FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES
|
|
|
- Lorenzo da Rocha Schmidt
- 9 Há anos
- Visualizações:
Transcrição
1 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE DIFICULDADE ( ) FACIL ( ) MÉDIO ( ) DIFÍCIL ELABORADOR(A) CLAÚDIO SILVEIRA DE SOUZA, EDUARDO VICENTE DO COUTO, NELSON DE MELLO REZENDE, TANIA MARIA BOFFONI SIMÕES DE FARIA Euciado Cosidee sistema liea 6 5,em que cada equação epeseta um plao do. 5 7 Comado a) Obteha as equações paaméticas da eta do b) Detemie as equações siméticas da eta do plao 5 7. que epeseta a iteseção dos tês efeidos plaos. que passa pelo poto (,, -) e é pepedicula ao c) Calcule o meo âgulo fomado pelos plaos e 6 5.
2 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de Padão de espostas a) (II) (I) Faedo t t ;, e substituido a equação (II), temos (III) t t Substituido e a equação (I), temos 6 t t t Logo, as equações paaméticas da eta são t t t - ; t b) O veto (5,, ), omal ao plao, 7 5 seá o veto dieto da eta petedida, já que ela é pepedicula ao efeido plao. Sabe-se aida que a eta passa pelo poto (,, -). Logo, as equações siméticas da eta são 5 c) O meo âgulo fomado pelos plaos ) ( e 5 6 ) ( coespode ao meo âgulo fomado pelos seus vetoes omais. ),, ( veto omal ao plao 6), (, veto omal ao plao 5 6 ) ( ) ( 7 6 cos 5 7 5
3 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de ac cos 5 Refeêcias bibliogáficas Juliaelli, Robeto, J., Cálculo Vetoial e Geometia Aalítica, Ed. Ciêcia Modea, 008.
4 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA 07// CARGO/ARÉA MATEMÁTICA CONTEÚDO PROGRAMÁTICOFUNÇÃO/ DERIVADA NÍVEL DE DIFICULDADE ( ) FACIL ( ) MÉDIO ( ) DIFÍCIL ELABORADORES CLAÚDIO SILVEIRA DE SOUZA, EDUARDO VICENTE DO COUTO, NELSON DE MELLO REZENDE, TANIA MARIA BOFFONI SIMÕES DE FARIA Euciado No plao catesiao a segui estão epesetados o gáfico da fução eal as etas, e., f ( ) e
5 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 5 de Sabe-se que Comado Detemie a eta é paalela ao eio das abscissas e tagecia o gáfico da fução f o poto D; as etas e são paalelas e tageciam o gáfico da fução f espectivamete os potos C e E, sedo - a abscissa do poto C; a eta é paalela ao eio das odeadas e passa po F, poto de máimo local da fução f. a) os eos da fução f. b) as equações das etas e. c) as equações das etas. e Padão de espostas a) f() = 0, etão ou eos da fuçãof 0, 05, 05
6 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 6 de ; 0 0 () () ou 0 ) ( ' ) ( ' ) f f f b 7 7 ' '.,,- poto o. f() ou 0 6 ) ( ' ' // ) (,,- - poto o ) ( ' 8 f(-) ) b b temos Como f b b b temos Como f a b a c
7 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 7 de Refeêcias bibliogáficas Stewat, James. Cálculo. Vol., São Paulo Pioeia Thompso Leaig, 00.
8 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 8 de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA 07//0 CARGO/ARÉA MATEMÁTICA CONTEÚDO PROGRAMÁTICO GEOMETRIA PLANA/ GEOMETRIAESPACIAL/TRIGONOMETRIA/ ANÁLISE COMBINATÓRIA NÍVEL DE DIFICULDADE ( ) FACIL ( ) MÉDIO ( ) DIFÍCIL ELABORADOR(A) CLAÚDIO SILVEIRA DE SOUZA, EDUARDO VICENTE DO COUTO, NELSON DE MELLO REZENDE, TANIA MARIA BOFFONI SIMÕES DE FARIA Euciado Seja ABCDEFGHIJLM um dodecágoo egula iscito uma cicufeêcia de ceto O e aio 6 cm. Comado a) Moste que o lado desse dodecágoo mede. 6 cm. b) Cosidee a egião iteio à cicufeêcia e eteio ao heágoo egula ACEGIL. Detemie o volume do sólido geado pela otação completa dessa egião em too do eio que passa pelos potos A e G.
