PERDA DE CARGA EM CONDUTOS FORÇADOS
|
|
|
- Cristiana Sonia Aires Barata
- 7 Há anos
- Visualizações:
Transcrição
1 PERDA DE CARGA EM CONDUTOS FORÇADOS SANDRA MAUREN ELL 1 ; ALDIE TRABACHINI 1 Engenheira Civil, Prof a. M.Sc, FATEC Tatuí SP. [email protected] Engenheiro de Produção Mecânica, Prof., FATEC Tatuí SP. [email protected] RESUMO O estudo do processo de perda de carga em condutos forçados se faz presente para o correto dimensionamento de sistemas de bombeamento e de tubulações. O líquido ao escoar em um conduto é submetido a forças resistentes exercidas pelas paredes da tubulação e por uma região do próprio líquido, denominada camada limite. Assim, há o surgimento de forças cisalhantes que reduzem a capacidade de fluidez do líquido. O líquido, ao escoar, dissipa parte de sua energia, principalmente, em forma de calor. Essa energia não é mais recuperada como energia cinética e potencial e, por isso, denomina-se perda de carga (ΔH). A perda de carga pode ser classificada, distribuída ao longo do trecho e localizada (presença de conexões, aparelhos, singularidades em pontos particulares do conduto). Os objetivos desse trabalho são o de revisar os conceitos teóricos de perda de carga, o de demonstrar a importância de suas aplicações em sistemas hidráulicos, levando-se em conta as perdas por atrito e por componentes instalados nas tubulações, para motivar o envolvimento de alunos de graduação da FATEC Tatuí em novas análises sobre o assunto. PALAVRAS CHAVE: perda de carga, tubulação, singularidades. 1- INTRODUÇÃO Esse artigo faz uma releitura do segmento da engenharia relacionado à hidráulica de tubulações, para demonstrar aspectos teóricos que envolvem a análise do escoamento de fluidos incompressíveis em condutos forçados e uniformes, nos regimes laminar e turbulento. Contudo, essa abordagem não visa esgotar este vasto assunto, mas sim mostrar alguns aspectos sobre o dimensionamento hidráulico em condutos forçados, mais especificamente do tipo de escoamento e sua relação diretamente proporcional com a perda de carga. - DESENVOLVIMENTO Segundo QUINTELA (1981), entende-se por conduto forçado aquele no qual o fluido escoa à plena seção e sob pressão. Muitas vezes os condutos de seção circular são chamados de tubos ou tubulações. Um conduto é dito uniforme quando a sua seção transversal não varia com o seu comprimento. De modo geral, o escoamento de um fluido não é descrito pelo movimento individual de cada uma de suas partículas, mas é especificado por sua densidade (ρ) e velocidade de escoamento (V) numa determinada posição e num determinado instante.
2 Ao escoar por um conduto forçado, o fluido é submetido a variações de pressão, decorrentes de variação na elevação da tubulação, da velocidade de escoamento ou ainda do atrito do fluido com a face interna da parede do conduto. A área da física que estuda esse fenômeno é a Mecânica dos Fluidos, que divide o escoamento quanto à natureza do fluido, relacionada à sua viscosidade, em escoamentos viscosos e não-viscosos. Todos os fluidos possuem viscosidade, mas, para diversas aplicações em engenharia, assumir a hipótese de viscosidade nula, simplifica as análises e oferece resultados satisfatórios (FOX & McDONALD, 006). A viscosidade tem uma influência sobre o perfil de velocidades ao longo de uma dada seção transversal de uma tubulação em análise. Tomando-se como referência o escoamento de um determinado fluido sobre uma placa de comprimento semi-infinito, observa-se a ocorrência de dois regimes distintos quanto à estrutura das linhas de fluxo. No escoamento laminar ou no regime laminar, o fluido se move em camadas, com velocidade constante. As partículas movem-se de forma ordenada, mantendo sempre a mesma posição relativa. Quando a estrutura dessas linhas de fluxo desenvolve movimentos tridimensionais aleatórios, nas quais os vetores de velocidade das partículas possuem componentes tridimensionais aleatórios, em adição à velocidade média, o escoamento é dito turbulento (FOX & McDONALD, 006). Em tubulações, a variação na velocidade de escoamento está associada não só às diferentes áreas das seções transversais do tubo, como ocorre nas reduções e ampliações, mas também ao grau de aspereza e de regularidade de sua superfície interna. Em ambos os casos, essa variação na velocidade provoca uma perda de energia hidráulica, denominada de perda de carga, que pode ser dividida em: Perda localizada (devido a singularidades, tais como ampliações, reduções, curvas, válvulas com área transversal não constante); Perda distribuída (devido ao atrito do fluido com as paredes do conduto, ao longo de toda a sua extensão, com área transversal constante). A camada de fluido que permanece em contato com as paredes de um determinado corpo dentro de um escoamento é definida como Camada Limite, sendo esse conceito desenvolvido em 1904, por Ludwing Prandtl. Essa camada é medida a partir do contato da mesma com o referido corpo (onde apresenta velocidade nula) até um ponto tal que a velocidade do fluido apresente noventa e nove por cento da velocidade de entrada do fluido no escoamento. Esse fenômeno de variação de velocidade ocorre devido à viscosidade do fluido (atrito viscoso). (GROSSMANN & DETLEF, 00). A relação entre o campo de tensão de cisalhamento e o campo de velocidade média para o escoamento laminar completamente desenvolvido foi descoberta primeiramente pelo médico francês Jean Louis Poiseuille e de maneira independente pelo engenheiro alemão Gotthilf H. L. Hagen, na década de 1850 (ROUSE & INCE, 1957 apud FOX & McDONALD, 006). No escoamento turbulento, não há relação simples entre o campo de tensões de cisalhamento e o campo de velocidade média. As flutuações de velocidade em torno da velocidade média resultam no transporte de quantidade de movimento entre camadas de fluido adjacentes e podem ser vistas como uma tensão aparente que deve ser adicionada à tensão causada pelos gradientes de velocidade média. Em experimento feito no Laboratório de Mecânica dos Fluidos da FATEC Tatuí, pode-se visualizar essa estrutura. Observa-se que a velocidade de escoamento num determinado ponto no interior do fluxo não varia em função do tempo no escoamento laminar, porém, no escoamento turbulento, a velocidade instantânea oscila aleatoriamente em torno de uma velocidade média, conforme figuras 01 e 0 abaixo.
