Vimos que: 1) Interação coulombiana residual para os elétrons efeito perturbativo

Tamanho: px
Começar a partir da página:

Download "Vimos que: 1) Interação coulombiana residual para os elétrons efeito perturbativo"

Transcrição

1 Vmos que: Iteação couombaa esdua paa os eétos efeto petubatvo V ee No caso de eétos em uma subcamada, o sp tota pode se S0 sgeto ou S tpeto Um sstema costtuído de váos e - deve se descto po uma autofução tota at-smétca FORÇA DE TROCA. A teação couombaa esdua poduz uma tedêca a acopa os mometos aguaes obtas dos eétos otcamete atvos L L S S Uma vez cosdeada a teação couombaa domate, a teação sp óbta é cuída, mas é um efeto mas faco A teação sp-óbta poduz uma tedêca do mometo agua de sp se acopa com mometo agua obta A omecatua utzada este caso de J L + S teação de dos e - é acopameto LS FNC Físca Modea

2 Quado o acopameto V ee se toa mas faco um outo tpo de acopameto deve se usado, cohecdo po acopameto JJZ ato Teemos J L L + e S S paa cada eéto A omecatua utzada este caso de teação de dos e - é acopameto JJ O mometo agua tota do átomo é dado J J pea soma dvdua dos vetoes J Acopameto LS Resumo dos acopametos: Acopameto JJ FNC Físca Modea

3 L J s s 0 L + S Acopameto LS átomo com dos eétos otcamete atvos, o mesmo obta: Exempo Mg: s Z m 0 L S S obta d: 0, 0 s ½, s -½ 0 -, - +,..., + -, + 0 j0 Pau s 0 sgeto s+ s tpeto s+ ão pode excusão de Pau S 0 FNC Físca Modea

4 Execíco Paa o Caboo Z6 s s p m,0,- obta p:, s ½, s ½ -, - +,..., + -, + 0,, } j -s, -s +,...,+s-,+s s 0, s 0, j s, j váos Odem: º s, o do mao paa o meo 0 º j do meo paa mao s 0 s 0 sgeto s+ s tpeto s+ j0 S 0 j j P D s+ L j p s Tota de 0 mutpetos 0 j S FNC Físca Modea j j j0 j j j D D D P P P 0 4

5 FNC Físca Modea 5 Revsão Iteação Couombaa ete um eéto e o úceo de um átomo Átomo de hdogêo Coodeadas esfécas: ψ ψ,,ϕ e Ao apcamos a equação de Schödge temos:,,,,, φ φ φ φ φ φ µ Y ER Y VR Y se Y se se R Y R h, φ φ Φ Θ Y Os hamôcos esfécos são smutaeamete autofuções dos opeadoes L e L z : + + Θ Θ cte se m d d se d d se

6 . os autovaoes de. os autovaoes de L L z são guas a h +, sedo L ψ,, φ h + ψ,, φ L z um teo ão egatvo são guas a hm, sedo m um teo ta que : m ψ,, φ mhψ,, φ Isso mosta que os vaoes possíves de L e de L z são dscetos quatzados, evdecado a quatzação do mometo agua. Mosta também que essas gadezas podem se detemadas com ceteza 0. Apeas uma das obseváves L x, L y ou L z pode se detemada com ceteza ua e a escohda fo L z. A fgua mosta os vaoes do mometo agua paa o caso. FNC Físca Modea L h + L z m h 6

7 Quatzação da eega Assm, as souções estacoáas devem apeseta a segute estutua: R fuções adas e E autovaoes de eega 0 m 0 0 m 0 m,0, ψ ψ 00 ψ 00 m R 0 R Y 0 R 00 Y Y e 00 E t / h e m E t / h e E t / h estado ão degeeado } 4 estados degeeados A fução paa o estado estacoáo R 0 4 / a e a Y 00 4π ψ 00 FNC Físca Modea e π a E / a e Boh E t / h Boh µ 0 E Z E0 me 7

