Experimento B 4 : Pêndulo de Torção
|
|
|
- Oswaldo Gusmão Monteiro
- 9 Há anos
- Visualizações:
Transcrição
1 Experimento B : Pêndulo de Torção Objetivos Determinar a constante de torção de um fio. Verificar a relação entre o momento de inércia e o período de oscilação. Verificar a dependência do momento de inércia com a distância das massas ao eixo de rotação. Apresentação Neste experimento queremos medir a constante de torção k do pêndulo de torção. Em um pêndulo de torção, o torque produzido pela torção no fio é proporcional à amplitude de oscilação θ, se essa amplitude é pequena, ou seja, τ = kθ A constante de proporcionalidade k é chamada constante de torção do fio e depende de suas propriedades, como comprimento, diâmetro, material. No movimento de rotação, τ = Iα, em que α é a aceleração angular e podemos mostrar que a equação de movimento para um pêndulo de troção será dada por: d θ dt + k I θ = 0 () em que I é o Momento de Inércia do objeto pendular em relação ao eixo de rotação. Essa equação é semelhante à equação de movimento para o sistema massa-mola, de forma que podemos assumir que o período de oscilação do pêndulo de torção, para pequenas oscilações, será dado por: I T = π () k Este experimento será dividido em duas partes: na Parte I vamos estudar o pêndulo de torção com um e dois fios paralelos e calcular a constante de restituição k; na Parte II vamos mostrar a relação entre o momento de inércia e o período de oscilação do pêndulo de torção e verificar a dependência do Momento de Inércia com a distância das massas ao eixo de rotação. Momento de Inércia de uma haste delgada homogênea, de massa M e comprimento L, em relação a um eixo que passa pelo centro de massa I = ML Momento de Inércia de um cilindro maciço e homogêneo, de massa M, comprimento L e raio R, em relação a um diâmetro central I = ML + MR Momento de Inércia de um cilindro oco, de massa M, comprimento L, raios externo R e interno r, em relação a um diâmetro central I = ML + M(R + r )
2 Material Utilizado Um pêndulo de torção; 0 fios de alumínio; 0 fios de cobre; 0 cilindros de massas iguais. 0 Cronômetro; Balança; Paquímetro. Procedimento. Use o pêndulo de torção, montado conforme a figura
3 . Gire a haste de prova provocando uma pequena torção no fio do pêndulo de aproximadamente o. Solte-o, espere que o movimento se estabilize e conte o tempo de pelo menos 0 oscilações completas. Anote os dados na Tabela. Repita este procedimento por vezes. 6. Retire o fio que conecta o corpo girante à base do pêndulo e repita o procedimento anterior. Anote seus dados na Tabela. 7. Substitua o fio de cobre pelo fio de alumínio e repita todo o processo. Anote seus dados na Tabela. Análise dos dados e discussão. Mostre a equação
4 . Complete a Tabela calculando o valor de T, a e I exp e suas respectivas incertezas. Use a equação
5 Experimento B : Pêndulo de Torção Folha de dados Professor: Data: / / Alunos: Parte I M(kg) = M(kg) = (massa haste de prova) R(m) = R(m) = (raio da haste de prova) L(m) = L(m) = (comprimento da haste de prova) d c (m) = d c (m) = (diâmetro do fio de cobre) l c (m) = l c (m) = (comprimento do fio de cobre) d a (m) = d a (m) = (diâmetro do fio de alumínio) l a (m) = l a (m) = (comprimento do fio de alumínio) Tabela : Tempo das 0 oscilações e cálculo do período do pêndulo de torção usando a haste de prova. Dois fios de cobre Um fio de cobre t (s) T (s) t (s) T (s) T Tabela : Tempo das 0 oscilações e cálculo do período do pêndulo de torção usando a haste de prova. Dois fios de alumínio Um fio de alumínio t (s) T (s) t (s) T (s) T
6 Parte II m(kg) = m(kg) = (massa do contrapeso) r in (m) = r in (m) = (raio interno do contrapeso) r ex (m) = r ex (m) = (raio externo do contrapeso) l(m) = l(m) = (comprimento do contrapeso) Tabela : Tempo das 0 oscilações e cálculo do período do pêndulo de torção usando a haste de prova e os contrapesos, para cada distância a. t (s) T (s) a (m) Tabela : Período do pêndulo de torção usando a haste de prova e os contrapesos para cada distância a e cálculo do Momento de Inércia, I exp. T ± T (s ) a ± a (m ) I exp ± I exp (Kgm )
Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução
Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.