3 Figura 01 Simulação escoamento de água em regime laminar. Figura 0 Simulação escoamento de água com a introdução de uma turbulência. No caso em estudo, que trata do escoamento de fluidos incompressíveis ao longo de tubulações, a natureza do escoamento (laminar ou turbulento) é determinada pelo parâmetro número de Reynolds (nome dado em homenagem a Osborne Reynolds, físico e engenheiro hidráulico irlandês), dado pela seguinte expressão: V.D R = (1) e ν Onde: V = velocidade do fluido (m/s), D = diâmetro da canalização (m) e ν = viscosidade cinemática (m /s). Para: R e <.000 regime laminar as partículas fluidas apresentam trajetórias bem definidas e não se cruzam. Para: R e > regime turbulento movimento desordenado das partículas. O valor da carga pode ser obtido através da fórmula: Energia Carga (H) = () peso Carga total numa seção (Bernoulli): H = p v z + γ + α g (3) Onde: H carga total; z carga potencial ou de posição; γ p carga piezométrica ou de pressão; α - Coeficiente de Coriolis (vale aproximadamente 1) e carga cinética ou termo g cinético. A perda de carga é classificada em perda de carga contínua, linear ou distribuída (ΔH D ) e em perda de carga singular ou localizada (ΔH S ). As perdas de carga distribuídas ocorrem devido ao escoamento em trechos retilíneos de tubulação, enquanto que as singulares são originadas em trechos curvos, em peças e dispositivos especiais instalados na linha em estudo. As perdas distribuídas ocorrem devido ao atrito entre as diversas camadas do escoamento e ainda ao atrito entre o fluido e as paredes do conduto (efeito da viscosidade e da rugosidade). A razão entre a perda de carga distribuída (ΔH D ) e o comprimento do conduto L, representa o gradiente ou a inclinação da linha de carga e é denominada perda de carga unitária j. v j = ΔH L D (4)
4 Aplicando-se a equação de Bernoulli entre as seções 1 e da Figura 1, há: p1 v1 p v = z ΔH1 z (5) γ g γ g DARCY e WEISBACH (1845), após inúmeras experiências, estabeleceram uma das melhores equações empíricas para o cálculo da perda de carga distribuída ao longo das tubulações. ROUSE (1946) denominou a equação de Fórmula de Darcy-Weisbach, que, também, ficou conhecida por Fórmula Universal para o cálculo da perda de carga distribuída. ΔH 1 V L = f g D Sendo: j = perda de carga unitária em m/m; V = velocidade média do escoamento em m/s; D = diâmetro do conduto em m/s; L = comprimento do conduto em m; g = aceleração da gravidade = 9,81 m/s ; f = coeficiente de perda de carga, obtido pelo Diagrama de Moody. O coeficiente de perda de carga f é um adimensional que depende basicamente do regime de escoamento. As perdas localizadas ocorrem devido à descontinuidade do conduto, chamada singularidade, que gera turbulência adicional e maior dissipação de energia. Exemplo de singularidades são cotovelo, curva, tê, alargamento, redução, registro. Essas perdas podem ser obtidas pelo Comprimento Equivalente ou pelo Método do k S. SAMPAIO (007) avalia a perda de carga em tubulações comerciais de aço zincado, ferro galvanizado e PVC, com diferentes diâmetros, em águas residuárias oriundas da suinocultura. Em seus estudos, os resultados mostraram que a perda de carga possui comportamento linear em função da concentração de sólidos totais da água residuária proveniente da suinocultura; as perdas de carga determinadas a partir dos fatores de correção parcial e global apresentaram superestimativa e subestimativa média de 0,7% e 13%, respectivamente Outro caso de estudo de perda de carga é mostrado na dissertação de mestrado de RESENDE (007), onde a infestação de um molusco Limnoperna fortunei promove grandes perdas de carga de tubulações de usinas hidrelétricas devido à perda de seção útil dos tubos. Outro exemplo da importância do estudo de perda de carga é mostrado no artigo de ELIO & ROBAINA (00). Esse trabalho avalia o consumo de energia e a eficiência das estações de bombeamento de lavouras de arroz irrigado. Os resultados evidenciaram que 67% das bombas operavam com rendimentos abaixo de 75% devido, entre outros fatores, à grande perda de carga no sistema. Verificou-se, também que, adequando-se às estações de bombeamento, é possível economizar 9% da energia elétrica com a redução das perdas de carga e 41%. O trabalho de FABIANI et al. (008) apresenta uma metodologia de análise para determinação da perda de carga em circuitos hidráulicos e determinação, se necessário, da substituição ou recuperação da tubulação adutora. Mostrou-se que para sua aplicação é necessária a realização do estudo hidráulico do sistema de adução da configuração atual da usina e da nova configuração proposta para implantação. As definições dos diâmetros equivalente e econômicos são aspectos importantes neste estudo, assim como a determinação do grau de envelhecimento dos condutos de forma a minimizar a perda de carga, sendo esta outra importante aplicação da teoria mostrada. (6)