8 A soução da eq. de Sch. esuta em tês úmeos quâtcos: m úmeo quâtco pcpa mometo agua obta, assocada a R, Θ e ao móduo de L úmeo quâtco magétco, assocado a compoete z do mometo agua L As codções de cotoo equeem que:,,... 0,,,,..., m, +,...,0,,..., úmeos teos > 0 < m Estados degeeados: Qua é a degeeescêca do íve? O íve é degeeado a ausêca B poque todos os 9 estados tem a mesma eega, mas dfeetes úmeos quatcos 0 FNC Físca Modea m 0 -,0,+ -,-,0,. + 5 Tota9 8

9 Camada N, 6 estados Camada M, 9 estados Camada L, 4 estados Camada K, estado FNC Físca Modea 9

10 Efeto Zeema: O mometo magétco tem amptude: µ gµ b h L gµ b Lz mh µ z Lz gµ bm E µ B h V µ B V µ B g Bm M z M z µ b A quatdade V M epeseta a eega adcoa adquda peo átomo o estado Ψ m devdo à peseça do campo apcado. Essa eega depede do vao de m e da tesdade do campo. FNC Físca Modea 0

11 abetua Estados com dfeetes m têm suas degeeescêcas quebadas po causa da peseça do campo magétco. Estados com vaoes δem g µ B sucessvos de m apesetam eegas com dfeeças de: b O sa da vaação de eega é o mesmo de m, e os estados com m 0 ão são afetados pea peseça do campo. Cada um dos íves epesetados a fgua coespode a um estado de pecessão dfeete do átomo, com eega dada po: E + g µ bbm a peseça do campo B. Po essa azão, o úmeo quâtco azmuta, m, é também cohecdo como úmeo quâtco magétco. Queba da degeeescêca em m queba da smeta otacoa FNC Físca Modea

12 Lyma α A sepaação dos íves povocada peo efeto Zeema poduz mudaças a feqüêca da adação emtda peo átomo as tasções egas de seeção: ± e m 0 ou ±. Todas as tasções dcadas evovem apeas dfeetes eegas de fótos emtdos: E δe M ; E ; e E + δe M ode E epeseta a eega de tasção sem o campo apcado. Apaece etão um tpeto, com vaação de feqüêca dada po: δe h gµ B πh M b δ v eb 4πm e Resutado cássco! Bame α FNC Físca Modea

13 Em 90 já se saba que hava sepaação das has espectas sem a peseça de campos magétcos exteos estutua fa. Feômeo etão atbuído a pocessos teos ao átomo: caoço magétco úceo + eétos teos esposáve po poduz campo e teag com os eétos mas exteos. Este sstema de teação dos mometos magétcos teos e exteos fo poposto paa expca a estutua dos mutpcos a ausêca do campo, bem como as aomaas do feto Zeema a peseça de campos. Estas déas foam testadas em 9 po O. Ste e W. Geack Expemeto de Ste-Geack exama a dâmca do dpoo magétco em um campo magétco. Poposta: Med os vaoes possíves do mometo de dpoo magétco FNC Físca Modea

14 + machas machas mometo magétco obta obsevado O expemeto oga de Ste&Geach usou um fexe de átomos eutos de Ag, obtdos po evapoação em um foo. Depos de atavessaem o campo ees eam depostados em uma paca de vdo, ode as defexões podem se meddas. A magem de duas machas dsceto em vez de cotíuo cocodava com o que se espeava peo modeo do caoço magétco paa a Ag. Átomos de H paa os quas ão ea espeada defexão obteve-se os mesmos esutados duas machas. O caoço magétco ão poda expca esses esutados, pos, o H, o caoço é só o úceo, cujo mometo magétco é odes de gadeza meo que o do eéto. FNC Físca Modea 4

15 94: Pau sugee que as estutuas dos mutpetos e as aomaas o efeto Zeema podeam se expcadas se um ovo gau de bedade, foma, com vaoes, fosse assocado ao eéto. e foam obsevadas machas vaoes de m s. Como m s m s ± ½. Assm, o mometo agua de sp é dado: S z h s + h h ms ± e S h s Temos também o apaecmeto de um mometo de dpoo magétco devdo ao mometo agua de sp: g µ h s b µ s S e µ s g z sµ b com g s fato g do sp m 4 s e e FNC Físca Modea ceto 5