1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
Entender o funcionamento de um pêndulo, correlacioná-lo com o pêndulo simples, determinar a aceleração da gravidade e o momento de inércia do corpo.
UNIVERSIDADE DE SÃO PAULO Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Física Fone: (016) 3.3718/3693 Fax: (016) 3 949 USP EXPERIÊNCIA PÊNDULO Objetivos Entender o funcionamento
Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares
Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 9 - Rotação do Corpo Rígido Prof. Elvis Soares Para nós, um corpo rígido é um objeto indeformável, ou seja, nesse corpo
Física I para Engenharia IFUSP P3-18/07/2014
Física I para Engenharia IFUSP - 43195 P3-18/0/014 A prova tem duração de 10 minutos. Resolva cada questão na folha correspondente. Use o verso se necessário. Escreva de forma legível, a lápis ou tinta.
Resumo e Lista de Exercícios. Física II Fuja do Nabo P
Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
Vibrações e Dinâmica das Máquinas Aula Momento de Inércia. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula Momento de Inércia Professor: Gustavo Silva 1 1.Momento de Inércia A massa m representa a resistência de um corpo à aceleração a. F = m a Força Massa Do mesmo modo,
Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos
Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o
a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.
30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
ENGENHOCAS. Pêndulo de torção
ENGENHOCAS Pêndulo de torção Ana Carolina Malatesta 1370404 Beatriz Barcellos Mattos 137041 Eduarda Mihara 137038 Sabrini Oliveira 1370668 Profª. Drª. Maria Lúcia Pereira Antunes Laboratório de Física
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Física I. Lista de Exercícios LIVE: Exercícios P3
Física I Lista de Exercícios LIVE: Exercícios P3 Lista de Exercícios 1. Centro de Massa P2 2016.1 Diurno Exercício 9 Uma chapa metálica de densidade superficial uniforme (I) pode ser cortada das formas
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8)
[3A33]-p1/10 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) ando necessário, use π = 3, 14 e g=10 m/s 2 (1) (0,75) Um giroscópio está montado sobre um suporte vertical conforme a figura. Assinale a afirmativa incorreta:
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Experiência 3 - Pêndulo
Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas
Rotação e Momento angular
FÍSICA EXPERIMENTAL I Rotação e Momento angular EXPERIMENTO 6 Welber Miranda Engenharia Elétrica Versão 1: JUN/2017 1 OBJETIVO O objetivo principal é modelar fisicamente o movimento de rotação. INTRODUÇÃO
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F 18-1 o semestre 008 - Fernando Sato Prova 3 (Gabarito) - Diurno - 3/06/008 Problema 1: No esquema da figura abaixo, uma bala (com massa
Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:
Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência
Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)
LEI DE HOOKE INTRODUÇÃO A Figura 1 mostra uma mola de comprimento l 0, suspensa por uma das suas extremidades. Quando penduramos na outra extremidade da mola um corpo de massa m, a mola passa a ter um
15.2 Determinação experimental do momento de dipolo
CAPÍTULO 15 Medida do Momento Magnético 15.1 Objetivos Neste experimento faremos a medida experimental do momento de dipolo magnético de espiras de corrente de diversos diâmetros, comparando o resultados
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
Física I para a Escola Politécnica ( ) - P3 (07/07/2017)
Física I para a Escola Politécnica (433101) - P3 (07/07/017) [0000]-p1/9 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) (1) [1,0] Uma bola de sinuca de raio r rola sem deslizar do topo de um domo esférico com raio
FEP Física para Engenharia II. Prova P1 - Gabarito
FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.
Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro
Introdução às Medidas em Física 3 a Aula *
Introdução às Medidas em Física 3 a Aula * http://fge.if.usp.br/~takagui/fap015_011/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 006 sala 16 ramal 6811 1 Experiência II: Densidade de Sólidos!
Momento torsor. Torção em Eixos de Seção Retangular. 26 de setembro de 2016
Torção em Eixos de Seção Retangular 26 de setembro de 2016 Torção em Eixos de Seção Retangular Quando um torque é aplicado a um eixo de seção transversal circular, as deforamções por cisalhamento variam
Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento
Física 2. Guia de Estudos P1
Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em
Aula do cap. 10 Rotação
Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:
MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.01 SOBRE A INÉRCIA MIEM. Integradora II. Elaborado por Paulo Flores
MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA Elaborado por Paulo Flores - 015 Departamento de Engenharia Mecânica Campus de Azurém 4804-533 Guimarães - PT Tel: +351 53 510 0 Fax: +351 53 516 007 E-mail: [email protected]
Tópico 8. Aula Prática: Pêndulo Simples
Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora
EXPERIÊNCIA M003-3 PÊNDULO SIMPLES
UFSC - CFM DEPTO. DE FÍSICA FÍSICA EXPERIMENTAL I - FSC 5122 1 - OBJETIVOS EXPERIÊNCIA M003-3 PÊNDULO SIMPLES a) Medir a aceleração da gravidade local. b) Identificar o equipamento e entender seu funcionamento.
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Questão 1 Considerando os momentos de inércia de um corpo no sistema de eixos principais de inércia com origem no centro de massa
Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 09/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise a
RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO Porto Alegre, 09 de Abril de 2015. Nome: Vítor
Roteiro: Experimento 8: Rotações e Momento de Inércia
Universidade Federal de Santa Catarina - Câmpus Blumenau Física Experimental 1 Roteiro: Experimento 8: Rotações e Momento de Inércia Prof. Rafael L. Novak 1 Introdução Neste experimento, será estudado
(a) K A = 2K B, V A = 2V B (b) K A = K B, V A = 2V B. (e) K A = 2K B, V A = V B /2. (d) K A = K B /2, V A = 2V B. (d) m a /2. (b) m a (c) m a /4
Instituto de Física - UFRJ Física I - Segunda Prova - 3/2/2016 Parte 1 - Múltipla escolha - 0,6 cada 1. Um tenista realiza um saque arremessando a bola verticalmente até uma altura máxima h em relação
O pêndulo simples é constituído por uma partícula de massa
AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa
Rotações de corpos rígidos
Rotações de corpos rígidos Alexandre Furlan Fundamentos de Mecânica - FIS065 Turmas E1 E2 E3 29 de outubro de 2018 Alexandre Furlan (Aula 18) Fundamentos de Mecânica 29 de outubro de 2018 1 / 10 Objetivos
Exp 5 - Pêndulo de torção
Exp 5 - Pêndulo de torção 1. Objetivos Estudo de um movimento oscilatório de torção, harmônico, sem amortecimento e também com amortecimento subcrítico, de tal forma que sejam observadas oscilações com
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
Física para Engenharia II - Prova P a (cm/s 2 ) -10
4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
Departamento de Física - ICE/UFJF Laboratório de Física II
Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar
Lista 10: Dinâmica das Rotações NOME:
Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder
Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]
Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número
BCJ Lista de Exercícios 7
BCJ0204-2016.1 Lista de Exercícios 7 1. Um dos primeiros métodos para se medir a velocidade da luz utilizava a rotação de uma roda dentada com velocidade angular constante. Um feixe de luz passava através
Movimento Circular I
Moimento Circular I Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eixo fixo. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação
Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,
Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal
As variáveis de rotação
Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento
Apresentação: Trabalho e energia
Apresentação: Trabalho e energia INTRODUÇÃO Como enfatizado na comum definição de energia como a habilidade de realizar trabalho, os conceitos de trabalho e energia estão intimamente relacionados. Dizemos
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação
Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
BC 0205 Fenômenos Térmicos
BC 0205 Fenômenos Térmicos Experimento 2 Roteiro Dilatação dos metais Professor: Data: / /2016 Turma: Turno: Proposta Compreender o efeito de dilatação (contração) térmica em metais e determinar o coeficiente
Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Física I para a Escola Politécnica ( ) - P3 (24/06/2016) [16A7]
Física I para a Escola Politécnica (330) - P3 (/0/0) [A] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas
Experimento 3: Momento de Inércia
Experimento 3: Momento de Inércia Objetivo: Determinar o momento de inércia de: a) Uma partícula b) Um disco c) Um disco em relação a um eixo paralelo ao eixo que passa pelo centro de massas. Momento de
Física 1 - EMB5034. Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017
Física 1 - EMB5034 Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017 1. Um corpo de massa M e raio R está em repouso sobre a superfície de um plano inclinado de inclinação
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Deslocamento, velocidade e aceleração angular. s r
Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque
Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 08/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO
Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física
U15040 Pêndulo de torção segundo Prof. Pohl
3B SCIENTIFIC PHYSICS U15040 Pêndulo de torção segundo Prof. Pohl Instruções para o uso 1/03 ALF 9 8 7 6 5 4 bl bm bn bo bp 3 1 1 Motor do excitador Botão rotativo para o ajuste fino da tensão do excitador
Parte 2 - P2 de Física I NOME: DRE Teste 1
Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,
Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