5 3- MÉTODOS A partir do levantamento bibliográfico sobre os aspectos teóricos da Perda de Carga em Condutos Forçados, foi possível desenvolver aplicações focadas nessa teoria. É possível também desenvolver uma simulação matemática dos conceitos de perda de carga distribuída e de perda de carga localizada. O desenvolvimento dessa simulação utiliza a equação de Darcy-Weisbach e foi baseado em duas situações distintas: a primeira para um escoamento turbulento ; a segunda para um escoamento laminar, sendo realizado em tubulação de ferro galvanizado. Os parâmetros adotados para a simulação nas duas situações são demonstrados nas Tabelas 0 e 03. Q =0,04 m 3 /s f =0,01 V =,63537 m/s g =9,81 m/s D =0,15 m ν =0, m /s Re =339530,5 esc. turbulento Q =0,000 m 3 /s f =0, V =0, m/s g =9,81 m/s D =0,15 m ν =0, m /s Re =1697,653 esc. laminar Tabela 0 Parâmetros de carga da água em escoamento turbulento. Tabela 03 Parâmetros de carga da água em escoamento laminar. Onde: V = velocidade do fluido (m/s), D = diâmetro da tubulação (m), ν = viscosidade cinemática (m /s), Q = vazão (m 3 /s), f = fator de atrito, Re = Número de Reynolds s. Para a visualização da perda de carga (ΔH) em função da distância, foi adotado o intervalo de medição de doze metros seccionados de um em um metro. Os cálculos da perda de carga foram feitos aplicando-se a equação (6), com os seguintes resultados apresentados nas Tabelas 04 e 05. L (m) ΔH (m) 1 0,0366 0, , , , , , ,95 9 0, , ,40 1 0,4387 Tabela 04 Resultados de perda carga em escoamento turbulento. L (m) ΔH (m) 1 3,66E 0 7,31E 0 3 1,10E ,46E ,83E 01 6,19E 01 7,56E 01 8,9E ,9E ,66E ,0E ,39E 01 Tabela 05 Resultados de perda carga em escoamento laminar.
6 Os resultados da perda de carga de uma tubulação de ferro galvanizado em escoamento turbulento e laminar podem ser visualizados pelos gráficos 01 e 0. H em escoamento turbulento (tubulação de ferro galvanizado) H em escoamento laminar (tubulação de ferro galvanizado) Perda de Carga (m) 0,5000 0,4500 0,4000 0,3500 0,3000 0,500 0,000 0,1500 0,1000 0,0500 0, Perda de Carga (m),50e 05,00E 05 1,50E 05 1,00E 05 5,00E 06 0,00E Comprimento (m) Comprimento (m) Gráfico 01 - Perda de Carga da água em escoamento turbulento numa tubulação de ferro galvanizado Gráfico 01 - Perda de Carga da água em escoamento laminar numa tubulação de ferro galvanizado 4- RESULTADOS E DISCUSSÃO Conforme observado, pode-se concluir que a Perda de Carga é proporcional ao aumento do comprimento da tubulação. A teoria a importância do estudo do atrito do fluido na tubulação, considerando-se os diferentes tipos de escoamento: laminar e turbulento. As simulações foram desenvolvidas com vazões distintas, mesmo diâmetro, tendo como variável o comprimento da tubulação. O líquido, ao escoar em um conduto, é submetido a forças resistentes exercidas pelas paredes da tubulação e por uma região do próprio líquido, denominada camada limite. Assim, há o surgimento de forças cisalhantes que reduzem a capacidade de fluidez do líquido. O líquido ao escoar dissipa parte de sua energia, principalmente, em forma de calor. Essa energia não é mais recuperada como energia cinética e potencial, surgindo a perda de carga (ΔH). 5- CONCLUSÕES O estudo sobre Perda de Carga em Condutos Forçados é de extrema importância para o avanço nas pesquisas hidráulicas que avaliam o atrito do fluido em escoamento nas tubulações e as perdas decorrentes pelos componentes instalados nos sistemas. Alguns exemplos de pesquisas, que incluem desde sistemas de irrigação até usinas hidrelétricas, são citados nesse artigo. No laboratório de Mecânica dos Fluidos da Fatec Tatuí, o conceito de perda de carga pode ser demonstrado e simulado, possibilitando o engajamento dos graduandos no estudo desse fenômeno, a fim de que tomem contato com ele, o que poderá possibilitar novas investigações sobre o tema.
7 REFERÊNCIAS BIBLIOGRÁFICAS MARCOLIN, E.; ROBAINA, A. D. Consumo de energia e eficiência das estações de bombeamento de lavouras de arroz irrigado. Ciência Rural, Santa Maria, v.3, n., p.9-35, 00. FABIANI, A. L. T.; OTA, J. J.; SILVA, D. T.; AKIL, C. V. Perda de carga em circuitos hidráulicos de pequenas centrais hidrelétricas pch s. In: VI SIMPÓSIO BRASILEIRO SOBRE PEQUENAS E MÉDIAS CENTRAIS HIDRELÉTRICAS Belo Horizonte. FOX, R. W.; McDONALD, A. T. Introdução à mecânica dos fluidos. 6. ed. LTC Editora Ltda., Rio de Janeiro RJ, 006. GROSSMANN, S.; LOHSE, D. Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Physical Review E, v. 66, n. 1, p , 00. QUINTELA, A. C. Turbo máquinas hidráulicas. In: Hidráulica. 1. ed. Lisboa: Fundação Calouste Gulbenkian, p SAMPAIO, S. C. et al. Equação de Hazen-Williams corrigida para água residuária proveniente da suinocultura. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11, n. 1, p. 5-10, 007. RESENDE; M. F. A variação das características hidráulicas em condutos forçados devido à infestação pelo Limnoperna fortunei Dissertação (Mestrado em Saneamento, meio ambiente e recursos hídricos) Universidade Federal de Minas Gerais, Belo Horizonte. ROUSE, H., INCE, S. History of hydraulics. In: FOX, R. W.; McDONALD, A. T. Introdução à mecânica dos fluidos. 6. ed. LTC Editora Ltda., Rio de Janeiro RJ, 006.
HIDRODINÂMICA CONDUTOS SOB PRESSÃO
HIDRODINÂMICA CONDUTOS SOB PRESSÃO CONDUTOS SOB PRESSÃO Denominam-se condutos sob pressão ou condutos forçados, as canalizações onde o líquido escoa sob uma pressão diferente da atmosférica. As seções
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 6 ROTEIRO
1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB0472 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 6 ROTEIRO Tópicos da aula: -
Mecânica dos Fluidos. Perda de Carga
Mecânica dos Fluidos Perda de Carga Introdução Na engenharia trabalhamos com energia dos fluidos por unidade de peso, a qual denominamos carga (H); No escoamento de fluidos reais, parte de sua energia
CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL ENGENHARIA CIVIL APOSTILA
UNIPLAN CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL ENGENHARIA CIVIL APOSTILA FENÔMENOS DE TRANSPORTE NP2 DANIEL PETERS GUSMÃO MEIRA 2018 Conteúdo FENÔMENOS DE TRANSPORTE... 1 CONTEÚDO PROGRAMÁTICO...
3 CONDUÇÃO DE ÁGUA (Cont.)
UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL Prof. Adão Wagner Pêgo Evangelista 3 CONDUÇÃO DE ÁGUA (Cont.) 3.2 CONDUTOS FORÇADOS Denominam-se condutos
UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I
UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I Profa. Lívia Chaguri E-mail: [email protected] Conteúdo Bombas Parte 1 - Introdução - Classificação - Bombas sanitárias - Condições
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 7 ESCOAMENTO
Escoamento em Condutos Forçados. Prof. Dr. Hugo Alexandre Soares Guedes Website: wp.ufpel.edu.
Escoamento em Condutos Forçados Prof. Dr. Hugo Alexandre Soares Guedes E-mail: [email protected] Website: wp.ufpel.edu.br/hugoguedes/ CONCEITO São aqueles nos quais o fluido escoa com uma pressão
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 10 ESCOAMENTO INTERNO INCOMPRESSÍVEL PROF.: KAIO DUTRA Escoamento Interno e Externo Escoamentos internos ou em dutos: São escoamentos completamente envoltos por superfícies
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 7 ROTEIRO
1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 0472 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 7 ROTEIRO Tópicos da aula:
Hidráulica Geral (ESA024A) Prof. Homero Soares
Departamento de Engenharia Sanitária e Ambiental Hidráulica Geral (ESA024A) 2º semestre 2014 Terças de 10 às 12 h Quintas de 08 às 10h 25/03/2015 1 Classificação dos Escoamentos O escoamento pode ser classificado
AULA 6 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS. Prof. Geronimo Virginio Tagliaferro
AULA 6 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS Prof. Geronimo Virginio Tagliaferro DEFINIÇÕES DEFINIÇÕES A seguir, serão introduzidas definições e conceitos utilizados ao longo
capítulo 1 NOTAS INTRODUTÓRIAS ESTADOS DE AGREGAÇÃO DA MATÉRIA LÍQUIDOS E GASES FORÇAS EXTERNAS 19
SUMÁRIO APRESENTAÇÃO 13 capítulo 1 NOTAS INTRODUTÓRIAS 17 1.1 ESTADOS DE AGREGAÇÃO DA MATÉRIA 17 1.2 LÍQUIDOS E GASES 18 1.3 FORÇAS EXTERNAS 19 capítulo 2 SISTEMAS DE UNIDADES DE MEDIDA 21 2.1 GRANDEZAS,
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando
PERDA DE CARGA DISTRIBUÍDA NO ESCOAMENTO LAMINAR
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica PME 033 NOÇÕES DE MECÂNICA DOS FLUIDOS LABORATÓRIO DE MECÂNICA DOS FLUIDOS (Atualização janeiro/01) PERDA DE CARGA DISTRIBUÍDA
PERDA DE CARGA CONTÍNUA
PERDA DE CARGA CONTÍNUA INTRODUÇÃO E CONCEITOS INICIAIS Prof. Miguel Toledo del Pino 1. INTRODUÇÃO Condutos forçados ou condutos sob pressão são aqueles que o líquido escoa sob uma pressão diferente da
RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS
RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade
SIMULAÇÃO 3D DA PERDA DE CARGA EM UMA TUBULAÇÃO PARA FLUXO LAMINAR UTILIANDO SOLIDWORKS.