16 s/ e m s -/ e +/ Um estado estacoáo de um átomo mooeetôco é descto po um cojuto de 4 úmeos quâtcos: ou Sp paa cma s/ Sp paa baxo s-/ Iteação ete o mometo de dpoo magétco do sp eetôco e o campo magétco teo de um átomo de um eéto Iteação sp-óbta Iteação faca esposáve em pate pea estutua fa dos estados exctados dos átomos de e - o caso de mutos eétos esta teação é eatvamete fote L S Os vetoes quatzados e devem se adcoados em stuações em que mas tpos geas de estados queemos cosdea. Defmos o mometo agua tota do átomo, pea soma dos vetoes mometo agua obta e de sp: J L + S FNC Físca Modea 6

17 Podemos também usa a eega de Rydbeg: E obtemos: Que me dá o aagameto em fução de E 0 e pode se apcada paa 0 A dfeeça de eega ete estados com j + ½ ou com j - ½ é: FNC Físca Modea me dá abetua sp-óbta 7

18 Botzma físca cássca patícuas dêtcas dstguíves quado em estados de eega dfeetes; a peseça de uma patícua em um estado patcua, ão atea a pobabdade de outa patícua ocupa aquee estado. MQ patícuas dstguíves a peseça de uma patícua em um detemado estado fueca dastcamete o compotameto das outas. Fémos patícuas com sp sem-teo: se exstem fémos em um estado quâtco, a pobabdade de que um outo se jute a ees é eduzda po um fato do que sea a pobabdade se ão houvesse a exgêca de dstgubdade. Bósos patícuas com sp teo: se exstem bósos em um estado quâtco, a pobabdade de que um outo se jute a ees é aumetada po um fato + do que sea a pobabdade se ão houvesse a exgêca de dstgubdade. fémo e,,p,µ Atsmétca / bóso α,he,d,γ smétca 0, FNC Físca Modea 8

19 Vamos ve o caso de bósos. A autofução smétca dstgubdade é dada po: ψ, [ ] S ψ α ψ β + ψ β ψ α patícuas o mesmo estado basta faze α β gua a : ψ S P, [ ψ ψ + ψ ψ ] ψ ψ ψ ψ Potato a pobabdade de ecota as patícuas é: * * * S ψ Sψ S ψ S ψ ψ ψ ψ ψ ψ No caso de ão se exg a dstgubdade, temos: ψ, ψ α ψ Fazedo α β gua a ψ, ψ ψ β Potato, esse caso, a pobabdade de ecota as patícuas é: P * * * ψ ψ ψ ψ ψ ψ ψ ψ ψ P S P cássca. FNC Físca Modea 9

20 P S P cássca. A pobabdade de bósos seem ecotados o mesmo estado é duas vezes mao que o caso cássco No caso de bósos P S!P cássca. A pobabdade de bósos seem ecotados o mesmo estado é ses vezes mao que o caso cássco Caso ão exstsse efoço: se P é a pobabdade de se cooca bóso em estado, paa cooca bósos: P P. Mas exste o efoço. Nesse caso: bóso P P! P! paa + bósos, teemos: P + bóso bóso bóso + +! P + +! P P P + P P Assm, se já exstem bósos o estado, a pobabdade de eta mas sofe um efoço de + P. A peseça de um bóso em um estado quâtco aumeta a pobabdade e um bóso dêtco ocupa o mesmo estado é como se um bóso ataísse outos bóso paa o mesmo estado FNC Físca Modea 0

21 Vamos ve o caso de fémos. A autofução at-smétca dstgubdade é dada po: ψ A, ψ α ψ β ψ patícuas o mesmo estado basta faze α β gua a : ψ A, [ ψ ψ ψ ψ ] 0 Potato a pobabdade de ecota as patícuas é zeo: ψ [ ] * P ψ ψ ψ A A A A β α zeo A peseça de um fémo em um estado quâtco mpede que um fémo dêtco ocupe o mesmo estado é como se os fémos se epessem FNC Físca Modea

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

Sobre a classe de diferenciabilidade de quocientes de polinômios homogêneos.

Sobre a classe de diferenciabilidade de quocientes de polinômios homogêneos. Uvesdade Regoal do Ca - URCA CADERNO DE CULTURA E CIÊNCIA VOLUME Nº - 008 IN 980-586 obe a classe de dfeecabldade de quocetes de polômos homogêeos About the Dffeetablty Class of the Quotet of Homogeeous

Leia mais

PROPAGAÇÃO E RADIAÇÃO DE ONDAS ELECTROMAGNÉTICAS (PROE) CONCEITOS FUNDAMENTAIS

PROPAGAÇÃO E RADIAÇÃO DE ONDAS ELECTROMAGNÉTICAS (PROE) CONCEITOS FUNDAMENTAIS MC Ao Lectvo 6/7 º Semeste PROPAGAÇÃO RADIAÇÃO D ONDAS LCTROMAGNÉTICAS (PRO) CONCITOS FUNDAMNTAIS Custódo Pexeo Setembo 6 ste documeto fo cocebdo paa sev de gua as aulas teócas e apeas como tal deveá se

Leia mais

Os fundamentos da física Volume 2 1. Resumo do capítulo

Os fundamentos da física Volume 2 1. Resumo do capítulo Os fudametos da físca Volume 2 1 Capítulo 13 Refação lumosa A efação é o feômeo o qual a luz muda de meo de popagação, com mudaça em sua velocdade. ÍDICE DE REFRAÇÃO ABSOLUTO O ídce de efação absoluto

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fudametos da físa Udade E Capítulo efação lumosa esoluções dos eeíos popostos P.85 Como, temos: 8 0 0 8,5 P.86 De, em: 0 8,5 0 8 m/s P.87 elodade da luz a plaa de do oespode a 75% da elodade da luz

Leia mais

3 O Método de Partículas MPS

3 O Método de Partículas MPS O Método de Patículas MPS 9 3 O Método de Patículas MPS O método MPS fo apesetado calmete po Koshzuka e Oka (1996). Este método, de atueza Lagageaa, fo deseoldo paa esole escoametos de fludos compessíes

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

Capítulo 6 Corpo Rígido, Estática e Elasticidade

Capítulo 6 Corpo Rígido, Estática e Elasticidade Capítulo 6 Copo Rígdo, Estátca e Elastcdade 6. Noção de Copo Rígdo Estudamos já os movmetos de copos cujas dmesões eam despezáves face às meddas das suas tajectóas ou po coveêca e smplfcação, tomados como

Leia mais

A Base Termodinâmica da Pressão Osmótica

A Base Termodinâmica da Pressão Osmótica 59087 Bofísca II FFCLRP P Pof. Atôo Roque Aula 7 A Base emodâmca da Pessão Osmótca Elemetos de emodâmca As les báscas da temodâmca dzem espeto à covesão de eega de uma foma em outa e à tasfeêca de eega

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

Apêndice I Resultados do Capítulo 2

Apêndice I Resultados do Capítulo 2 Aêndce I Resutados do Caítuo I Aêndce I Resutados do Caítuo Demonstação dos esutados dos modeos de De Acca et a e do modeo de See estenddo AI Modeo de De Acca et a A equação do modeo exessa o sead aa um

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i

i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i GEDO ELÉTIO "Levao-se em cota a esstêca tea o geao, pecebemos que a p ete os temas é meo o que a foça eletomotz (fem), evo à pea e p a esstêca tea." - + = -. OENTE DE TO-IITO Se lgamos os os temas e um

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

APLICAÇÃO DE TÉCNICAS PROBABILÍSTICAS ÀS TARIFAS DE USO DO SISTEMA DE TRANSMISSÃO. Djalma M. Falcão COPPE/UFRJ

APLICAÇÃO DE TÉCNICAS PROBABILÍSTICAS ÀS TARIFAS DE USO DO SISTEMA DE TRANSMISSÃO. Djalma M. Falcão COPPE/UFRJ GPL/026 2 a 26 de Outubo de 200 Campas - São Paulo - Basl GRUPO VII PLANEJAMENTO DE SISTEMAS ELÉTRICOS APLICAÇÃO DE TÉCNICAS PROBABILÍSTICAS ÀS TARIFAS DE USO DO SISTEMA DE TRANSMISSÃO Yu S.B. Wllmesdof

Leia mais

EQUAÇÕES DINÂMICAS DE MOVIMENTO PARA CORPOS RÍGIDOS UTILIZANDO REFERENCIAL MÓVEL

EQUAÇÕES DINÂMICAS DE MOVIMENTO PARA CORPOS RÍGIDOS UTILIZANDO REFERENCIAL MÓVEL NTAS DE AULA EQUAÇÕES DINÂICAS DE IENT PARA CRPS RÍIDS UTILIZAND REFERENCIAL ÓEL RBERT SPINLA BARBSA RSB PLI USP LDS TIAÇÃ Paa a obtenção das equações dnâmcas de um copo ígdo pode se convenente epessa

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15 MATEMÁTICA Sejam a i, a + si e a + ( s) + ( + s) i ( > ) temos de uma seqüêcia. Detemie, em fução de, os valoes de e s que toam esta seqüêcia uma pogessão aitmética, sabedo que e s são úmeos eais e i -.

