1. Diagrama de fases ternário Três componentes : água, citrato e poli(etileno glicol) 400 g/mol Observar passagem de sistema homogêneo para turvo cloud-point ou ponto de névoa em função da variação

Leia mais

Lista de Exercícios 8 Resolução pelo Monitor: Rodrigo Papai de Souza

Lista de Exercícios 8 Resolução pelo Monitor: Rodrigo Papai de Souza Lista de Exercícios 8 Resolução pelo Monitor: Rodrigo Papai de Souza 1) What is the ph of the buffer solution that contains 2,2 g of NH 4 Cl in 250 ml of 0,12M NH 3? Is the final ph lower or higher than

Leia mais

Campus de Botucatu PLANO DE ENSINO

Campus de Botucatu PLANO DE ENSINO PLANO DE ENSINO I - IDENTIFICAÇÃO CURSO: Física Médica MODALIDADE: Bacharelado DISCIPLINA: Biofísica Molecular (X) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: Física e Biofísica DOCENTE RESPONSÁVEL: Prof. Dr.

Leia mais

Aula 2: Purificação de Proteínas (revisão) e Determinação de Estruturas (difração de raio-x)

Aula 2: Purificação de Proteínas (revisão) e Determinação de Estruturas (difração de raio-x) Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal Universidade Estadual Paulista Júlio de Mesquita Filho Disciplina de Engenharia de Proteínas Curso de Ciências Biológicas 2º Semestre de 2016

Leia mais

Torneio Virtual de Química 2016

Torneio Virtual de Química 2016 Torneio Virtual de Química 2016 2ª Fase 4 Conjunto Início: 8/10 Término: 15/10 LEIA ATENTAMENTE ÀS INSTRUÇÕES ABAIXO: 01) Esta prova contém 2 questões, apenas uma deve ser escolhida e respondida; 02) As

Leia mais

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de 2014 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é

Leia mais

O processo de dissolução

O processo de dissolução SOLUBILIDADE Sabemos que um soluto altera as propriedades do solvente. Solução sólida: silício dopado com fósforo eletrônica. indústria Sal sobre o gelo abaixa o ponto e congelamento se a temperatura é

Leia mais

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014 ESTRUTURA DOS SÓLIDOS

Leia mais

EXAME DE CAPACIDADE PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

EXAME DE CAPACIDADE PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA EXAME DE CAPACIDADE PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA PRIMEIRO SEMESTRE, 2015 NOME COMPLETO INSTRUÇÕES Escreva seu nome de forma legível no espaço acima. É expressamente proibido assinar ou fazer qualquer

Leia mais

3 N(4) metil tiossemicarbazonas derivadas de 4- nitrobenzaldeído e 4-nitroacetofenona: estudos estruturais

3 N(4) metil tiossemicarbazonas derivadas de 4- nitrobenzaldeído e 4-nitroacetofenona: estudos estruturais 45 3 N(4) metil tiossemicarbazonas derivadas de 4- nitrobenzaldeído e 4-nitroacetofenona: estudos estruturais Nesse capítulo relatamos o estudo estrutural de N(4)-metil tiossemicarbazonas derivadas de

Leia mais

A STUDY OF THE INFLUENCE OF THE SOLVENTS WATER AND ETHANOL ON THE GEOMETRICAL PROPERTIES OF A PYRIDINE DERIVATIVES

A STUDY OF THE INFLUENCE OF THE SOLVENTS WATER AND ETHANOL ON THE GEOMETRICAL PROPERTIES OF A PYRIDINE DERIVATIVES 2188 UM ESTUDO DA INFLUÊNCIA DOS SOLVENTES ÁGUA E ETANOL NAS PROPRIEDADES GEOMÉTRICAS DE UM DERIVADO DE PIRIDINA Ismael Rufino de Carvalho 1 Resumo: Em busca de uma melhor compreensão das estruturas moleculares,

Leia mais

ARRANJOS ATÔMICOS. Química Aplicada. Profº Vitor de Almeida Silva

ARRANJOS ATÔMICOS. Química Aplicada. Profº Vitor de Almeida Silva ARRANJOS ATÔMICOS Química Aplicada Profº Vitor de Almeida Silva 1. Arranjo Periódico de Átomos SÓLIDO: Constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido;

Leia mais

Exercício 1. Calcule a concentração dos reagentes listados abaixo em mol L -1 Tabela 1. Propriedades de ácidos inorgânicos e hidróxido de amônio.

Exercício 1. Calcule a concentração dos reagentes listados abaixo em mol L -1 Tabela 1. Propriedades de ácidos inorgânicos e hidróxido de amônio. ATIVIDADE 2 - CÁLCULO DE CONCENTRAÇÃO Exercício 1. Calcule a concentração dos reagentes listados abaixo em mol L -1 Tabela 1. Propriedades de ácidos inorgânicos e hidróxido de amônio. Exercício 2. Calcule

Leia mais

Ligações químicas e estrutura dos materiais

Ligações químicas e estrutura dos materiais Disciplina : - MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica Aula 02 Revisão de alguns conceitos fundamentais da Ciência dos Materiais Ligações químicas e estrutura dos materiais Conceitos

Leia mais

Professor: Fábio Silva SOLUÇÕES

Professor: Fábio Silva SOLUÇÕES Professor: Fábio Silva SOLUÇÕES Solvente: Substância que apresenta o mesmo estado de agregação da solução; Substância encontrada em maior quantidade. SOLUÇÃO É uma mistura homogênea de dois ou mais componentes.

Leia mais

QUESTÕES DISSERTATIVAS - GABARITO RESOLVIDO

QUESTÕES DISSERTATIVAS - GABARITO RESOLVIDO Química Avaliação Bimestral 1 o ano Vivian março/ 2011 Nome: Turma: QUESTÕES DISSERTATIVAS - GABARITO RESOLVIDO Substância T. F. (ºC) T.E. (ºC) Densidade a 20ºC (g/cm 3 ) Solubilidade (g/100 g de água)

Leia mais

RECRISTALIZAÇÃO. Princípio: Dissolver a substância em um solvente a quente e deixar a solução esfriar lentamente. Cristalização versus Precipitação

RECRISTALIZAÇÃO. Princípio: Dissolver a substância em um solvente a quente e deixar a solução esfriar lentamente. Cristalização versus Precipitação RECRISTALIZAÇÃO Método de purificação de substâncias sólidas Princípio: Dissolver a substância em um solvente a quente e deixar a solução esfriar lentamente. Cristalização versus Precipitação lento / seletivo

Leia mais

O equilíbrio de solubilidade do HgS é representado pela equação abaixo.

O equilíbrio de solubilidade do HgS é representado pela equação abaixo. 01. O equilíbrio de solubilidade do HgS é representado pela equação abaixo. HgS (s) Hg 2+ (aq) + S 2 (aq) No equilíbrio têm-se [Hg 2+ ] = [S 2 ] = 1 x 10 26 mol/l. A constante de solubilidade (Kps) deste

Leia mais

ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol

ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol ESTRUTURA DOS SÓLIDOS CRISTALINOS Mestranda: Marindia Decol Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,

Leia mais

A Dualidade Onda-Partícula

A Dualidade Onda-Partícula A Dualidade Onda-Partícula O fato de que as ondas têm propriedades de partículas e viceversa se chama Dualidade Onda-Partícula. Todos os objetos (macroscópicos também!) são onda e partícula ao mesmo tempo.

Leia mais

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA TP064 - CIÊNCIA DOS MATERIAIS PARA EP FABIANO OSCAR DROZDA fabiano.drozda@ufpr.br 1 AULA 03 ESTRUTURA DOS SÓLIDOS CRISTALINOS 2 BREVE REVISÃO AULA PASSADA LIGAÇÕES QUÍMICAS Ligações primárias ou fortes

Leia mais

Proposta para a disciplina de QFL2453-Físico-Química Experimental

Proposta para a disciplina de QFL2453-Físico-Química Experimental Proposta para a disciplina de QFL2453-Físico-Química Experimental Kelly Suely Galhardo Experimento 3 Diagrama de fase ternário Objetivo: Determinar o diagrama de fase ternário para o poli(etileno glicol)

Leia mais

Supporting Information

Supporting Information Supporting Information Copper(I)-phosphine polypyridyl complexes: Synthesis, characterization, DA / HSA binding study and antiproliferative activity Wilmer Villarreal a, Legna Colina-Vegas a, Gonzalo Visbal

Leia mais

Revisão Específicas. Química Monitores: Luciana Lima e Rafael França 02-08/11/2015. Material de Apoio para Monitoria