9 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 9 de c) Quatos polígoos coveos se pode foma cujos vétices são vétices do dodecágoo ABCDEFGHIJLM? Padão de espostas a) Seja lo lado do dodecágoo egula.aplicado a lei dos cosseos o tiâgulo OAB, temse l l cos 0º l cm
10 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA 0 de b) V sólido geado Vesfea Vcilido. Vcoe..6 ( ) cm
11 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de V sólido geado 7 cm c) C C C 5... C polígoos coveos ( C 0 C C ) 07 polígoos coveos Refeêcias bibliogáficas IEZZI, G., Tigoometia. Vol.. HAZZAN, S. Combiatóia / Pobabilidades. Vol. 5. DOLCE, O.,POMPEO, NICOLAU, J., Geometia Plaa. Vol. 9. DOLCE, O., POMPEO, NICOLAU, J., Geometia Espacial. Vol. 0.
12 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA 07//0 CARGO/ARÉA MATEMÁTICA CONTEÚDO PROGRAMÁTICO MATEMÁTICAFINANCEIRA/LOGARITMO/PROGRESSÃO GEOMÉTRICA NÍVEL DE DIFICULDADE ( ) FACIL ( ) MÉDIO ( ) DIFÍCIL ELABORADOR(A) CLAÚDIO SILVEIRA DE SOUZA, EDUARDO VICENTE DO COUTO, NELSON DE MELLO REZENDE, TANIA MARIA BOFFONI SIMÕES DE FARIA Euciado Felipe cotaiu hoje um empéstimo de R$ 0 000,00 em um baco que patica uma taa de juos de 0% ao mês, com juos capitaliados mesalmete. Comado a) Se Felipe petede quita a sua dívida faedo um pimeio pagameto de R$ 000,00 daqui a 0 dias e um segudo pagameto de eais daqui a 60 dias, qual é o valo de? b) Se Felipe ão fie ehum pagameto ao baco, qual é o úmeo míimo de meses ecessáios paa que sua dívida supee os R$ 5 000,00? Dados log = 0,0; log 7 = 0,85; log=,0 c) Caso Felipe quisesse quita a sua dívida pagado 0 pestações mesais cosecutivas iguais a eais cada, sedo a pimeia 0 dias após te cotaído o empéstimo, qual deveia se o valo apoimado de? ( Dado, 0, 59)
13 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de Padão de espostas Taa de juos i = 0% a.m. a) 000,00 eais 0 º de meses E= 0 000,00 DATA FOCAL 000, 0000, Resposta R$7700,00 b) = º de meses 0000 (,) 0,0 0,55,75 Logo, míimo 5000 meses, 7,5 log log (log log0) log 7 log 0
14 CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de c) 0 0 º meses E=0000 DATA FOCAL 0 (, 9, 8,... ) 0000, , ,9,59,59 7 Resposta R$68,9 0 0 [.(,), ] 0000,59 Refeêcias bibliogáficas Césa, Bejami, Matemática Fiaceia, teoia e 700 questões, Rio de Jaeio, Editoa Impetus, 00. MURAKAMI, C., DOLCE, O., IEZZI, G., Logaitmos. Vol.. HAZZAN, S., IEZZI G., Sequêcias/Maties/Detemiates/Sistemas. Vol..
Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares
Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,
Escola Básica e Secundária Dr. Ângelo Augusto da Silva
Escola Básica e Secdáia D. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dação: 90 itos Maço/ 06 Noe N.º T: Classificação Pof. (Lís Abe).ª PARTE Paa cada a das segites qestões de escolha últipla, selecioe
INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS
Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse
DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES
DIMENSÕES Matemática A. o ao de escolaidade Cadeo de pepaação paa o eame Ídice PROVA p. PROVA p. 7 PROVA p. PROVA p. PROVA p. 0 PROVA p. RESOLUÇÕES p. 8 Cao aluo, Este livo tem po base o pessuposto de
FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES
CÓDIGO:FO 7.5.1/03 REVISÃO: 01 PÁGINA: 1 de 59 DATA:01/0/015 CONTEÚDO PROGRAMÁTICO: GEOMETRIA EUCLIDIANA PLANA GABARITO: A NÍVEL DE DIFICULDADE: ( ) FACIL ( x ) MÉDIO ( ) DIFÍCIL ELABORADORES: CLAÚDIO
AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA
Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,
MATEMÁTICA SUAS TECNOLOGIAS. 05. A função logarítmica RC = log é logarítmica crescente C8, 4 =
RESOLUÇÃO E Resolva Eem I TEÁTI SUS TENOLOGIS III) No tiâgulo equiláteo JI: ai 60 ssim, sedo JÎH, devemos te: + 60 + 0 + 08 60 7 0. O obô pecoeá o peímeto de um polígoo egula de lados, cujo âgulo eteo
singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)
1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:
Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20
Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares
Os fundamentos da física Volume 2 1. Resumo do capítulo
Os fudametos da físca Volume 2 1 Capítulo 13 Refação lumosa A efação é o feômeo o qual a luz muda de meo de popagação, com mudaça em sua velocdade. ÍDICE DE REFRAÇÃO ABSOLUTO O ídce de efação absoluto
Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]
Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências
Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário
PROVA DE MATEMÁTICA 2 a FASE
PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um
2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO
EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA
Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10
Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas
Revisão Vetores em R n
Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)
1 - CORRELAÇÃO LINEAR SIMPLES rxy
1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Solução Comentada Prova de Matemática
0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,
Proposta de Exame de Matemática A 12.º ano
Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3
Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +
2 Formulação Matemática
Fomlação Matemática. Descição do poblema A fim de aalisa o escoameto atavés de m meio pooso, foi cosideado m meio pooso ideal, com ma geometia composta po caais covegetesdivegetes. Dessa foma, obtém-se
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio
Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas
Duração da Prova: 150 minutos. Tolerância: 30 minutos. É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.
Eame Fial Nacioal de Matemática A Pova 635 Época Especial Esio Secdáio 07.º Ao de Escolaidade Deceto-Lei.º 39/0, de 5 de jlho Dação da Pova: 50 mitos. Toleâcia: 30 mitos. 8 Págias VERSÃO Idiqe de foma
Matemática do Ensino Médio vol.2
Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Cadero 1 + Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos:
Funções analíticas complexas
Capítulo 5 Fuções aalíticas complexas 5 Itodução As fuções aalíticas são as fuções epesetáveis po séies de potêcias Até meados do séc XVII a oção de fução cofudia-se com a de fómula algébica com vaiáveis,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
Texto complementar n 3.
Texto complemeta 3. A Pimeia Lei de Newto Talvez devêssemos começa a estuda a mecâica pelo movimeto de um objeto mecâico isolado, ou seja, o movimeto de um copo sobe o qual ão agem foças. Seia, etetato,
Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.
Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre
Áreas parte 2. Rodrigo Lucio Isabelle Araújo
Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que
MATEMÁTICA - 3o ciclo
MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela
Campo Gravítico da Terra
5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico
PROVA DE RACIOCÍNIO MATEMÁTICO
)Uma prova costa de testes de múltipla escolha, cada um com 5 alterativas e apeas uma correta Se um aluo ``chutar`` todas as respostas: a)qual a probabilidade dele acertar todos os testes? b)qual a probabilidade
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,
Proposta de prova-modelo
Proposta de prova-modelo Matemática A. AN DE ESCLARIDADE Duração: (Cadero + Cadero ): 0 miutos. Tolerâcia: 0 miutos Cadero : 7 miutos. Tolerâcia: miutos (é permitido o uso de calculadora) Na resposta aos
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru
Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de
Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda
Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios
CPV O cursinho que mais aprova na FGV
O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia
5 Estudo analítico de retas e planos
GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.
Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta
Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para
( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)
Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos
26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.
6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A
( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x
Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados
Demostações Geométicas, Algébicas e Solução de Equações Discetas utilizado as Sequêcias de Númeos Figuados José Atoio Salvado Depatameto de Matemática - CCET - Uivesidade Fedeal de São Calos 3565-905,
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
( ) ( ) Novo Espaço Matemática A 11.º ano Proposta de Resolução [janeiro ] + = é tangente a uma esfera de centro ( 1, 0, 1)
Novo Espaço Matemática A º ao Proposta de Resolução [jaeiro - 08] Seja CA = a CADERNO (É permitido o uso de calculadora gráfica) CA AM = 7, 5 CA AM cos 0 = 7, 5 a a = a = 7, 5 89 ( ) Como a > 0, tem-se:
Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.
CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto