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca ndade Capítulo 9 Geadoes elétcos esoluções dos execícos popostos 1 P.19 Dados: 4 ; 1 Ω; 0 a) 0 4 1 4 b) Pot g Pot g 4 4 Pot g 96 W Pot º Pot º 0 4 Pot º 80 W Pot d Pot g Pot º Pot d 96 80 Pot

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

5 Aplicação do GFMM no BEM

5 Aplicação do GFMM no BEM 38 5 Apação do GFMM o BEM esse apítuo os desevovmetos apresetados o apítuo 4 são apados ao BEM pea expasão das souções fudametas utzadas as tegrações sobre os segmetos do otoro. É apresetada a formuação

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância.

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância. Irradada Smples Coordeação drecta de potos ovos, a partr de um poto cohecdo, meddo-se um âgulo e uma dstâca. P N M M M V E P P P V E P E R EN α c M V M M ser C P cos R C EV EV R EV R EN α c dstâca cartográfca

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

MODELAGEM DO ERRO DE CENTRAGEM NO ESPAÇO TRIDIMENSIONAL R 3

MODELAGEM DO ERRO DE CENTRAGEM NO ESPAÇO TRIDIMENSIONAL R 3 MODELAGEM DO ERRO DE CENTRAGEM NO ESPAÇO TRIDIMENSIONAL R Modelg of ceteg eos o the o the thee-dmesoal space (R ). JAIR MENDES MARQUES Uvesdade Tuut do Paaá Rua Macelo Champagat,55 CEP 87-5 Cutba PR ja.maques@utp.b

Leia mais

PROBLEMAS SOBRE PONTOS I Davi Maximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS I Davi Maximo (UFC) e Samuel Feitosa (UFC) PROBLEMAS SOBRE PONTOS I Dav Maxmo (UFC) e Samuel Fetosa (UFC) Dstbu potos um plao ou um espaço é uma taefa que pode se ealzada de foma muto abtáa. Po sso poblemas sobe potos podem se de dvesas atuezas.

Leia mais

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y)

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y) Vaáves Aleatóas (contnuação) Po. Waldec Peella Dstbução Conunta: po: Paa duas vaáves aleatóas e dene-se Função Dstbução Cuulatva CDF F (,y) P ( e y ) = F (,y ) e a Função Densdade de Pobabldade de Pobabldade

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

DINÂMICA DOS SISTEMAS DE PARTÍCULAS E DOS CORPOS RÍGIDOS

DINÂMICA DOS SISTEMAS DE PARTÍCULAS E DOS CORPOS RÍGIDOS DNÂCA DS SSTEAS DE ARTÍCUAS E DS CRS RÍDS. Cabta Neves Setembo de 005 Ídce ometo lea de um sstema de atículas... 3 Teoema do movmeto do ceto de massa... 3 3 cío da Cosevação do ometo ea... 6 4 cío do Tabalho-Eega

Leia mais

ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κ µ

ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κ µ ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κµ κµ JAMIL RIBEIRO ANTÔNIO Dssetação apesetada ao Isttuto Nacoal de Telecomucações INATEL como pate dos equstos paa obteção do Título

Leia mais

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS CCUTOS ELÉTCOS CONCETOS BÁSCOS Prof. Marcos Fergütz jul/07 - Carga Elétrca (Q, q) [ Udade: Coulomb C ] e - Quado se forece ou retra eerga do elétro (e - ), pode-se movmetá-lo por etre as camadas (K, L,

Leia mais

Dinâmica do Sistema Solar

Dinâmica do Sistema Solar Dnâmca do Sstema Sola Intodução Poblema de dos copos Poblema de N copos e movmento planetáo Dnâmca de pequenos copos Poblema de 3 copos Movmento essonante Caos Intodução Segunda le de Newton F = Le da

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc ÂNI me o 6 de setembo de ução d o: mutos (ão é pemtdo uso de ccudos) ª Questão (, potos): b

Leia mais

Flambagem por Compressão

Flambagem por Compressão Unvesdade Santa Cecía Fambagem por Compressão Conceto de estabdade do equíbro. De forma bastante comum ocorre confusão entre o que são equíbro e estabdade. Uma estrutura pode ser nstáve estando em equíbro.

