Roteiro: Experimento 8: Rotações e Momento de Inércia
|
|
|
- Sophia Candal Chaves
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade Federal de Santa Catarina - Câmpus Blumenau Física Experimental 1 Roteiro: Experimento 8: Rotações e Momento de Inércia Prof. Rafael L. Novak 1 Introdução Neste experimento, será estudado o movimento de rotação de um corpo rígido. Este tipo de movimento está presente em nosso dia-a-dia de várias maneiras, e possui uma enorme importância. Basta lembrar que qualquer motor produz movimento rotacional, utilizado para realizar trabalho em diversas aplicações. As equações que descrevem a cinemática e a dinâmica do movimento de rotação são análogas às equações já vistas para movimentos retilíneos, após a substituição das grandezas lineares por grandezas angulares: Posição: x(t) Posição angular: θ(t); Velocidade: v x (t) Velocidade angular: ω(t); Aceleração: a x (t) Aceleração angular: α(t); Força: F Torque: τ = rf sin φ (onde r é o módulo do vetor que liga o eixo de rotação ao ponto onde a força F é aplicada, e φ é o ângulo entre r e F ); Quando um corpo rígido efetua um movimento de rotação, este movimento ocorre em torno de um eixo, o eixo de rotação. Ao contrário do que ocorre em um movimento retilíneo, no qual a massa do corpo que importa na hora de se investigar a sua dinâmica, em movimentos rotacionais a forma como a massa está disposta em torno desse eixo é fundamental. Ao tentar fazer girar dois objetos de mesma massa, mas geometrias diferentes, somos imediatamente confrontados por esse fato: alguns desses objetos serão mais fáceis de girar que outros, apesar das massas serem iguais. Essa dependência da inércia de corpos rígidos com a sua geometria, além da massa, é sintetizada numa grandeza chamada momento de inércia. O momento de inércia de um corpo rígido, ou de uma distribuição de massas, é uma medida da inércia rotacional, ou deja, da resistência que o corpo ou a distribuição de massas oferece ao movimento de rotação. Essa grandeza é o análogo rotacional da massa inercial (m) no caso de um movimento linear. Para um sistema de i partículas, cada uma com vetor posição r i (em relação a uma origem sobre o eixo de rotação) e massa m i, o momento de inércia é definido como: I = i m i r 2 i (1) No caso de uma distribuição contínua de massa, como num corpo rígido, o momento de inércia deve ser escrito como: I = r 2 dm (2) 1
2 Os momentos de inércia de corpos com geometrias simples (cilindros, anéis, esferas, paralelepípedos, etc.) podem ser obtidos através da aplicação da integral acima, e em geral estão tabelados em livros texto de Física básica (procurem nos livros do curso!). Alguns valores que poderão ser úteis nessa prática se encontram abaixo: I = 1 2 MR2 (Disco ou cilindro) (3) I = 1 2 M(R2 int + R 2 ext) (Anel ou tubo) (4) Nas fórmulas acima, M é a massa total do corpo, R int é o raio interno do anel, R ext o raio externo do anel e R é raio do cilindro (ou disco) (Figura 1). Reparem que em ambos os casos (cilindro ou anel) o momento de inércia não depende da altura do corpo. Para outras distribuições de massa, o cálculo deve ser realizado sempre de maneira análoga. Figura 1: Esquemas de um anel e de um disco, com os eixos principais de rotação e as dimensões relevantes para o cálculo do momento de inércia. Voltando à dinâmica da rotação de um corpo rígido, o momento de inércia estará ligado à aceleração angular α devida à aplicação de um torque resultante τ através da 2 a Lei de Newton em sua forma rotacional: τ = I α (5) Dessa expressão, após sua análise e passagem para a forma algébrica, pode-se obter o valor do momento de inércia em função dos módulos do torque e da aceleração angular: I = τ α (6) Neste experimento, o módulo do torque poderá ser obtido a partir da força aplicada tangencialmente à polia do sensor de rotação através de um fio ideal ligado a um suporte com uma massa fixa pendurada. Aplicando a Segunda Lei à massa pendurada, temos o seguinte resultado: mg F = ma (7) onde m é a massa total do suporte pendurado ao fio e F é a força de tensão no fio, que corresponde à força aplicada na borda da polia. Daí obtemos F = m(g a), onde a é a aceleração do suporte e a aceleração tangencial do bordo da polia. Como a = αr (lembrem-se que v = ωr), temos finalmente que F = m(g αr), 2
3 ou seja, podemos obter F, e consequentemente o torque τ = rf (o torque neste caso vale rf pois o ângulo φ entre eles é 90 ), a partir das medidas de α que serão realizadas ao longo do experimento. Substituindo τ = rf = mr(g αr) na equação (6), chegamos à seguinte expressão: I = mgr α mr2 (8) Ou seja: conhecendo-se a massa do suporte pendurado ao fio (m), o raio da polia onde o torque é aplicado (r) e a aceleração angular do sistema (α, obtida a partir do ajuste de reta nos gráficos de ω(t) que serão medidos no experimento), podemos determinar o momento de inércia total da peça composta pela polia e pelo corpo rígido (disco, tubo, ou outro) a ela acoplado. Polia do sensor de rotação Corpo rígido (anel, disco, etc.) Sensor de rotação Sensor de rotação Experimento Suporte e massa Figura 2: Esquema do sensor de rotação com a polia (esquerda); e do experimento, onde um corpo rígido (anel, cilindro, ou outro) será fixado sobre a polia. Um suporte pendurado aplica uma tensão no fio, que por sua vez transmite essa tensão para o bordo da polia, gerando o torque que faz o sistema polia/corpo rígido girar. 2 Objetivos Determinar experimentalmente os momentos de inércia de um anel, de um disco, de uma haste e de duas massas girando em torno de eixos que passam por seus respectivos centros; Comparar esses valores aos valores teóricos calculados através de fórmulas; Compreender como pode-se obter o momento de inércia de objetos mais complexos através dos momentos de inércia de suas partes. 3 Procedimento experimental O procedimento experimental está delineado nas abas abertas no programa de aquisição da PASCO. As abas devem ser lidas em ordem. Em resumo, um torque conhecido será aplicado na polia do sensor de rotação, provocando movimento rotacional uniformemente acelerado do corpo rígido composto pela própria polia 3
4 + o objeto montado sobre ela. A aceleração angular resultante será determinada através do ajuste de uma reta ao gráfico da velocidade angular em função do tempo (ωvs.t). Os momentos de inércia dos objetos serão determinados experimentalmente a partir desta aceleração angular e do torque aplicado pelo pesinho. 4 Material utilizado 1 disco 1 anel 1 haste curta 1 suporte suspenso para massa Diversas massas em forma de disco 1 polia 1 fio 1 sensor de rotação (Rotary Motion Sensor PS-2120A) 1 USB Link PS-2100A 1 balança analógica 1 paquímetro Parafusos Linha Notebook ou desktop com programa de aquisição de dados. 5 Tratamento de dados e discussão Responda ao questionário na folha anexa, que será entregue ao final da aula e avaliado pelo professor. Para construção dos gráficos e a análise dos dados, o Scidavis deverá ser utilizado. Vejam os vídeos tutoriais no Moodle do curso. Referências [1] Freedman, R. A., Young, H. D. Sears & Zemansky Física 1 Mecânica, 12a Ed., Ed. Pearson. [2] Halliday, D., Resnick, R. e Walker, J. Fundamentos de Física Vol. 1 Mecânica, 9a Ed., Ed. LTC. 4
5 [3] Nussenzveig, H. M. Curso de Física Básica Vol. 1 Mecânica, 5a Ed., Ed. Edgard Blucher. [4] Piacentini, J. J., Grandi, B. C. S., Hofmann, M. P., de Lima, F. R. R., e Zimmermann, E. Introdução ao Laboratório De Física, 4a Ed., Ed. Série Didática. 5
a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.
30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido
Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:
Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α
PROGRAMA DE DISCIPLINA CRÉDITOS CARGA HORÁRIA PRÉ REQUISITO T P O 90 MAT01 1-EMENTA
UNIVERSIDADE FEDERAL DE RORAIMA PRÓ-REITORIA DE GRADUAÇÃO FEDERAL CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE FÍSICA PROGRAMA DE DISCIPLINA CÓDIGO FIS01 DISCIPLINA FÍSICA CRÉDITOS CARGA HORÁRIA PRÉ
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PROGRAMA DE DISCIPLINA
UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PROGRAMA DE DISCIPLINA NOME COLEGIADO CÓDIGO SEMESTRE FÍSICA I CEAGRO AGRO0006 016.1 CARGA HORÁRIA TEÓR: 60 PRÁT: 0 HORÁRIOS: a. FEIRA (10:00-1:00) TURMA A
Física Fundamental I
Física Fundamental I Código: Carga Horária: 60h Ementa Movimento de uma dimensão, movimento em um plano, dinâmica da partícula, dinâmica da partícula II, trabalho e energia, conservação de energia, momento
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo
As variáveis de rotação
Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento
Física I Prova 3 7/06/2014
Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12
Prova P1 Física para Engenharia II, turma set. 2014
Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
Lista 8 : Cinemática das Rotações NOME:
Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
Cap.12: Rotação de um Corpo Rígido
Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da
Figura Na figura nós podemos ver que não há aceleração tangencial, somente a aceleração em azul que aponta para o centro da curva.
Movimento Circular INTRODUÇÃO Para um movimento ser curvo, é necessária a existência de pelo menos uma componente da aceleração perpendicular à trajetória, ou seja, a aceleração não deve estar na mesma
Deslocamento, velocidade e aceleração angular. s r
Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque
Plano de Ensino. Identificação. Câmpus de Bauru. Curso 2902/ Licenciatura em Química e Bacharelado em Química Ambiental e Tecnológica.
Curso 2902/2903 - Licenciatura em Química e Bacharelado em Química Ambiental e Tecnológica. Ênfase Identificação Disciplina 7104- Física I Docente(s) Unidade Faculdade de Ciências Departamento Departamento
Experimento B 4 : Pêndulo de Torção
Experimento B : Pêndulo de Torção Objetivos Determinar a constante de torção de um fio. Verificar a relação entre o momento de inércia e o período de oscilação. Verificar a dependência do momento de inércia
Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação
Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação
Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA
RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.
11 Cinemática de partículas 605
SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611
Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.
Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro
Notas de Aula de Física
Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares
Lista 9 : Dinâmica Rotacional
Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular
Questão Prof FGuimarães Questões Cinemática 5 Movimento Circular (MCK) Os ponteiros dos relógios convencionais descrevem, em condições normais, movimentos circulares uniformes (MCU) relação entre a velocidade
LECTURE NOTES PROF. CRISTIANO. Leis de Newton. Isaac Newton. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202
Fisica I - IO Leis de Newton Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 [email protected] http://pt.wikipedia.org/wiki/isaac_newton Isaac Newton Teorema Binomial Cálculo Lei da gravitação universal
Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação
Física I Prova 2 25/10/2014
Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-S, Elias da Silva e Osvaldo Guimaraes - UC-S Este conjunto explora os dispositivos usados para se obter orientação
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Campus Apucarana PLANO DE ENSINO. CURSO Engenharia Civil MATRIZ 18
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Apucarana PLANO DE ENSINO CURSO Engenharia Civil MATRIZ 18 FUNDAMENTAÇÃO LEGAL Resolução n. 09/1 - COGEP DISCIPLINA/UNIDADE CURRICULAR
Física I Prova 2 25/10/2014
Física I Prova 2 25/10/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
5ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias
5ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias Obs: Esta lista de exercícios é apenas um direcionamento, é necessário estudar a teoria referente ao assunto e fazer os exercícios
Curso Física 1. Aula -1. Introdução, Generalidades
Curso Física 1 Aula -1 Introdução, Generalidades Prof. Rudnei O. Ramos Sala 3006 E homepage para o curso: http://sites.google.com/site/rudneiramos Ementa 0. Introdução e Generalidades Unidades, notação,
1ª Prova de Física I - FCM0101
1ª Prova de Física I - FCM11 #USP: Nome: Instruções: 1. Escreva seu nome e número USP no espaço acima.. A duração da prova é de horas. A prova tem 4 questões. 3. Não é permitido consultar livros, anotações
Fundamentos de Mecânica
Fundamentos de Mecânica 43151 Gabarito do estudo dirigido 3 (Movimento em uma dimensão) Primeiro semestre de 213 1. Um elevador sobe com uma aceleração para cima de 1, 2 m/s 2. No instante em que sua velocidade
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
Resistência dos Materiais
Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1
Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 1. Dois corpos A e B, de massa 16M e M, respectivamente, encontram-se no vácuo e estão separados
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8)
[3A33]-p1/10 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) ando necessário, use π = 3, 14 e g=10 m/s 2 (1) (0,75) Um giroscópio está montado sobre um suporte vertical conforme a figura. Assinale a afirmativa incorreta:
Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular
Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física
Palavras-chave: Momento de inércia, momento de inércia de área, momento de inércia de massa.
MOMENTO DE INÉRCIA, DE MASSA OU DE ÁREA? SILVA; Adriano de Aquino Paiva [email protected] Faculdade de Tecnologia de Mogi-Mirim Resumo - Este artigo apresenta e explica o Momento de Inércia utilizado
Física Experimental - Mecânica - Plano inclinado com sensores de adesão magnética e software - EQ801A.
Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos
Relatório da Prática nº5 Molas
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO Campus Maracanã Engenharia Turma 3 Professor: Eduardo Relatório da Prática nº5 Molas 1º PERÍODO CAROLINA TRINDADE RUFINO DOS SANTOS DIEGO HUTTER SOBREIRA CATALÃO
Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).
Estática Todo o nosso estudo até agora foi dedicado quase que exclusivamente ao movimento. Passamos da Cinemática - descrição matemática dos movimentos - à Dinâmica, em que essa descrição se aprofunda
TÍTULO: MODELO MATEMÁTICO PARA BOBINAMENTO E DESBOBINAMENTO DE TIRAS NUM PROCESSO INDUSTRIAL CONTROLADO POR INVERSOR DE FREQUÊNCIA
16 TÍTULO: MODELO MATEMÁTICO PARA BOBINAMENTO E DESBOBINAMENTO DE TIRAS NUM PROCESSO INDUSTRIAL CONTROLADO POR INVERSOR DE FREQUÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS
9ª EDIÇÃO VOLUME 1 MECÂNICA
QUESTÕES DO CAPÍTULO 5 DO LIVRO FUNDAMENTOS DE FÍSICA HALLIDAY & RESNICK - JEARL WALKER Página 112 Segunda Lei de Newton. 9ª EDIÇÃO VOLUME 1 MECÂNICA 1) Apenas duas forças horizontais atuam em um corpo
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
UNIVERSIDADE FEDERAL DE MINAS GERAIS Escola de Engenharia Curso de Graduação em Engenharia de Controle e Automação PROGRAMA DE DISCIPLINA
MECÂNICA FUNDAMENTAL FIS031 Teórica: X Prática: 04 3º. OB FIS065 Total: 60 horas-aula PRÉ-REQUISITOS DE CONHECIMENTO: CARGA HORÁRIA ESTIMADA EXTRA-CLASSE: DISCIPLINA VINCULADO AO CERTIFICADO DE ESTUDOS
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA
MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 300 EXPERIÊNCIA 6 TRANSFERÊNCIA DE POTÊNCIA. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com fontes de tensão (baterias) na condição de máxima transferência de potência para
Dinâ micâ de Mâ quinâs e Vibrâçõ es II
Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.
Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas
FUNDAMENTOS DE FÍSICA [10400] GERAL Regime: Semestre: OBJETIVOS O objectivo da disciplina de Física é o de adquirir conhecimentos técnicos baseados nos princípios físicos fundamentais à análise de problemas
Lista de Exercícios (Profº Ito) Dinâmica no Movimento Circular
TEXTO PARA A PRÓXIMA QUESTÃO SE NECESSÁRIO, ADOTE g = 10 m/s. 1. Um circuito de Fórmula Mundial circular, com 320 m de raio, tem como velocidade de segurança 40 m/s. Calcule a tangente do ângulo de inclinação
Laboratório de Física Básica 2
Objetivo Geral: Determinar a aceleração da gravidade local a partir de medidas de periodo de oscilação de um pêndulo simples. Objetivos específicos: Teoria 1. Obter experimentalmente a equação geral para
unidades das medidas para as seguintes unidades: km 2, hm 2, dam 2, m 2, dm 2,
Estudo Dirigido de Física Experimental 1 1ª FASE 1. A notação científica facilita a transformação de unidades. Faça as transformações lembrando de manter o mesmo número de algarismos significativos. a)
FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos
FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
CAMPO MAGNÉTICO EM CONDUTORES
CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.
Física 1 Mecânica. Instituto de Física - UFRJ
Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Informações Gerais Vetores 29/08/2016 1/ 36 (Vetores) Física 1 29/08/2016 1 / 34 Outline 1 Informações Gerais do curso 2 Introdução 3 Vetores 2/
FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos
FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
Considere g = 10m/s 2
1. (Pucmg 2009) Na montagem experimental ilustrada a seguir, os fios e a polia têm massas desprezíveis e pode-se desconsiderar o atrito no eixo da polia. Considere g = 10m/s 2 Nessas condições, é CORRETO
2013, Relatório fis 3 exp 6 EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA. Copyright B T
EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA Introdução! Suspendendo-se uma agulha magnética de tal modo que ela possa girar livremente, ela se orienta em uma direção perfeitamente determinada. Este comportamento
Física Geral e Experimental III
Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola
PLANO DE ENSINO IMPLANTAÇÃO: VERSÃO: PRÉ-REQUISITOS: FGE1001
- CCT EMENTA: Oscilações mecânicas. Estática e dinâmica de fluidos. Ondas mecânicas e acústicas. Temperatura. Calor. Teoria cinética dos gases. Leis da termodinâmica. Máquinas térmicas. Refrigeradores.
MEDIDAS DE RESISTÊNCIAS COM A PONTE DE WHEATSTONE
EXPEIÊNCIA 03 MEDIDAS DE ESISTÊNCIAS COM A PONTE DE WHEATSTONE 1. OBJETIVOS a) Medir as resistências de resistores e de associações de resistores. b) Estabelecer experimentalmente a relação entre a resistência
Objetivo: Determinar experimentalmente a resistividade elétrica do Constantan.
Determinação da resistividade elétrica do Constantan Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi
Capítulo 23: Lei de Gauss
Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de
Movimento Circular ( ) ( ) Gabarito: Página 1 = =. Na montagem Q: v 1. Velocidade linear da serra: v 2Q. Resposta da questão 1: [E]
Gabarito: Moimento Circular Na montagem Q: Velocidade da polia do motor: Velocidade linear da serra: Q esposta da questão : ados: f = 000 rpm = 50 Hz; = 80 mm = 0,08 m; Δ t = 0,8 s ΔS = Δt ΔS = ω Δt ΔS
Características do MCU
ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! Características do MCU APROFUNDAMENTO DE ESTUDOS - ENEM FÍSICA O MCU é periódico. Apresenta velocidade angular e velocidade
Atuadores em Robótica
Atuadores em Robótica Profa. Michelle Mendes Santos [email protected] Atuadores Indicadores Em robótica muitas vezes é necessário sinalizar um acontecimento ou situação importante. Essa sinalização
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS 1 Esta lista trata dos conceitos de cinemática 1D, cinemática 2D, leis de Newton e aplicações. Tais temas são abordados nos capítulos 2, 3, 4 e 5 do livro-texto: Moysés Nussenzveig,
5 Forças em Dinâmica. 1 Princípio da inércia (primeira lei de Newton) 2 Princípio fundamental da Dinâmica (segunda lei de Newton)
F=m.a 5 Forças em Dinâmica A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam. Significa que a força resultante F produz uma aceleração a com mesma direção
Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla, indique apenas uma das opções. R 1 R 2
Física Geral I 1º semestre - 2004/05 3 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 12 de Janeiro 2005 Duração: 2 horas + 30 min tolerância Nas
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS MAF- 04.05.2012 Prof. Dr. Antônio Newton Borges 1. Na caixa de 2,0 kg da figura abaixo são aplicadas duas forças, mais somente uma é mostrada. A aceleração da
Movimento Circular Uniforme
Movimento Circular Uniforme Movimento Circular Uniforme v 8 v 1 v 7 v 2 v 6 v 3 v 5 v 4 2 v 1 = v 2 = v 3 =... = v 8 mas v 1 v 2 v 3... v 8 Período e Frequência Período (T) : tempo para que ocorra uma
transmissão de movimento e transformação de movimento.
Transmissão e transformação de movimento A UU L AL A O motor que aciona uma máquina nem sempre produz o movimento apropriado ao trabalho que se deseja realizar. Quando isso ocorre, torna-se necessário
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Laboratório de Física
Laboratório de Física Experimento 03 - Trilho de Ar Movimento a Força Constante Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/11 03 - Trilho de
Modelagem Matemática de Sistemas Mecânicos Rotacionais pela Mecânica Newtoniana
Modelagem Matemática de Sistemas Mecânicos ranslacionais pela Mecânica ewtoniana 6 Modelagem Matemática de Sistemas Mecânicos Rotacionais pela Mecânica ewtoniana IRODUÇÃO esta apostila aprenderemos como
MCU Avançada. Questão 01 - (UEM PR/2012)
Questão 01 - (UEM PR/2012) Considere uma pista de ciclismo de forma circular com extensão de 900 m e largura para comportar dois ciclistas lado a lado e, também, dois ciclistas A e B partindo do mesmo
LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS
DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre
MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO
DISCIPLINA: Física III CÓDIGO: 2DB009 VALIDADE: Início: 01/2013 Término: Eixo: Física e Química Carga Horária: Total: 50 horas / 60horas aulas Créditos: 4 Semanal: 4 aulas Modalidade: Teórica Integralização:
4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA
CURSO de FÍSICA - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 8 e 1 o semestre letivo de 9 CURSO de FÍSICA - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém: PROVA DE REDAÇÃO enunciada
Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular
Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de
INSTITUTO SUPERIOR DE AGRONOMIA UC Física I ( ) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO
INSTITUTO SUPERIOR DE AGRONOMIA UC Física I (2015-2006) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO Analisar a 2ª lei de Newton, aplicada a um sistema de 2 massas ligadas por um fio que
Terceira Lista - Potencial Elétrico
Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial
MECÂNICA AS LEIS DO MOVIMENTO. o estudo do movimento. Vamos estudar os movimentos se preocupando com suas causas.
MECÂNICA o estudo do movimento Vamos estudar os movimentos se preocupando com suas causas. AS LEIS DO MOVIMENTO AS LEIS DO MOVIMENTO DINÂMICA FORÇA E MOVIMENTO cinemática Grandezas da Cinemática: interação
Física I Prova 3 29/11/2014
Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