SIMULAÇÃO 3D DA PERDA DE CARGA EM UMA TUBULAÇÃO PARA FLUXO LAMINAR UTILIANDO SOLIDWORKS. Alcides Gabriel Prudêncio Coutinho Maciel (1) Marcos Joselem da Silva Barros (2); Márcio Roberto de Andrade Araújo
Hidrodinâmica. A hidrodinâmica objetiva o estudo do movimento dos fluidos
Hidrodinâmica A hidrodinâmica objetiva o estudo do movimento dos fluidos 1. Vazão ou Descarga. Vazão ou descarga numa determinada seção é o volume do líquido que atravessa essa seção, na unidade de tempo.
AULA 6 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS. Prof. Geronimo Virginio Tagliaferro
AULA 6 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS Prof. Geronimo Virginio Tagliaferro DEFINIÇÕES DEFINIÇÕES A seguir, serão introduzidas definições e conceitos utilizados ao longo
Cálculo de condutos. PMC 3230 Prof. Marcos Tadeu Pereira 2016 (Diversas figuras retiradas da internet sem identificação de origem)
Cálculo de condutos PMC 3230 Prof. Marcos Tadeu Pereira 2016 (Diversas figuras retiradas da internet sem identificação de origem) Bibliografia adicional Mémènto des Pertes de Charge (Handbook of Pressure
Fenômeno de Transportes A PROFª. PRISCILA ALVES
Fenômeno de Transportes A PROFª. PRISCILA ALVES [email protected] Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida
Máquinas de Fluxo I (ENG03332) Material de apoio à disciplina
Máquinas de Fluxo I (ENG0333) - /maqflu Porto Alegre RS, Perda de carga em tubos, Slide 1/19 Máquinas de Fluxo I (ENG0333) /maqflu Material de apoio à disciplina Perda de carga em tubos Prof. Alexandre
Conceitos- Vazão, movimento e regime de escoamento. 1) Determine o regime de escoamento sabendo que o tubo tem um diâmetro de 75 mm e
Lista de exercícios- Hidráulica I Conceitos- Vazão, movimento e regime de escoamento 1) Determine o regime de escoamento sabendo que o tubo tem um diâmetro de 75 mm e transporta água (ν=10 6 m 2 /s) com
Escoamento Interno Viscoso
Escoamento Interno Viscoso Escoamento Laminar e Turbulento Número de Reynolds Re VD ρ --> massa específica ou densidade V --> velocidade D --> comprimento característico μ --> viscosidade numero de Reynolds
Hidráulica e Hidrologia
16 2. REGIME DE ESCOAMENTO Os hidráulicos do século XVIII, já observavam que dependendo das condições de escoamento, a turbulência era maior ou menor, e consequentemente a perda de carga também o era.
4.2.3 Estimação da perda de energia mecânica no escoamento de fluidos incompressíveis no interior de tubos
UNIVERSIDADE FEDERAL DO PAMPA Campus Bagé SEMESTRE: 2013/2 CURSOS: ENGENHARIA DE COMPUTAÇÃO/ ENGENHARIA DE PRODUÇÃO COMPONENTE CURRICULAR: FENÔMENOS DE TRANSPORTE (BA000200) PROFESSOR: Marcilio Machado
CORRELAÇÃO ENTRE FATOR DE ATRITO f DE DARCY-WEISBACH COM O FATOR C DE HANZEN- WILLIAMS.
1 CORRELAÇÃO ENTRE FATOR DE ATRITO f DE DARCY-WEISBACH COM O FATOR C DE HANZEN- WILLIAMS. A fórmula de Darcy na hidráulica, transportando água, leva em consideração o tipo, natureza e o estado da parede
CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS
CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS Caroline Klinger 1, Nataly Leidens 2, Isaac dos Santos Nunes 3 1 URI Campus Santo
Conceitos Fundamentais. Viscosidade e Escoamentos
Conceitos Fundamentais Viscosidade e Escoamentos Multiplicação de pressão Multiplicação de pressão Vazão X Velocidade Vazão X Velocidade VISCOSIDADE DE LÍQUIDOS Fluido perfeito Considere-se um volume
Perda de Carga. Representa a Energia Mecânica convertida em Energia Térmica; Expressa como a perda de pressão
Perda de Carga Representa a Energia Mecânica convertida em Energia Térmica; Expressa como a perda de pressão h lt h ld h lm Perdas Distribuídas devido ao efeito de atrito (parede do tubo) Perdas Localizadas
Escoamento completamente desenvolvido
Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo
ANÁLISE DE PERDAS EM ESCOAMENTOS DENTRO DE
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] ANÁLISE DE PERDAS EM ESCOAMENTOS DENTRO DE TUBULAÇÕES
Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,
Hidráulica e Hidrologia
5 3. PERDA DE CARGA A princípio acreditava-se que a perda de energia ao escoamento era resultado do atrito da massa fluida com as paredes da tubulação. Todavia, essa conceituação é errônea, pois independente
UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE ENGENHARIA CIVIL
UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE ENGENHARIA CIVIL Adução de Água DISCIPLINA: SANEAMENTO PROF. CARLOS EDUARDO F MELLO e-mail: [email protected] Adução Adutoras são canalizações dos sistemas
Mecânica dos Fluidos
Mecânica dos Fluidos Perda de Carga no Escoamento em Tubos Prof. Universidade Federal do Pampa BA000200 Campus Bagé 10 e 17 de abril de 2017 Perda de Carga no Escoamento em Tubos 1 / 30 Introdução Perda
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL
PROJETO CONTRA INCÊNDIOS E EXPLOSÕES
PROJETO CONTRA INCÊNDIOS E EXPLOSÕES Fundamentos de hidráulica aplicados à proteção contra incêndios Prof. Dr. Eduardo Luiz de Oliveira Departamento de Engenharia Civil Faculdade de Engenharia UNESP BAURU
Exercício 9 Água escoa do reservatório 1 para o 2 no sistema mostrado abaixo. Sendo:
1 a LIST DE EXERCÍCIOS DE SISTEMS FLUIDO MECÂNICOS 014 Referências: 1) Giles, Evett & Liu - Mecânica dos Fluidos e Hidráulica Coleção Schaum, a edição, Makron ooks, 1997. ) Fox e McDonald Introdução à
MEDIDAS DE PERDA DE CARGA DISTRIBUIDA
MEDIDAS DE PERDA DE CARGA DISTRIBUIDA - OBJETIVO Consolidar o conceito de perda de carga a partir do cálculo das perdas distribuídas e localizadas em uma tubulação. - INTRODUÇÃO TEÓRICA.. PERDA DE CARGA
Roteiro - Aula Prática Perda de carga:
Laboratório de Hidráulica - Aula Prática de Perda de Carga 1 Roteiro - Aula Prática Perda de carga: 1. Objetivo do experimento: Estudo de perda de carga distribuída e localizada. Medição de velocidade
Capítulo 1 Escoamento permanente de fluido incompressível em condutos forçados. Capítulo 2 Instalações básicas de bombeamento. Capítulo 3 Turbobombas
Capítulo 1 Escoamento permanente de fluido incompressível em condutos forçados Capítulo Instalações básicas de bombeamento Capítulo 3 Turbobombas Capítulo 4 Bombas de deslocamento positivo Capítulo 5 Ventiladores
SELEÇÃO DE BOMBAS HIDRÁULICAS
SELEÇÃO DE BOMBAS HIDRÁULICAS Prof. Jesué Graciliano da Silva https://jesuegraciliano.wordpress.com/aulas/mecanica-dos-fluidos/ 1- EQUAÇÃO DE BERNOULLI A equação de Bernoulli é fundamental para a análise
FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE HIDRÁULICA CH2 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH
FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE HIDRÁULICA CH2 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH APOSTILA DO EXPERIMENTO REGIMES DE ESCOAMENTO Esta apostila contém o roteiro da experiência
Fluidodinâmica. Carlos Marlon Santos
Fluidodinâmica Carlos Marlon Santos Fluidodinâmica Os fluidos podem ser analisados utilizando-se o conceito de sistema ou de volume de controle O sistema é definido quando uma certa quantidade de matéria
A variação de pressão num duto resulta da variação da elevação, da velocidade e do atrito e pode ser determinada aplicando a Eq.
7.1 Perda de Pressão no Escoamento em Tubulações A variação de pressão num duto resulta da variação da elevação, da velocidade e do atrito e pode ser determinada aplicando a Eq. da Energia: p1 ρg u1 +
Hidráulica. Escoamento Uniforme em Tubulações. Hidráulica. Aula 3 Professor Alberto Dresch Webler 2015
Hidráulica Hidráulica Escoamento Uniforme em Tubulações Aula 3 Professor Alberto Dresch Webler 2015 Fenômenos Hidráulica Resistências de Transporte dos Materiais - Aula 8 Veremos 1.1 Tensão tangencial
ESTUDO DA PERDA DE CARGA EM TUBULAÇÃO CURVA UTILIZANDO FLUIDODINAMICA COMPUTACIONAL.
ESTUDO DA PERDA DE CARGA EM TUBULAÇÃO CURVA UTILIZANDO FLUIDODINAMICA COMPUTACIONAL. Marcos Joselem da Silva Barros (1); Alcides Gabriel Prudêncio Coutinho (2); Márcio Roberto de Andrade Araújo Filho (3);
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 1 Considerações de energia no escoamento em tubos e perda de carga Prof. Lucrécio Fábio dos Santos epartamento de Engenharia Química LOQ/EEL Atenção: Estas notas
Fenômenos do Transporte - 1 Semestre de Escoamento permanente de fluido incompressível em condutos forçados
Fenômenos do Transporte - 1 Semestre de 010 5 Escoamento permanente de fluido incompressível em condutos forçados No capitulo anterior foi visto que a equação da energia dentro de hipóteses convenientes,
CAPÍTULO VI: HIDRODINÂMICA
CAPÍTULO VI: HIDRODINÂMICA Aula 0 Diferenças e semelhanças para a dedução da Equação de Bernoulli fluido ideal e real Equação de Bernoulli para os fluidos reais Representação gráfica dos termos da Equação
HIDRODINÂMICA. Princípios gerais do movimento dos fluidos. Teorema de Bernoulli
HIDRODINÂMICA Princípios gerais do movimento dos fluidos. Teorema de Bernoulli Movimento dos fluidos perfeitos A hidrodinâmica tem por objeto o estudo do movimento dos fluidos. Consideremos um fluido perfeito
Aula 02 - Perda de Carga Localizada
Aula 02 - Perda de Carga Localizada Essas perdas, também conhecidas como singulares ou secundárias, ocorrem quando à mudança no módulo, ou na direção da velocidade. Uma mudança no diâmetro (ou na seção
Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds
Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 1 EXERCÍCIOS Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro de
https://www.youtube.com/watch?v=aiymdywghfm
Exercício 106: Um medidor de vazão tipo venturi é ensaiado num laboratório, obtendose a curva característica abaixo. O diâmetro de aproximação e o da garganta são 60 mm e 0 mm respectivamente. O fluido
4.1. PERDA DE CARGA AULA 3. O que é Perda de Carga?
AULA 3 4.1. PERDA DE CARGA O que é Perda de Carga? - Perda de carga pode ser definida como sendo a perda de energia que o fluido sofre durante o escoamento em uma tubulação. É o atrito entre o fluido (no
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: [email protected]
Instalações Prediais Prof Pr. of Dr. Dr Alex Ale andr x e andr Marques Mar Butt But ler
Instalações Prediais Prof. Dr. Alexandre Marques Buttler Identificação Curso: Engenharia Civil Carga horária: 2 h/aula Ano letivo: 2011 Aula teórica: sexta (19:20 21:00) CONTRATO DE TRABALHO Cll Celular
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS Escola de Engenharia
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS Escola de Engenharia Experimento 2: Determinação do coeficiente de rugosidade (C) da equação de Hazen Willians no tubo de PVC Gustavo Fernando do Valle Borges
TRANSMISSÃO DE CALOR resumo
TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime
4.6. Experiência do tubo de Pitot
4.6. Experiência do tubo de Pitot 98 O tubo de Pitot serve para determinar a velocidade real de um escoamento. Na sua origem, poderia ser esquematizado como mostra a figura 33. Figura 33 que foi extraída
Cálculo de Estruturas e Tubulações Industriais AULA 5 CALCULO PARTE 1
Cálculo de Estruturas e Tubulações Industriais AULA 5 CALCULO PARTE 1 PROF.: KAIO DUTRA Calculo do Diâmetro das Tubulações oo dimensionamento do diâmetro dos tubos é quase sempre um problema de hidráulica,
Laboratório de Engenharia Química I Aula Prática 01. Determinação do regime de escoamento: Experiência de Reynolds. Prof. Dr. Gilberto Garcia Cortez
Laboratório de Engenharia Química I Aula Prática 01 Determinação do regime de escoamento: Experiência de Reynolds Prof. Dr. Gilberto Garcia Cortez 1 Introdução Em 1883, procurando observar o comportamento
Capítulo VII: Introdução a Hidráulica 7.0. Classificação dos escoamentos quanto à pressão de funcionamento
Capítulo II: Introdução a Hidráulica 7.0. Classificação dos escoamentos quanto à pressão de funcionamento 7.. Classificação quanto à trajetória das partículas 7.. Conceitos básicos em Hidráulica 7...Raio
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume
HIDRÁULICA. REVISÃO 1º Bimestre
REVISÃO 1º Bimestre ROTEIRO Condutos Livres Tipos de Movimentos Carga Específica Elementos geométricos e dimensionamento Vazão Velocidade Perda de Carga Adutora Aspectos construtivos ROTEIRO Condutos Livres
Hidrodinâmica. Profª. Priscila Alves
Hidrodinâmica Profª. Priscila Alves [email protected] Objetivos Apresentar e discutir as equações básicas que regem a mecânica dos fluidos, tal como: Equações do movimento. Equação da continuidade.
CAA 346 Hidráulica 21/01/2016. AULA 04 Escoamento em condutos. UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais
CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais ASPECTOS GERAIS A maioria das aplicações da Hidráulica na Engenharia diz respeito à utilização de tubos;
Décima aula de FT. Segundo semestre de 2013
Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,
4º Laboratório de EME 502 MEDIDAS DE VAZÃO
Universidade Federal de Uberlândia Instituto de Engenharia Mecânica 4º Laboratório de EME 502 MEDIDAS DE VAZÃO Profa. Ana Lúcia Fernandes de Lima e Silva http://www.iem.unifei.edu.br/labtc/ana.html Objetivos
Aluno: Matrícula: Data: CC76D HIDRÁULICA TRABALHO DE CASA #1
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA CIVIL PR Aluno: Matrícula: Data: CC76D HIDRÁULICA TRABALHO DE CASA #1 Orientações: A entrega será individual na aula do dia 07/05 (turma S51)
Mecânica dos Fluidos
Mecânica dos Fluidos Cinemática dos Fluidos: Escoamento e Balanços Prof. Universidade Federal do Pampa BA000200 Campus Bagé 27 e 28 de março de 2017 Cinemática dos Fluidos, Parte 1 1 / 35 Escoamento de
Calcule a pressão p 1
Calcule a pressão p 1 (1) (2) (4) (3) h = 0 h precisa corrigir p = p m + gh não precisa corrigir p = p m Dado p m, H, h 2, h 1, g água e g Hg, calcule p 1 (pela hidrostática) Esta foi a primeira atividade
Experiência 6 - Perda de Carga Distribuída ao Longo de
Experiência 6 - Perda de Carga Distribuída ao Longo de Tubulações Prof. Vicente Luiz Scalon 1181 - Lab. Mecânica dos Fluidos Objetivo: Medida de perdas de carga linear ao longo de tubos lisos e rugosos.
Departamento de Física - ICE/UFJF Laboratório de Física II
1 - Objetivos Gerais: Viscosidade Estudo da velocidade terminal de uma esfera num líquido; Determinação da viscosidade do líquido em estudo; *Anote a incerteza dos instrumentos de medida utilizados: ap
Fundamentos da Mecânica dos Fluidos
Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos
Saneamento Ambiental I. Aula 08 Rede de Distribuição de Água: Parte III
Universidade Federal do Paraná Engenharia Ambiental Saneamento Ambiental I Aula 08 Rede de Distribuição de Água: Parte III Profª Heloise G. Knapik 1 Aula de hoje 1. Condutos equivalentes Utilizado para
Profa. Dra. Milena Araújo Tonon Corrêa. Turma Farmácia- 4º Termo
Profa. Dra. Milena Araújo Tonon Corrêa Turma Farmácia- 4º Termo A Mecânica dos Fluidos é a parte da mecânica aplicada que estuda o comportamento dos fluidos em repouso e em movimento A fluidização é empregada
Cálculo das perdas de carga para a especificação da bomba hidráulica!
Cálculo das perdas de carga para a especificação da bomba hidráulica! Instalação de recalque básica! Para especificar a bomba hidráulica preciso da H B e da N B H 0 e H 1 sempre conseguimos determinar
ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( )
ENADE 2017.2 MASSA ESPECÍFICA ( ) DENSIDADE (d) É definida como a razão entre a massa dividida por unidade de volume de um material contínuo e homogêneo. É definida como a razão entre a massa dividida
Hidráulica Aula 3 35
Hidráulica Aula 3 35 ALICERÇADA NA Sonho em facilitar a PEDAGOGIA DA CURIOSIDADE C R I A CONSCIÊNCIA Educar é ensinar a pensar sozinho FORMAÇÃO SUSTENTÁVEL APLICA PEDAGOGIA DA PERGUNTA e não da resposta
A viscosidade 35 Grandeza física transporta e sentido da transferência 35 Experiência 03: o modelo do baralho 35 Modelo de escoamento em regime
SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte I 1 Algumas palavras introdutórias 2 Problema 1: senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 5 Das Verdades científicas
Avaliação Energética do Escoamento em Tubos. Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: =0
Escoamentos Internos (cont.) Avaliação Energética do Escoamento em Tubos Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: 0 Q & + W & eixo + W & cisalhamento + W
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO 1 1) Considere o escoamento de ar em torno do motociclista que se move em
HIDRÁULICA GERAL PRÁTICA TEMA: CLASSIFICAÇÃO DOS REGIMES DE ESCOAMENTO
HGP Prática 1 3/12/2012 1 HIDRÁULICA GERAL PRÁTICA 1. 1- TEMA: CLASSIFICAÇÃO DOS REGIMES DE ESCOAMENTO 2- OBJETIVOS: Estabelecimento de critérios para a classificação dos regimes de escoamento através
Escoamentos Internos: Parte III
Escoamentos Internos: Parte III PME3222 - Mecânica dos Fluidos Para Eng. Civil PME/EP/USP Prof. Antonio Luiz Pacífico 1 Semestre de 2017 PME3222 - Mecânica dos Fluidos Para Eng. Civil (EP-PME) Esc. Turb.
EXPERIMENTO 02. Estudo da influência da perda de carga e da rugosidade de tubos no escoamento forçado de líquidos. Prof.
EXPERIMENTO 02 Estudo da influência da perda de carga e da rugosidade de tubos no escoamento forçado de líquidos Prof. Lucrécio Fábio Atenção: As notas destinam-se exclusivamente a servir como roteiro
parâmetros de cálculo 4. Velocidade 5. Vazão
parâmetros de cálculo 4. Velocidade Velocidade é distância percorrida por unidade de tempo. A unidade usual é m/s. Uma maneira de entender a velocidade da água na tubulação é imaginar uma partícula de
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL
Disciplina: Sistemas hidráulicos urbanos Professor: Flavio Bentes Freire LISTA DE EXERCÍCIOS - ADUTORAS 1. Numa adutora de 300 mm de diâmetro, a água escoa em uma extensão de 300 m, ligando um ponto A,
HIDRÁULICA UIA 1 CONCEITOS FUNDAMENTAIS E CONDUTOS FORÇADOS (PARTE 1)
VERSÃO PARA IMPRESSÃO HIDRÁULICA UIA 1 CONCEITOS FUNDAMENTAIS E CONDUTOS FORÇADOS (PARTE 1) 2 Este material é destinado exclusivamente aos alunos e professores do Centro Universitário IESB, contém informações
INSTALAÇÕES HIDRÁULICAS PREDIAIS
INSTALAÇÕES HIDRÁULICAS PREDIAIS AULA 04 Prof. Guilherme Nanni [email protected] 7º Semestre Engenharia civil CONTEÚDO DA AULA PRESSÕES MÍNIMAS E MÁXIMAS PRESSÃO ESTÁTICA, DINÂMICA E DE SERVIÇO
ANÁLISE DAS EQUAÇÕES DE CHURCHILL, SWAMEE - JAIN E HAALAND NA DETERMINAÇÃO DO FATOR DE DARCY-WEISBACH
Projeto de pesquisa ANÁLISE DAS EQUAÇÕES DE CHURCHILL, SWAMEE - JAIN E HAALAND NA DETERMINAÇÃO DO FATOR DE DARCY-WEISBACH Candidata: Tatiana Tavares Grassia n FEI: 11.204.203-1 Orientador: Prof. Ms. Raimundo