Leia mais

MODELO EM CAMADAS. Níveis preenchidos de acordo com o Princípio de exclusão de Pauli Processo independente para protões e neutrões

MODELO EM CAMADAS. Níveis preenchidos de acordo com o Princípio de exclusão de Pauli Processo independente para protões e neutrões MODLO M CAMADAS Cada nuceão move-se num potencia médio geado po todos os outos nuceões Apoximação de Campo Médio Resoução da equação de Schödinge de uma patícua com um potencia que admita estados igados

Leia mais

Consideremos uma distribuição localizada de carga elétrica, de densidade ρ(x), sob a ação de um potencial eletrostático externo ϕ E (x).

Consideremos uma distribuição localizada de carga elétrica, de densidade ρ(x), sob a ação de um potencial eletrostático externo ϕ E (x). pansão Multpola da nega de uma Dstbução de Caga sob a Ação de Potencal letostátco teno. Físca Nuclea e de Patículas Cesa Augusto Zen Vasconcellos Consdeemos uma dstbução localzada de caga elétca, de densdade

Leia mais

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS CONSTRUÇÕES EM CONCRETO ARMADO VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS MOMENTOS Apostia orgaizada peo professor: Ediberto Vitorio de Borja 6. ÍNDICE CÁLCULO DE MOMENTOS

Leia mais

Aula-10 Indução e Indutância

Aula-10 Indução e Indutância Aula-1 Idução e Idutâcia Idução Apedeos que: Ua espia codutoa pecoida po ua coete i a peseça de u capo agético sofe ação de u toque: espia de coete + capo agético toque as... Se ua espia, co a coete desligada,

Leia mais

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA 5 ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA Jai Medes Maques Uivesidade Tuiuti do Paaá R. Macelio Champagat, 55 CEP 87-5 e-mail: jaimm@utp.b RESUMO O objetivo deste tabalho cosiste o desevolvimeto

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Aula 3 Trabalho e Energia - Bioenergética

Aula 3 Trabalho e Energia - Bioenergética Aula 3 Tabalho e Enega - Boenegétca Cálculo deencal Taa de vaação nstantânea de uma unção: lm ( ) ( ) (Função devada) Notação: lm ( ) ( ) d d Cálculo ntegal Áea sob o gáco de uma unção: ( 1 ) ) ( 2 Áea

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

Os fundamentos da Física Volume 3 1. Resumo do capítulo

Os fundamentos da Física Volume 3 1. Resumo do capítulo Os fundamentos da Físca Volume 3 1 Capítulo 13 Campo magnétco Ímãs são copos que apesentam fenômenos notáves, denomnados fenômenos magnétcos, sendo os pncpas: I. ataem fagmentos de feo (lmalha). o caso

Leia mais

Análise de Dados e Probabilidade B Exame Final 2ª Época

Análise de Dados e Probabilidade B Exame Final 2ª Época Aálse de Dados e obabldade B Eame Fal ª Éoca Claa Cosa Duae Daa: / /7 Cáa Feades Duação: hm edo Chaves MORTATE: Esceva o ome e úmeo o cmo de cada folha Resoda a cada guo em folhas seaadas, caso ão esoda

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Uivesidade de São Paulo Istituto de Física Física Modea II - FNC376 Pofa. Mácia de Almeida Riutto o. Semeste de 008 FNC0376 - Fisica Modea Hoáio a feia 0:00 :40 :0 :50 5a feia 08:00 09:40 9:0 0:50 Aud.

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Parênteses termodinâmico

Parênteses termodinâmico Parênteses termodnâmco Lembrando de 1 dos lmtes de valdade da dstrbução de Maxwell-Boltzmann: λ

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

Soluções Composição qualitativa

Soluções Composição qualitativa Soluções oposição qualitativa As soluções são istuas de difeetes substâcias. Ua solução te dois tipos de copoetes: o solvete a substâcia ode se dissolve o soluto e os solutos as substâcias que se dissolve.