Revisão Específicas. Química Monitores: Luciana Lima e Rafael França 02-08/11/2015. Material de Apoio para Monitoria Revisão Específicas 1. As conchas marinhas não se dissolvem apreciavelmente na água do mar, por serem compostas, na sua maioria, de carbonato de cálcio, um sal insolúvel cujo produto de solubilidade é

Leia mais

Dois exercícios desta lista entrarão na primeira prova teórica

Dois exercícios desta lista entrarão na primeira prova teórica Dois exercícios desta lista entrarão na primeira prova teórica 01. Quais são os três estados físicos da matéria? Quais as diferenças entre eles do ponto de vista de movimentação de moléculas e interações

Leia mais

Forças intermoleculares

Forças intermoleculares Forças intermoleculares Ligação de hidrogênio Forças intermoleculares Ligação de hidrogênio Forças intermoleculares Ligação de hidrogênio As ligações de hidrogênio são responsáveis pela: Flutuação do gelo

Leia mais

Campo Elétrico [N/C] Campo produzido por uma carga pontual

Campo Elétrico [N/C] Campo produzido por uma carga pontual Campo Elétrico Ao tentar explicar, ou entender, a interação elétrica entre duas cargas elétricas, que se manifesta através da força elétrica de atração ou repulsão, foi criado o conceito de campo elétrico,

Leia mais

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular

ORDEM. Periocidade. SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico de átomos, moléculas ou iões, formando uma estrutura cristalina regular Capítulo I ESTRUTURA CRISTALINA DE SÓLIDOS ORDEM curto alcance médio alcance longo alcance Periocidade unidimensional bidimensional tridimensional SÓLIDO CRISTALINO OU CRISTAL agregado ordenado e periódico

Leia mais

EXERCÍCIOS DE ELETROQUÍMICA

EXERCÍCIOS DE ELETROQUÍMICA Aula EXERCÍCIOS DE ELETROQUÍMICA META Apresentar os conceitos relacionados a misturas de substâncias simples através da resolução de exercícios comentados. OBJETIVOS Ao nal desta aula, o aluno deverá:

Leia mais

MODELAGEM PARA IDENTIFICAÇÃO DE PARÂMETROS DE FASE ATRAVÉS DA TÉCNICA DE DIFRAÇÃO DE RAIO X.

MODELAGEM PARA IDENTIFICAÇÃO DE PARÂMETROS DE FASE ATRAVÉS DA TÉCNICA DE DIFRAÇÃO DE RAIO X. MODELAGEM PARA IDENTIFICAÇÃO DE PARÂMETROS DE FASE ATRAVÉS DA TÉCNICA DE DIFRAÇÃO DE RAIO X. J. L. Andrade¹; F. L. Alves; J. R. Gomes; C. J. L. Sousa Universidade Federal do Ceará/Campus Russas - Rua Felipe

Leia mais

LISTA DE EXERCÍCIOS 6 1 (UNIDADE III INTRODUÇÃO À CIÊNCIA DOS MATERIAIS)

LISTA DE EXERCÍCIOS 6 1 (UNIDADE III INTRODUÇÃO À CIÊNCIA DOS MATERIAIS) UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO DE ENGENHARIAS DEPARTAMENTO DE ENGENHARIA E TECNOLOGIA DISCIPLINA: QUÍMICA APLICADA À ENGENHARIA PROFESSOR: FREDERICO RIBEIRO DO CARMO Estrutura cristalina

Leia mais

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS Profa. Renata Diniz renata.diniz@ufjf.edu.br Departamento de Química ICE Universidade Federal de Juiz de Fora I - Difração de Raios X Radiação X Fenômeno de Difração

Leia mais

QUÍMICA A Ciênca Central 9ª Edição

QUÍMICA A Ciênca Central 9ª Edição QUÍMICA A Ciênca Central 9ª Edição Capítulo 2 átomos, moléculas e íons David P. White Teoria atômica da matéria John Dalton (1803 1807): Cada elemento é composto de átomos. Todos os átomos de um elemento

Leia mais

ESTADO SÓLIDO. paginapessoal.utfpr.edu.br/lorainejacobs. Profª. Loraine Jacobs

ESTADO SÓLIDO. paginapessoal.utfpr.edu.br/lorainejacobs. Profª. Loraine Jacobs ESTADO SÓLIDO lorainejacobs@utfpr.edu.br paginapessoal.utfpr.edu.br/lorainejacobs Profª. Loraine Jacobs Estado Sólido Tradicionalmente, um sólido é definido como uma substância que mantém um volume e uma

Leia mais

Determinação da sequência de proteínas

Determinação da sequência de proteínas Determinação da sequência de proteínas Em 1953 Frederick Sanger sequenciou as duas cadeias da insulina. Os resultados de Sanger estabeleceram que todas as moleculas de uma determinada proteína têm a mesma

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X

2015 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Classificação Solução Colóide Suspensão Exemplo: açúcar na água, sal de cozinha na água, álcool hidratado.

Classificação Solução Colóide Suspensão Exemplo: açúcar na água, sal de cozinha na água, álcool hidratado. Química - Unidade 5 de 12: GOVERNO DO ESTADO DE MATO GROSSO DO SUL Conteúdo 10: Dispersões (definição,classificação, e características) Habilidade e competência: Identificar a diferença entre dispersões,

Leia mais

AULA 10 EQUILÍBRIO DE SOLUBILIDADE

AULA 10 EQUILÍBRIO DE SOLUBILIDADE Fundamentos de Química Analítica (009) AULA 10 EQUILÍBRIO DE SOLUBILIDADE OBJETIVOS Definir solubilidade do soluto. Definir solução saturada, não saturada e supersaturada. Conhecer as regras de solubilidade.

Leia mais

QUÍMICA PRIMEIRA ETAPA

QUÍMICA PRIMEIRA ETAPA QUÍMICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Um limão foi espremido num copo contendo água e as sementes ficaram no fundo do recipiente. A seguir, foi adicionado ao sistema um pouco de açúcar, que se dissolveu

Leia mais

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de 2015 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é

Leia mais

Estrutura de cristais iônicos. Regras de Pauling

Estrutura de cristais iônicos. Regras de Pauling Estrutura de cristais iônicos Regras de Pauling Estabilidade energética Por que os íons preferem ficar juntos, formando um cristal, do que moléculas isoladas? formar A Constante de Madelung é uma definição

Leia mais

Métodos de Purificação de Proteínas Nativas

Métodos de Purificação de Proteínas Nativas Métodos de Purificação de Proteínas Nativas Disciplina: Métodos de Análise e Purificação de Proteínas Prof. Dr. Marcos Túlio de Oliveira Créditos a Ms. Flávia Campos Freitas Vieira e Prof. Pisauro. Métodos

Leia mais

Materiais Problemas. José Carlos Pereira Tel Sala 5-1.5A (5º Piso Torre Química) Lisboa, 2019

Materiais Problemas. José Carlos Pereira Tel Sala 5-1.5A (5º Piso Torre Química) Lisboa, 2019 Materiais Problemas José Carlos Pereira Carlos.pereira@ist.utl.pt Tel. 3938 Sala 5-1.5A (5º Piso Torre Química) Lisboa, 2019 Problema 1 Determine o factor de compacidade V o /V t para as estruturas cs,

Leia mais

O diagrama abaixo relaciona a solubilidade de dois sais A e B com a temperatura.

O diagrama abaixo relaciona a solubilidade de dois sais A e B com a temperatura. 13 PRVA D E Q U Í M I C A Q U E S T Ã 21 diagrama abaixo relaciona a solubilidade de dois sais A e B com a temperatura. Com relação ao diagrama, é INCRRET afirmar que: a) a 100ºC, a solubilidade de B é

Leia mais

EXTRAÇÃO DE DNA DE SANGUE (LEUCÓCITOS)

EXTRAÇÃO DE DNA DE SANGUE (LEUCÓCITOS) EXTRAÇÃO DE DNA DE SANGUE (LEUCÓCITOS) A) Obtenção de Leucócitos 1. Coletar 5mL de sangue em tubos contendo EDTA potássio (50uL de EDTA (k 3) a 15%). O EDTA é uma substância anticoagulante. Existem outras

Leia mais

ESTRUTURA DOS SÓLIDOS

ESTRUTURA DOS SÓLIDOS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais ESTRUTURA DOS SÓLIDOS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de

Leia mais

SOLUÇÕES Folha 01 João Roberto Mazzei

SOLUÇÕES Folha 01 João Roberto Mazzei 01. (PUC SP 2009) O gráfico a seguir representa a curva de solubilidade do nitrato de potássio (KNO 3) em água. A 70 C, foram preparadas duas soluções, cada uma contendo 70 g de nitrato de potássio (KNO

Leia mais

PURIFICAÇÃO E CARACTERIZAÇÃO DE PROTEINASE EXTRACELULAR PRODUZIDA POR Candida krusei AP176.

PURIFICAÇÃO E CARACTERIZAÇÃO DE PROTEINASE EXTRACELULAR PRODUZIDA POR Candida krusei AP176. ALMIR ASSIS BRAGA PURIFICAÇÃO E CARACTERIZAÇÃO DE PROTEINASE EXTRACELULAR PRODUZIDA POR Candida krusei AP176. Tese apresentada ao Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade

Leia mais

1º Questão: Escreva a distribuição eletrônica dos elementos abaixo e determine o número de valência de cada elemento: a) Fe (26):.

1º Questão: Escreva a distribuição eletrônica dos elementos abaixo e determine o número de valência de cada elemento: a) Fe (26):. FOLHA DE EXERCÍCIOS CURSO: Otimizado ASS.: Exercícios de Conteúdo DISCIPLINA: Fundamentos de Química e Bioquímica NOME: TURMA: 1SAU 1º Questão: Escreva a distribuição eletrônica dos elementos abaixo e

Leia mais

Equilíbrio de solubilidade

Equilíbrio de solubilidade Equilíbrio de solubilidade Solubilidade É a quantidade máxima de soluto que se pode dissolver numa certa quantidade de solvente, a uma dada temperatura e pressão. Solubilidade se sais em água: Regra geral

Leia mais

Pró-Reitoria de Graduação. Plano de Ensino 3º Quadrimestre de da NHT4002- Nome da disciplina: Bioquímica Experimental

Pró-Reitoria de Graduação. Plano de Ensino 3º Quadrimestre de da NHT4002- Nome da disciplina: Bioquímica Experimental Código disciplina: Créditos I): Código turma: Caracterização da disciplina da NHT4002- Nome da disciplina: Bioquímica Experimental 13 (2-4 -6) Carga horas Aula prática: Câmpus: Santo andre horária: 72

Leia mais

EXPERIÊNCIA 5 SOLUBILIDADE

EXPERIÊNCIA 5 SOLUBILIDADE EXPERIÊNCIA 5 SOLUBILIDADE 1. OBJETIVOS No final desta experiência, espera-se que o aluno seja capaz de: Identificar algumas variáveis que afetam a solubilidade. Utilizar técnicas simples de extração,

Leia mais

Modelagem Computacional de Sistemas Coloidais

Modelagem Computacional de Sistemas Coloidais Universidade Federal do Rio de Janeiro Programa de Engenharia Química / COPPE Modelagem Computacional de Sistemas Coloidais Eduardo Rocha de Almeida Lima Evaristo Chalbaud Biscaia Jr. Frederico Wanderley

Leia mais

2ª SÉRIE roteiro 1 SOLUÇÕES

2ª SÉRIE roteiro 1 SOLUÇÕES 2ª SÉRIE roteiro 1 SOLUÇÕES 1.1) Os íons Íons são elementos químicos que possuem carga elétrica resultante, positiva ou negativa. O íon positivo é denominado cátion (Na +1, Ca +2...). O íon negativo é

Leia mais

1. Algumas Propriedades dos Líquidos

1. Algumas Propriedades dos Líquidos 1. Algumas Propriedades dos Líquidos 1.1 Viscosidade Alguns líquidos, como o melaço e o óleo de motor, fluem lentamente; enquanto que outros, como a água e a gasolina, fluem rapidamente. A resistência

Leia mais

QUI109 QUÍMICA GERAL (Ciências Biológicas) 7ª aula /

QUI109 QUÍMICA GERAL (Ciências Biológicas) 7ª aula / QUI109 QUÍMICA GERAL (Ciências Biológicas) 7ª aula / 2016-2 Prof. Mauricio X. Coutrim (disponível em: http://professor.ufop.br/mcoutrim) LIGAÇÃO QUÍMICA É A FORÇA QUE MANTÉM ÁTOMOS E/OU ÍONS UNIDOS NAS

Leia mais