CAMPO MAGNÉTICO EM CONDUTORES
|
|
|
- Carolina Eger Barreto
- 9 Há anos
- Visualizações:
Transcrição
1 CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes. Descobriu-se que um ímã permanente exerce uma força sobre outro ímã ou sobre um pedaço de ferro não imantado e que todo ímã possui dois pólos: o pólo norte e o pólo sul. Os pólos magnéticos iguais de dois ímãs se repelem mutuamente, enquanto pólos opostos se atraem. A Terra é um imã natural de forma que a agulha de uma bússola alinhada ao campo magnético da Terra é um exemplo de interação magnética. O pólo norte geográfico da Terra está próximo ao pólo sul magnético, assim o pólo norte da agulha de uma bússola aponta para o norte. Por volta de 1750, descobriu-se que a força exercida por um pólo sobre outro variava com o inverso do quadrado da distância entre os pólos. Lei de Biot-Savart A relação entre a eletricidade e o magnetismo foi descoberta no século XIX quando Oersted verificou que a agulha de uma bússola era desviada por um fio conduzindo uma corrente elétrica (Figura 1). Figura 1: Experimento de Oersted. A agulha da bússola oscila quando existe uma corrente e o sentido depende do sentido da corrente (Sears & Zemansky). Departamento de Física, Universidade Federal de Sergipe 1
2 A partir do experimento de Oersted foi estabelecida a Lei de Biot-Savart que estabelece o cálculo do campo magnético B originado por uma corrente I. Para um condutor retilíneo, o módulo do campo magnético é dado por: B = μ 0I 2πr (1) onde µ0 = permeabilidade magnética do vácuo = (T.m/A), r é a distância entre o ponto do campo e o fio condutor e I é a corrente no fio. Neste caso, as linhas do campo magnético apresentam-se como círculos concêntricos, o vetor B é perpendicular ao plano definido pelo ponto e o fio e o sentido do campo é dado pela regra da mão direita (Figura 2). Figura 2: Exemplo de uso da regra da mão direita para um condutor retilíneo. Quando se aponta o polegar da mão direita no sentido da corrente elétrica, o sentido do campo magnético é dado pelos demais dedos dobrados. Considere agora uma espira circular de raio R e uma corrente I percorrendo a espira (Figura 3). As linhas do campo magnético entram por um lado da espira e saem por outro, de modo que o sentido é determinado pela regra da mão direita. Figura 3: O sentido do campo magnético de uma espira circular é dado pela regra da mão direita. Departamento de Física, Universidade Federal de Sergipe 2
3 O módulo do campo magnético sobre o eixo de uma espira circular a uma distância x do centro da espira é dado por: B = μ 0 IR 2 (2) 2(x 2 + R 2 ) 3/2 Considerando que o ponto x = 0 é o centro da espira, tem-se que o módulo do campo neste ponto é dado por: B = μ 0I 2R (3) E no caso de N espiras: B = μ 0NI 2R (4) Lei de Ampère A lei de Ampère é análoga à lei de Gauss para o campo elétrico. Essa lei foi proposta originalmente por André-Marie Ampère no século XVIII e diz que a circulação do campo magnético ao longo de um percurso fechado é igual à permeabilidade magnética no vácuo vezes a corrente total que atravessa a área envolvida, dada pela seguinte integral de linha: B. dl = μ 0 I (5) A lei de Ampère é útil quando envolve situações com simetria que permitem o cálculo da integral, tais como o cálculo do campo de um fio condutor longo e retilíneo, campo no interior de um cilindro condutor, campo de um solenóide linear, campo de um solenóide toroidal, entre outros. Um solenóide é constituído por um enrolamento como uma hélice cilíndrica com as espiras muito próximas (Figura 4). Todas as espiras conduzem a mesma corrente I, e o campo magnético total B em cada ponto é a soma vetorial dos campos produzidos pelas espiras individuais. No seu interior, os campos se somam e o campo total é aproximadamente constante e uniforme. No seu exterior, os campos se cancelam, e o campo é aproximadamente nulo. Departamento de Física, Universidade Federal de Sergipe 3
4 Figura 4: Campo magnético ao longo do eixo de um solenóide, cujo comprimento é igual a quatro vezes o seu raio (Halliday; Sears & Zemansky). Pela figura anterior, o número de espiras para um dado comprimento L é igual a N. Cada uma dessas espiras passa uma vez pelo retângulo abcd e a corrente total que passa pelo retângulo abcd é IT = NI De acordo com a lei de Ampère, o módulo do campo magnético para um solenóide longo é dado por: B = μ 0 N L I (6) onde µ0 = permeabilidade magnética do vácuo = (T.m/A), I é a corrente elétrica que passa pelo solenóide e N é o número de espiras em um dado comprimento L. Entretanto, o campo só é uniforme e constante na porção central do solenóide, pois os solenóides reais têm comprimento limitado e os campos próximos os limites do solenóide sofrem um efeito de borda, região na qual o campo cai do valor do campo magnético no interior do solenóide até o campo magnético nulo no exterior do solenóide. O comportamento do campo magnético ao longo de um solenóide, incluindo a região de bordas, é representado na Figura 5 a seguir. Nesta figura, o valor do campo magnético em cada ponto foi dividido pelo valor do campo máximo (B), no centro do solenóide (B0), e o comprimento do solenóide pode ser estimado pela largura a meia altura, conforme indicado no gráfico. Departamento de Física, Universidade Federal de Sergipe 4
5 Figura 5: Gráfico da razão entre o campo magnético (B) e o campo magnético máximo (B0) no interior de um solenóide. Atividade experimental 1. Objetivos O objetivo desta atividade prática é contribuir para a compreensão do campo magnético gerado por fios condutores, e observar na prática a Lei de Biot- Savart e de Ampère. 2. Materiais e Métodos Os materiais necessários para realização deste experimento são: Fonte de tensão elétrica contínua; Cabos; Teslâmetro; Multímetro; Bobinas condutoras; Bússolas; Fio de cobre; Solenóide com 300 espiras; Trena; Suportes diversos. Departamento de Física, Universidade Federal de Sergipe 5
6 Roteiro Experimental: 1ª Parte: Experiência de Oersted i. Monte um experimento semelhante ao de Oersted, utilizando uma bússola e um suporte com um fio de cobre espesso. ii. Alinhe a bússola e o fio de cobre com a direção norte, como na Figura 1. iii. Aplique uma corrente de 3 A no fio e observe a deflexão da bússola. iv. Inverta a direção da corrente e observe novamente o que acontece. 2ª Parte: Campo central em bobinas de corrente (a Lei de Biot-Savart). i. Monte um arranjo experimental que permita a medida do campo no centro das bobinas (x = 0). ii. Utilizando agora 3 bobinas de mesmo raio e com diferente número de espiras, meça o campo magnético central em cada caso, utilizando uma corrente fixa de 3 A. iii. Utilizando 3 bobinas com apenas uma volta e diferentes raios, meça o campo magnético central em cada caso, utilizando uma corrente fixa de 3 A. 3ª Parte: Campo magnético central com diferentes correntes i. Meça o comprimento do solenóide e determine seu centro; ii. Insira a haste do teslâmetro no interior do solenóide até que a extremidade coincida com o centro do solenóide. Essa será a posição x = 0; iii. Meça o valor campo magnético no centro do solenóide para 10 valores de corrente distintos, menores do que 1,5 A, para determinar o valor de corrente. Use o display da fonte como indicador da corrente. 4ª Parte: Campo magnético ao longo do eixo x i. Com o teslâmetro posicionado inicialmente na posição x = 0, ligue a fonte de tensão e ajuste a corrente para 1 A; ii. Meça o valor do campo magnético na posição inicial e varie a posição da extremidade da haste com relação ao centro do solenóide, medindo o campo em cada posição, até que tenha sido possível obter os dados necessários para construir um gráfico como o da Figura 5. Departamento de Física, Universidade Federal de Sergipe 6
7 3. Tabela de Dados Tabela 1: Valores de campos magnéticos no centro de bobinas de diferentes raios e número de espiras. Bobina 1 Bobina 2 Bobina 3 Bobina 1 Bobina 2 Bobina 3 Raio (cm) Raio (cm) Nº de Espiras Nº de Espiras Bobinas de mesmo raio Campo Magnético em x=0 (mt) B s a s b s c Medida 1 Medida 2 Medida 3 (mt) (mt) (mt) (mt) Bobinas de mesmo número de espiras Campo Magnético em x=0 (mt) B s a s b s c Medida 1 Medida 2 Medida 3 (mt) (mt) (mt) (mt) Resultado de B Resultado de B Tabela 2: Valores de campos magnéticos no centro do solenóide para i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 diferentes correntes. Campo magnético central (x=0) Corrente s bcorrente B s bcampo (A) (A) (mt) (mt) Departamento de Física, Universidade Federal de Sergipe 7
8 Tabela 3: Valores de campos magnéticos ao longo do eixo central do solenóide. Campo magnético ao longo do eixo x Corrente = Deslocamento direção positiva Deslocamento direção negativa Posição B s b Posição B s b (cm) (mt) (mt) (cm) (mt) (mt) 0,0 0,0 1,0-1,0 2,0-2,0 3,0-3,0 4,0-4,0 5,0-5,0 6,0-6,0 7,0-7,0 7,5-7,5 8,0-8,0 8,5-8,5 9,0-9,0 9,5-9,5 10,0-10,0 10,5-10,5 11,0-11,0 11,5-11,5 12,0-12,0 12,5-12,5 13,0-13,0 13,5-13,5 14,0-14,0 Departamento de Física, Universidade Federal de Sergipe 8
9 Discussão 1ª Parte: 1. Discuta a deflexão das bússolas devido à passagem de corrente no fio de cobre. 2ª Parte: 1. Construa dois gráficos: um de campo magnético versus o número de espiras e outro do campo magnético versus o raio da espira. Faça os ajustes adequados em cada gráfico e determine, a partir dos parâmetros dos ajustes, a permeabilidade magnética do ar, determine-a, com incerteza (propagada) e compare, determinando o erro relativo em percentual, com o valor da permeabilidade magnética do vácuo ( T.m/A). 2. Discuta o comportamento dos gráficos e analise se os resultados estão coerentes com a Lei de Biot-Savart (vide Equação (4)). 3ª Parte: 1. Construa o gráfico de B versus I e determine μ0 com incerteza (propagada) a partir do coeficiente angular da reta, utilizando o valor de L determinado com a régua e sabendo que o número de espiras do solenóide utilizado era Compare o valor do item anterior com a permeabilidade magnética do vácuo ( T.m/A), mais uma vez determinando um erro relativo em percentual. 4ª Parte: 1. Construa o gráfico de B/B0 versus a posição e verifique sua similaridade com o gráfico da Figura 5. Note que B0 é o campo em x = 0 (valor máximo). 2. Determine o comprimento L do solenóide a partir do gráfico e compare com o valor medido em sala. Departamento de Física, Universidade Federal de Sergipe 9
LEI DE AMPÈRE. Introdução
LEI DE AMPÈRE Introdução A lei de Ampère é análoga à lei de Gauss para o campo elétrico. Essa lei foi proposta originalmente por André-Marie Ampère no século XVIII e diz que a circulação do campo magnético
Física Experimental III - Experiência E8
Física Experimental III - Experiência E8 Experiência de Oersted e Medidas de campo magnético OBJETIVOS Reproduzir a experiência de Oersted. Estimar o campo magnético da Terra. Avaliar os campos magnéticos
Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202
Eletricidade e Magnetismo - IME Fontes de Campo Magnético Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 [email protected] Magnetismo e movimento de cargas Primeira evidência de relação entre magnetismo
Apostila de Física 37 Campo Magnético
Apostila de Física 37 Campo Magnético 1.0 Definições Ímãs Pedra que atrai ferro ou outras pedras semelhantes. Fenômenos magnéticos Propriedades dos ímãs que se manifestam espontaneamente na Natureza. Magnetita
Eletromagnetismo. Histórico
Eletromagnetismo Histórico Desde a antiguidade quando os fenômenos elétricos e magnéticos foram descobertos, se acreditava que o magnetismo e a eletricidade eram fenômenos distintos sem nenhuma relação
Prof. Igor Dornelles Schoeller
Prof. Igor Dornelles Schoeller Os gregos descobriram na região onde hoje chamamos de Turquia, um minério com capacidade de atrair ferro e outros minérios semelhantes. Pedaços de magnetita encontradas na
Campo Magnético produzido por correntes elétricas
Campo Magnético produzido por correntes elétricas Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/
Campos Magnéticos produzidos por Correntes
Cap. 29 Campos Magnéticos produzidos por Correntes Copyright 29-1 Campo Magnético produzido por uma Corrente O módulo do campo db produzido no ponto P a uma distância r por um elemento de corrente i ds
Capítulo 29. Objetivos do Aprendizado
Capítulo 29 Objetivos do Aprendizado OA 29.1.0 Resolver problemas relacionados a campos magnéticos produzidos por correntes. OA 29.1.1 Desenhar um elemento de corrente em um fio e indicar a orientação
Leis de Biot-Savart e de Ampère
Leis de Biot-Savart e de Ampère 1 Vimos que uma carga elétrica cria um campo elétrico e que este campo exerce força sobre uma outra carga. Também vimos que um campo magnético exerce força sobre uma carga
Teorema de Gauss p/ o campo magnético Em 1819 Oersted observou que uma bússola próxima a um condutor que transporta corrente sofre uma deflexão na
Principais leis do campo magnético O campo magnético, assim como o campo elétrico possui importantes propriedades que estão relacionadas com o fluxo através de uma superfície fechada e a circulação de
FÍSICA. Prof. SÉRGIO GOUVEIA PROMILITARES AFA/EFOMM/EN MÓDULO 10 SUMÁRIO
SUMÁRIO CAMPOS MAGNÉTICOS GERADOS POR CORRENTES 3 INTRODUÇÃO 3 1. LEI DE BIOT SAVART 5 2. FORÇA ENTRE FIOS PARALELOS RETILÍNEOS 7 2.1. CORRENTES DE MESMO SENTIDO 7 2.2. CORRENTES DE SENTIDOS OPOSTOS 8
Aula 21 - Lei de Biot e Savart
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot
Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética
Magnetismo Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Orientação Geográfica Norte Geográfico N Sul Geográfico S Atração e Repulsão S N N S N S S N N S N S Inseparabilidade N S N S
Lecture notes. Prof. Cristiano. Fonte de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202
Eletricidade e Magnetismo IGC Fontes de Campo Magnético Oliveira Ed. Basilio Jafet sala 202 [email protected] Fonte de Campo Magnético Imã ImãemC Fio de corrente Espira de corrente Solenóide de corrente
Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide.
AULA 16.1 Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide. Habilidades: Compreender os princípios físicos envolvidos no magnetismo e eletromagnetismo para relacionar fenômenos
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 3 CAMPO MAGNÉTICO... 3 O Magnetismo e os Trens Balas... 3 A Descoberta Revolucionária de 1820... 3 Campo Magnético Gerado por um Condutor
Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.
Engenharias, Física Elétrica, prof. Simões Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. 1.(EEM-SP) É dado um fio metálico reto, muito longo,
ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto
ELETRICIDADE GERAL E APLICADA Armando Alves Hosken Neto MAGNETISMO IMÃS: ATRAÇÃO DE CERTOS MATERIAIS (FERRO) MAGNETISMO IMÃ: Dispositivo capaz de atrair Fe, Co, Ni, Aço (ferromagnéticos) MAGNETISMO TIPOS
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi Disciplina de Eletromagnetismo 1 COMPETÊNCIAS Conhecer as leis fundamentais do
Lista de Exercícios 7 Lei de Ampère
Lista de Exercícios 7 Lei de Ampère E8.1 Exercícios E8.1 Um fio de material supercondutor de raio igual a 10 µm transporta uma corrente de 100 A. Calcule o campo magnético na superfície do fio. R.,0 T.
Lei de Ampere. 7.1 Lei de Biot-Savart
Capítulo 7 Lei de Ampere No capítulo anterior, estudamos como cargas em movimento (correntes elétricas) sofrem forças magnéticas, quando na presença de campos magnéticos. Neste capítulo, consideramos como
Aula 20 - Campo Magnético de uma Corrente Elétrica
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 31-3, 31-4 S. 9-4, 9-5. 5-, 5-3 Aula - Campo Magnético
Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 8 Magnetismo e fontes de campo magnético
Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 8 Magnetismo e fontes de campo magnético N2 Nota 1. Assinale as afirmativas corretas. I. A
CENTRO EDUCACIONAL SESC CIDADANIA
CENTRO EDUCACIONAL SESC CIDADANIA Professor: Vilson Mendes Lista de exercícios de Física I Lista 8 Magnetismo e fontes de campo magnético ENSINO MÉDIO NOTA: Aluno (a): Data SÉRIE/TURMA 3ª 1. Assinale as
Campos Magnéticos Produzidos por Correntes
Cap. 29 Campos Magnéticos Produzidos por Correntes Prof. Oscar Rodrigues dos Santos [email protected] Campos Magnéticos Produzidos por Correntes 1 Campos Magnéticos Produzidos por Correntes Campos
Capítulo 7. Fontes de Campo Magnético. 7.1 Lei de Gauss no Magnetismo
Capítulo 7 Fontes de Campo Magnético Nesse capítulo, exploraremos a origem do campo magnético - cargas em movimento. Apresentaremos a Lei de Gauss do Magnetismo, a Lei de Biot-Savart, a Lei de Ampère e
Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2018/1 Lista 7: Leis de Ampère e Biot-Savart Prof. Marcos Menezes 1. Considere mais uma vez o modelo clássico para o átomo de Hidrogênio discutido anteriormente. Supondo que podemos considerar
Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2018/2 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
Lista 7: Leis de Ampère e Biot-Savart (2017/2)
Lista 7: Leis de Ampère e Biot-Savart (2017/2) Prof. Marcos Menezes 1. Considere novamente o modelo clássico para o átomo de Hidrogênio discutido nas últimas listas. Supondo que podemos considerar que
Corpos que atraem Fe, Ni, Co (materiais ferromagnéticos) e suas ligas. Possuem duas regiões especiais: PÓLOS
ÍMÃS Corpos que atraem Fe, Ni, Co (materiais ferromagnéticos) e suas ligas. Possuem duas regiões especiais: PÓLOS 1 CLASSIFICAÇÃO ímã natural: magnetita (região da magnésia Ásia menor Turquia Irã - Iraque
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 3 EXPERIÊNCIA 9 BOBINAS DE HELMHOLTZ. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com o dispositivo conhecido como sonda Hall (sensor de campo magnético que funciona baseado
Unidade 3. Noções de Magnetismo e Eletromagnetismo. Objetivos da Unidade. Objetivos Conteúdos da da Unidade
Unidade 3 Noções de Magnetismo e Eletromagnetismo Nesta terceira unidade, você estudará os conceitos básicos em relação ao magnetismo e eletromagnetismo. Objetivos da Unidade Definir campo magnético; Definir
Força magnética e campo magnético
Força magnética e campo magnético Introdução: O fenômeno do magnetismo já era conhecido pelos gregos por volta do ano 800 ac. Eles observaram que determinadas rochas que continham óxido de ferro tinham
LEI DE AMPÈRE. Aula # 15
LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7
AULA 01: CAMPO MAGNÉTICO
PROF. ALEADRO FREITA 1. ÍMÃ: ão corpos que atraem ferro ou que interagem entre si. 2. PROPRIEDADE DO ÍMÃ 1ª) Todo imã possui dois pólos: o orte () e o ul (). AULA 01: CAMPO MAGÉTICO 2ª) Os pólos de um
CAMPOS MAGNÉTICOS DEVIDO À CORRENTES
Cálculo do campo magnético devido a uma corrente Considere um fio de forma arbitrária transportando uma corrente i. Qual o campo magnético db em um ponto P devido a um elemento de fio ds? Para fazer esse
Lista de Exercícios. Campo Magnético e Força Magnética
Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B
Eletromagnetismo. Fenômenos associados a imãs tanto naturais como artificiais.
Conceitos Básicos Eletromagnetismo Na região conhecida como Magnésia descobriu-se que alguns tipos de rocha atraíam umas ás outras e podiam também atrair objetos de ferro. Essas pedras, denominadas magnetitas,
Lista de Exercícios 5 Corrente elétrica e campo magnético
Lista de Exercícios 5 Corrente elétrica e campo magnético Exercícios Sugeridos (13/04/2010) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2 î 4 ĵ + ˆk)
Campo Magnético da Terra
Física Campo Magnético da Terra Campo Magnético da Terra Neste experimento mediremos a componente horizontal do campo magnético da Terra. Para isso utilizaremos um par de bobinas de Helmholtz de forma
CAMPO MAGNÉTICO LEONARDO PASSOS SALVATTI
CAMPO MAGNÉTICO LEONARDO PASSOS SALVATTI APRESENTAÇÃO Neste tópico, introduziremos o conceito de campo magnético e discutiremos as características do vetor indução magnética. Definiremos as linhas de indução
Aula-09 Campos Magnéticos Produzidos por Correntes
Aula-09 ampos Magnéticos Produzidos por orrentes Lei de Biot - Savart De maneira análoga à que o campo elétrico d E produzido por cargas é: d E= 1 dq 4 πε 0 r ^r= 1 dq 2 4 πε 0 r r 3 d o campo magnético
3. (Unirio RJ) Assinale a opção que apresenta a afirmativa correta, a respeito de fenômenos eletromagnéticos:
Lista 10 - Eletromagnetismo 1. (PUC MG) A figura mostra o nascer do Sol. Dos pontos A, B, C e D, qual deles indica o Sul geográfico? a) A. b) B. c) C. d) D. 2. (UFMG) A figura mostra uma pequena chapa
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação ão: Geração de Corrente Alternada do professor Clóvis Antônio
FACULDADE PITÁGORAS MAGNETISMO E ELETROMAGNETISMO
FACULDADE PITÁGORAS MAGNETISMO E ELETROMAGNETISMO Prof. Ms. Carlos José Giudice dos Santos [email protected] www.oficinadapesquisa.com.br UNIDADE III Magnetismo Características dos imãs (polos)
2.2. Eletromagnetismo Professora Paula Melo Silva
2.2. Eletromagnetismo Professora Paula Melo Silva CARGA Propriedade elétrica das partículas atómicas que compõem a matéria. A carga elementar corresponde ao módulo do valor da carga elétrica apresentado
Campo magnético e forças magnéticas
Campo magnético e forças magnéticas 1 Há pelo menos cerca de 2500 anos se observou que certos corpos tem a propriedade de atrair o ferro. Esses corpos foram chamados ímãs. Essa propriedade dos ímãs foi
Ímanes. Os ímanes podem ser de vários materiais e podem ter formas e tamanhos diversos, mas têm sempre um polo norte e um polo sul.
Ímanes Os ímanes podem ser de vários materiais e podem ter formas e tamanhos diversos, mas têm sempre um polo norte e um polo sul. Os polos do iguais repelem-se e polos diferentes atraem-se, tal como sucede
NOME: PROFESSOR: Glênon Dutra
Apostila - Eletromagnetismo NOME: PROFESSOR: Glênon Dutra DISCIPLINA: Física N O : TURMA: DATA: O nome magnetismo vem de Magnésia, região próxima da Grécia onde os gregos encontravam em abundância um mineral
Curso Técnico em Informática. Eletricidade
Curso Técnico em Informática Eletricidade Eletricidade Aula_01 segundo Bimestre Na aula de hoje... Conceitos básicos de magnetismo Materiais magnéticos e ferromagnéticos Grandezas eletromagnéticas Regras
Exercícios de Física Eletromagnetismo
Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte
Fontes do Campo magnético
Fontes do Campo magnético Lei de Biot-Savart Jean-Baptiste Biot (1774 1862) e Félix Savart (1791 1841) Realizaram estudos sobre as influências de um corrente elétrica sobre o campo magnético. Desenvolveram
Prof. Flávio Cunha, (19) Consultoria em Física, Matemática e Programação.
CAMPO MAGNÉTICO 1. Considere as seguintes afirmações: I. Suspendendo-se um ímã pelo seu centro de gravidade, seu pólo norte se orienta na direção do pólo norte geográfico da Terra e seu pólo sul se orienta
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE 10.1 OBJETIVOS Determinar o valor da componente horizontal da indução magnética terrestre local. 10.2 INTRODUÇÃO Num dado lugar
Lista de Exercícios 3 Corrente elétrica e campo magnético
Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s
Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas
Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas 1. Na Fig.1, em (a) e (b), as porções retilíneas dos fios são supostas muito longas e a porção semicircular tem raio R. A corrente tem intensidade
UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE FORMAÇÃO DE PROFESSORES ROTEIRO EXPERIMENTAL ELETROÍMÃ
UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE FORMAÇÃO DE PROFESSORES ROTEIRO EXPERIMENTAL ELETROÍMÃ 1. Introdução Um solenoide conduzindo uma corrente elétrica constitui um eletroímã. Um solenoide
Física III-A /2 Lista 8: Indução Eletromagnética
Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de
Eletromagnetismo I. Tiago Walescko Chimendes - Física - CAE 17 de agosto de Imãs e Pólos Magnéticos
Eletromagnetismo I Tiago Walescko Chimendes - Física - CAE 17 de agosto de 2006 Sumário 1 Magnetismo 1 1.1 Imãs e Pólos Magnéticos....................... 1 1.2 Campo Magnético Terrestre.....................
(a) Determine o fluxo magnético através da área limitada pela espira menor em função de x 1. Na espira menor, determine. (b) a fem induzida e
1. A Figura 1 mostra duas espiras de fio paralelas tendo um eixo comum. A espira menor de (raio r) está acima da espira maior (de raio R) a uma distância x R. Conseqüentemente, o campo magnético devido
Campo Magnética. Prof. Fábio de Oliveira Borges
Campo Magnética Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo magnético
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Lista de Exercícios IX
Física III Lista de Exercícios IX 1 Lista de Exercícios IX 1 Uma casca esférica uniformemente carregada gira em torno de seu eixo com uma velocidade angular ω = ωẑ fixa. Calcule o campo magnético produzido
Lista de exercícios 8 Campos magnéticos produzidos por corrente
Lista de exercícios 8 Campos magnéticos produzidos por corrente 1. Em um certo local das Filipinas o campo magnético da Terra tem um modulo de 39 µt, é horizontal e aponta exatamente para o norte. Suponha
Curso Técnico em Mecatrônica. Exemplos de Máquinas Elétricas. Introdução à Máquinas Elétricas. Magnetismo. Máquinas Elétricas Plano de Ensino
Curso Técnico em Mecatrônica Máquinas Elétricas Plano de Ensino 4º Módulo 2017/2 Professor: Thiago Mombach [email protected] Introdução à Máquinas Elétricas Máquinas Elétricas são equipamentos
Questão 1. Questão 3. Questão 2
Questão 1 A autoindutância (ou simplesmente indutância) de uma bobina é igual a 0,02 H. A corrente que flui no indutor é dada por:, onde T = 0,04 s e t é dado em segundos. Obtenha a expressão da f.e.m.
Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO Vamos supor que existe uma carga em movimento num campo magnético. O campo magnético está entrando no plano e a velocidade da carga é perpendicular ao campo. A carga começará a se mover
Cap. 28. Campos Magnéticos. Prof. Oscar Rodrigues dos Santos Campos Magnéticos 1
Cap. 28 Campos Magnéticos Prof. Oscar Rodrigues dos Santos [email protected] Campos Magnéticos 1 Campos Magnéticos - Há mais de 2500 anos eram encontrados fragmentos de ferro imantados nas proximidades
Magnetismo Prof. Dr. Gustavo A. Lanfranchi
Magnetismo Prof. Dr. Gustavo A. Lanfranchi Tópicos de Física, Eng. Civil 2018 Magnetismo O que é magnetismo? Existem campos magnéticos na natureza? Como e quais são? Do que depende a força magnética? Como
MÁQUINAS ELÉTRICAS. Aula 01 - ELETROMAGNETISMO
MÁQUINAS ELÉTRICAS Aula 01 - ELETROMAGNETISMO Introdução Magnetismo: Origina-se da estrutura física da matéria, no átomo; Spin eletrônico e Rotação orbital é que definem o efeito magnético do átomo; Na
Corrente contínua e Campo de Indução Magnética: CCB
CCB 01 Corrente contínua e Campo de Indução Magnética: CCB Um condutor elétrico cilíndrico encontra-se disposto verticalmente em uma região do espaço, percorrido por uma intensidade de corrente Oersted
TEORIA DOS DOMÍNIOS MAGNÉTICOS. Dorival Brito
TEORIA DOS DOMÍNIOS MAGNÉTICOS Dorival Brito TEORIA DOS DOMÍNIOS MAGNÉTICOS GRANDEZAS MAGNÉTICAS FUNDAMENTAIS MAGNETISMO O magnetismo é uma forma de energia apresentada apenas por alguns materiais, tais
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
TC DE FÍSICA N o 03 3ª SÉRIE / ENSINO MÉDIO
TC DE FÍSCA N o 03 3ª SÉE / ENSNO MÉDO POFESSO Edney Melo ALUNO(A): Nº TUMA: TUNO: DATA: / / COLÉGO: Campo Magnético no Centro de uma Espira Circular Quando uma espira circular condutora, de raio, é percorrida
Plano de Estudos Independentes de Recuperação ( No período de férias escolares)
Plano de Estudos Independentes de Recuperação ( No período de férias escolares) 3ºANO Física (Prof. Ronaldo) Carga Elétrica Processos de Eletrização. Lei de Coulomb. Campo e Potencial Elétrico. Trabalho
Lista de exercícios do 3º ano do E.M. 1º Trimestre. FÍSICA B Professor Anderson
Lista de exercícios do 3º ano do E.M. 1º Trimestre. FÍSICA B Professor Anderson MAGNETISMO, CAMPO MAGNÉTICO INDUZIDO E FORÇA MAGNÉTICA 1. (FUVEST) A figura I adiante representa um imã permanente em forma
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Campos Magnéticos_Densidade-de-Fluxo-Permeabilidade-Relutância - 1-29. 17 Curso Técnico em Eletrotécnica Campos Magnéticos,
Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética
Eletromagnetismo Motor Eletroimã Eletroimã Fechadura eletromagnética Motor elétrico Ressonância Magnética Representação de um vetor perpendicular a um plano 1 Campo Eletromagnético Regra da mão direita:
(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2
Universidade Federal do Rio de Janeiro Instituto de Física Segunda Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 12/11/2018 Seção 1: Múltipla Escolha (7 0,7 = 4,9 pontos) 1. No circuito mostrado
Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados
Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar
EL EL ETR ETR OMA OMAGN GNETISMO ETISMO
ELETROMAGNETISMO AULA 10 FORÇA DE LORENTZ Até agora falamos a respeito da eletricidade. Vimos o conceito de carga elétrica, corrente elétrica, circuitos... Mas acontece que esse é um curso de eletromagnetismo
2013, Relatório fis 3 exp 6 EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA. Copyright B T
EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA Introdução! Suspendendo-se uma agulha magnética de tal modo que ela possa girar livremente, ela se orienta em uma direção perfeitamente determinada. Este comportamento
Histórico do Magnetismo e suas bases teóricas
Histórico do Magnetismo e suas bases teóricas Prof. Vicente Pereira de Barros Conteúdo 15 -Histórico e propriedades básicas do Magnetismo Conteúdo 16 O campo magnético Conteúdo 17 Fluxo Magnético Conteúdo
10 T, circunferências concêntricas. 10 T, 10 T, radiais com origem no eixo do solenoide. 10 T, retas paralelas ao eixo do solenoide. 9 π.
1. Considere um longo solenoide ideal composto por 10.000 espiras por metro, percorrido por uma corrente contínua de 0,2A. O módulo e as linhas de campo magnético no interior do solenoide ideal são, respectivamente:
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
27 Experimento 3: Lei de Faraday, transformadores e campo magnético da Terra 1.3.1 Objetivos Realizar experimentos que verifiquem a lei de indução de Faraday. Estudar o processo de transformação de tensão
Magnetismo e Eletromagnetismo. Adrielle de Carvalho Santana
Magnetismo e Eletromagnetismo Adrielle de Carvalho Santana Denomina-se imã, um corpo que possui a propriedade de atrair materiais ferromagnéticos. Magnetismo: Propriedade em virtude da qual esta atração
Lista de Exercícios 4
Lista de Exercícios 4 Leis da Indução Exercícios Sugeridos A numeração corresponde ao Livros Textos A e B. A23.1 Uma espira plana com 8,00 cm 2 de área consistindo de uma única volta de fio é perpendicular
FÍSICA MÓDULO 9 CAMPO MAGNÉTICO. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 9 CAMPO MAGNÉTICO 1. INTRODUÇÃO A magnetita (um óxido de ferro natural, Fe 3 O 4 ) apresenta as propriedades de atrair o ferro e, convenientemente cortada, de se
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC
Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017
Física 3 - EMB5043 Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017 1. A figura 1 mostra dois fios. O fio de baixo conduz uma corrente i 1 = 0,40 A e inclui
Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças
Capítulo 6 Campo Magnético 6.1 Introdução Cargas elétricas geram campos elétricos E e sofrem forças elétricas F e. Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças magnéticas