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

Ondas - 2EE 2003 / 04. Caracterização do canal de rádio

Ondas - 2EE 2003 / 04. Caracterização do canal de rádio Ondas - EE 3 / 4 Pncpas modelos de popagação do canal de ádo. Modelo de atenuação Seja: () - p T a potênca tansmtda (W); () - l a atenuação do snal no canal de tansmssão, a potênca ecebda p R (W) é p R

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

Eletromagnetismo Licenciatura. 18 a aula. Professor Alvaro Vannucci

Eletromagnetismo Licenciatura. 18 a aula. Professor Alvaro Vannucci leomagesmo Lcecaua 8 a aula Pofesso Alvao Vaucc Na úlma aula vmos... Poêca adada po um Dpolo léco que Oscla: P dpolo p 0 4 c quao que a Poêca adada po uma aea mea-oda: P aea q 0 4 c Agoa, em emos do valo

Leia mais

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001 Ceecaa e Autozaa pelo MEC, Potaa. o. 644 e 8 e maço e 00 Publcao o D.O.U. em 0/04/00 ESTATÍSTICA Pelo Poesso Gealo Pacheco A Estatístca é uma pate a Matemátca Aplcaa que oece métoos paa coleta, ogazação,

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo Depatameto de Ifomática Disciplia: Modelagem Aalítica do Desempeho de Sistemas de Computação Elemetos de Aálise Combiatóia Pof. Ségio Colche colche@if.puc-io.b Teoema: Elemetos de Aálise Combiatóia Modelagem

Leia mais

Monitor: Tiago Souza. Lista 7

Monitor: Tiago Souza. Lista 7 Professor: Rodrigo Moura Moitor: Tiago Souza Ecoometria MFEE Lista 7 1. Tome ode Cov( 2, u 1 0. Seja z 2 tal que: 1 = β 0 + β 1 2 + β 2 z 1 + u 1 2 = π 0 + π 1 z 1 + π 2 z 2 + v 2 ode E(v 2 ; Cov(z 1,

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Capítulo 8. Método de Rayleigh-Ritz

Capítulo 8. Método de Rayleigh-Ritz Grupo : Gustavo de Souza Routma; Luís Ferado Hachch de Souza; Ale Pascoal Palombo Capítulo 8. Método de Raylegh-Rtz 8.. Itrodução Nos problemas de apromação por dfereças ftas, para apromar a solução para

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SL LIÉNI UNISI SÃ UL venda ofesso eo oaes, nº 3. cep 558-9, São auo, S. eefone: (xx) 39 5337 ax: (xx) 383 886 epatamento de ngenhaa ecânca QUSÃ (3, pontos). paca não pana, de peso despezíve, é constuída

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico Aula 2 Nesta aula, remos formalzar o coceto de plasma, rever osso etedmeto sobre temperatura de um gás e falmete, cohecer algus processos de ozação. 1.3 Codções para Produção de Íos um Gás em Equlíbro

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Equação de Schrödinger e Suas Aplicações

Equação de Schrödinger e Suas Aplicações quação Scög Suas Apcaçõs Aé Lus Bof Batsta Sva sttuto Físca São aos Uvsa São Pauo São aos 3 toução 96 o físco austíaco w Scög 887-96 pubcou quato tabaos os Aas Psqu Lpg os quas vovu a sua faosa Mcâca Quâtca

Leia mais

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

ATENUAÇÃO DE RUIDO COERENTE COM FILTRO FX EM DADOS SÍSMICOS ORGANIZADOS EM FAMÍLIAS DE RECEPTOR COMUM

ATENUAÇÃO DE RUIDO COERENTE COM FILTRO FX EM DADOS SÍSMICOS ORGANIZADOS EM FAMÍLIAS DE RECEPTOR COMUM Copyght 24, Isttuto Basleo de Petóleo e Gás - IBP ste Tabalho Técco Cetífco fo pepaado paa apesetação o 3 Cogesso Basleo de P&D em Petóleo e Gás, a se ealzado o peíodo de 2 a 5 de outubo de 25, em Salvado

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais