GENÉTICA GEOGRÁFICA:

Tamanho: px
Começar a partir da página:

Download "GENÉTICA GEOGRÁFICA:"

Transcrição

1 GENÉTICA GEOGRÁFICA: Estatistica Espacial em Genética de Populações e da Paisagem JOSÉ ALEXANDRE FELIZOLA DINIZ FILHO LABORATORIO DE ECOLOGIA TEÓRICA & SÍNTESE Departamento de Ecologia, ICB, Universidade Federal de Goiás, Brasil ([email protected]) THANNYA NASCIMENTO SOARES LABORATÓRIO DE GENÉTICA & BIODIVERSIDADE Departamento de Genética, ICB, UFG ([email protected])

2 ABORDAGENS ESPACIAIS ESPACIALMENTE IMPLICITAS Ecologia & Genética ESPACIALMENTE EXPLICITAS

3 Matriz quadrada (n * n), simétrica e com zero na diagonal principal Relação genética entre as populações F ST (e estatísticas relacionadas) par-apar Distâncias genéticas Outras matrizes de similaridade

4 Wright s F ST Análise de Variância de Frequencias Alélicas ( P ) AMOVA R ST Holsinger s Bayesian ST G ST Q ST (fenótipo) Valores para-par (n * n, simétrica)

5 Valores para-par (n * n, simétrica) Propriedades importantes: 1. Simétrica ( upper = lower triangle ) 2. Diagonal ( direção da relação ) SIMILARIDADE (1.0) DISSIMILARIDADE (0.0)

6 Distância Euclidiana (ca. distância de Rogers 1972) Quando existem apenas dois descritores, essa equação resulta no valor da hipotenusa: d ij {( x x ) ( x x 2 i1 j1 i2 j2 ) 2 }

7 Em um espaço multidimensional (e.g. frequências de múltiplos alelos em vários loci...) p d ij (xik x jk) k1 2

8 A distância Euclidiana não apresenta um limite superior, ou seja, o valor aumenta indefinidamente com o aumento do número de descritores. Assim, podemos calcular a distância Euclidiana média: d AB p k 1 ( x Ak x Bk ) 2 / p A distância de Rogers usa p = 2

9 p j j p j j p j j j y y y y C ,2) ( 1 2 Cavalli-Sforza s & Edward (1967) chord distance Populations are conceptualised as existing as points in a m-dimensional Euclidean space which are specified by m allele frequencies (i.e. m equals the total number of alleles in both populations).

10 Nei s genetic distances D = -ln (I) Where I = Σx i y i / (Σx i2 Σy i2 ) 0.5 Masatoshi Nei A identidade de Nei é, portanto, a correlação de Pearson entre as populações ao longo das frequencias alélicas...

11 Rogers Distance Matrix Chord Distance Matrix Nei Distance Matrix Nei Distance Matrix

12 População 1 Coeficientes de SIMILARIDADE para dados binários Transformar frequencias alélicas em dados 0/1 (ou seja, presença ou ausência do alelo ou haplótipo) Tabela de Freqüência 2 X 2 População a b a +b 0 c d c +d a +c b +d

13 1 0 1 a b a +b 0 c d c +d a +c b +d Uma maneira simples de calcular a similaridade entre os dois objetos envolve a contagem dos números de descritores que codificam estes objetos do mesmo modo e a posterior divisão pelo número total de descritores p (a+b+c+d): S 1 a p d S 1 = Coincidência simples ( simple matching )

14 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 10 Local A Local B a b a +b 0 c d c +d a +c b +d A B S 1 a d p 4 3 S ,7 (0 = baixa similaridade e 1 = alta similaridade)

15 Coeficientes de similaridade para dados binários: modo Q (Coeficientes assimétricos) a b a +b 0 c d c +d a +c b +d Jaccard S 7 a a b c Sørensen S 8 2a 2 a b c

16 A idéia é desdobrar a (dis)similaridade em diferentes componentes, incluindo turnover e riqueza de alelos

17 Turnover (substituição) Riqueza alélica Para o Baru, o componente de turnover representa 69% da similaridade, mas o interessante é que apenas o componente de riqueza possui padrão espacial

18 As relações entre as n populações estão definidas em um espaço p-dimensional (onde p é o numero de alelos) Por exemplo, rodando o modelo em ilhas com 10 alelos (5 loci), a correlação média entre as várias é

19 E agora, José? Com n objetos (unidades amostrais) vamos ter uma matriz com: [n (n 1)/2] valores (e.g. se n = valores) Como podemos representar eficientemente o padrão de similaridade entre esses objetos?

20 e.g., Quais as relações entre os 6 objetos a partir dessa matriz de distancias? A B C D E F A 0.00 B C D E F

21 Agrupamento & Ordenações

22 Classificação das técnicas de Agrupamento ( Clustering, ou Cluster Analysis ) Algumas propriedades das técnicas: Aglomerativos: Os grupos são formados, sucessivamente, até reunir todos os objetos em um único grande grupo, ou; Divisivos: Subdivide os grupos até o isolamento de cada objeto (e.g. chaves de taxonomia); Hierárquicos: elementos de um determinado grupo são agrupados dentro de grupos em níveis maiores, ou; Não-hierárquicos: Produzem uma única divisão que maximiza a homogeneidade dentro de grupos;

23 Análise de Classificação Análise de Agrupamentos (SAHN) B (nx p) T (nx p) S (nx n) Distância C.C.C. U.A. 1 U.A. 2 U.A. 3 U.A. 4 U.A U.A. n Y1 i Distância(D i,j ) C (nx n) j Y 2

24 Vários métodos de agrupamento:

25 Aplicação da técnica de agrupamento: Construção do dendrograma (método médias das distâncias, UPGMA) A 0.00 A B C D E F B C D E F

26 Primeiro passo: Unir D e F (0,37) Distância de ligação 0,37 D F

27 Segundo passo: Calcular as distância em relação ao novo grupo A B C D E F A 0.00 B C D E F Neste ponto, vamos verificar qual o par com menor distância (2,12+2,49)/2 E assim, sucessivamente, para esta linha A B C E B 0.67 C E DF

28 Terceiro passo: Unir A e B (0,67) Distância de ligação A B D F

29 Quarto passo: Calcular as distância em relação ao novo grupo C E DF E 1.09 DF AB d d (DF,AB) (DF,AB) Vamos agrupar: (E) com (AB) d( D, A) d( D, B) D( F, A) d( F, B) / 4 (2,12 1,47 2,49 1,84) / 4 1,98 A B C D E F A 0.00 B C D E F

30 Quinto passo: Unir E e AB (0,73) Distância de ligação A B E D F

31 Demais passos: Calcular as distância em relação ao novo grupo C DF DF 0.95 ABE Agrupar (CDF) com (ABE) CDF ABE 1.64 Shortcut to ABE x CDF.lnk A B E C D F

32 Resultado do NTSYS

33 Para os dados das 25 populações de Baru (UPGMA), a partir do F ST par-a-par...?

34 VISUALIZANDO OS PADRÕES NO ESPAÇO...

35 Subp. Local de coleta 1 Cocalinho-MT 2 Água Boa-MT 3 Pirenópolis-GO 4 Sonora-MS 5 Alcinópolis-MS 6 Alvorada-TO 7 São Miguel do Araguaia-GO 8 Luziânia-GO 9 Icém-SP 10 Monte Alegre de Minas-MG 11 Estrela do Norte-GO 12 Santa Terezinha-GO 13 Arinos-MG 14 Pintópolis-MG 15 Paraíso-MS (Chapadão do Sul) 16 Paraíso/Camapuã-MS (Camapuã) 17 Camapuã-MS 18 Indiara-GO 19 Araguaia-MT (Barra do Garça) 20 Araguaia-GO (Aragarças) 21 Jandaia-GO 22 Natividade-TO 23 Arraias-TO 24 Aquidauana- MS 25 Cáceres- MT

36 Subp. Local de coleta 1 Cocalinho-MT 2 Água Boa-MT 3 Pirenópolis-GO 4 Sonora-MS 5 Alcinópolis-MS 6 Alvorada-TO 7 São Miguel do Araguaia-GO 8 Luziânia-GO 9 Icém-SP 10 Monte Alegre de Minas-MG 11 Estrela do Norte-GO 12 Santa Terezinha-GO 13 Arinos-MG 14 Pintópolis-MG 15 Paraíso-MS (Chapadão do Sul) 16 Paraíso/Camapuã-MS (Camapuã) 17 Camapuã-MS 18 Indiara-GO 19 Araguaia-MT (Barra do Garça) 20 Araguaia-GO (Aragarças) 21 Jandaia-GO 22 Natividade-TO 23 Arraias-TO 24 Aquidauana- MS 25 Cáceres- MT

37 B (nx p) T (nx p) S (nx n) Distância C.C.C. U.A. 1 U.A. 2 U.A. 3 U.A. 4 U.A U.A. n Y1 i Distância(D i,j ) C (nx n) j Y 2

38 O dendrograma representa adequadamente a matriz de distância original? Matriz Cofenética A B C D E F A B 0.67 C D E F Matriz Original A B C D E F A B 0.67 C D E F r X i Yi X iyi n 2 2 X i ) Y X 2 ( i ) i Yi n n 2 ( CCC=0,75 Coeficiente de Correlação Cofenética CCC) Bom ou Ruim?

39 Diagrama de Shepard: diagrama de dispersão que relaciona distâncias em um espaço com dimensão reduzida com a distâncias originais (mais adequado para técnicas de ordenação): No caso do Baru, o CCC foi igual a 0.845

40 Problemas com a Análise de Agrupamentos (i) Resultados são dependentes dos protocolos utilizados; DistânciaEuclidiana UPGMA DistânciaEuclidiana WPGMA (ii) discretizar um processo que pode ser, na verdade, contínuo, de modo que; (iii) O número de grupos é dependente do nível de corte; (iv) Dificuldade de interpretação

41 Distância U.A. 1 U.A. 2 U.A. 3 U.A. 4 U.A U.A. n

42 Métodos para determinação do nível de corte Maximizar diferenças entre grupos Minimizar diferenças dentro de grupos

43 Zero para quando u.a. estão em grupos iguais definidos pelo nível de corte 1 para quando u.a. estão em diferentes grupos definidos pelo nível de corte Nível 1 Nível 2 Bini, L. M. & Diniz Filho, J. A. F. (1995) Spectral Decomposition in cluster analysis with applications to limnological data. Acta Limnologica Brasiliensia, 7:

44 CCC Matriz Modelo (Nível de corte 1) Matriz Modelo (Nível de corte 2) Matriz de distância Original Nível de Corte

45 (v) Mesmo com um conjunto aleatório de dados é possível encontrar grupos. u.a. Y1 Y2 A B -1-2 C -0-0 D E F G H -1-0 I J B IF E GD J HC A

46 Model-based Clustering: STRUCTURE -Pressupostos (H-W, equilibrio de ligação) -Maximizar a probabilidade de individuos pertencerem a grupos (que são desconhecidos) -Vários dados (marcadores) e modelos de evolução -Associar com outras caracteristicas dos individuos (inclusive espaço ) - Abordagem Bayesiana (MCMC)

47 P_DK Estimated Ln Prob of Data = Mean value of ln likelihood = Variance of ln likelihood = Mean value of alpha = K

48

49 8 grupos P_DK K

50 Subp. Local de coleta 1 Cocalinho-MT 2 Água Boa-MT 3 Pirenópolis-GO 4 Sonora-MS 5 Alcinópolis-MS 6 Alvorada-TO 7 São Miguel do Araguaia-GO 8 Luziânia-GO 9 Icém-SP 10 Monte Alegre de Minas-MG 11 Estrela do Norte-GO 12 Santa Terezinha-GO 13 Arinos-MG 14 Pintópolis-MG 15 Paraíso-MS (Chapadão do Sul) Paraíso/Camapuã-MS 16 (Camapuã) 17 Camapuã-MS 18 Indiara-GO 19 Araguaia-MT (Barra do Garça) 20 Araguaia-GO (Aragarças) 21 Jandaia-GO 22 Natividade-TO 23 Arraias-TO 24 Aquidauana- MS 25 Cáceres- MT CLUSTERS n BEST p

51 grupo Case: 21 Longitude: Latitude: grupo: p2 Case: 18 Longitude: Latitude: p2:

52 Os 8 grupos do STRUCTURE no espaço geográfico

53

54

55

56

57

58

59 Os 8 grupos do STRUCTURE no espaço geográfico

60 Subp. Local de coleta 1 Cocalinho-MT 2 Água Boa-MT 3 Pirenópolis-GO 4 Sonora-MS 5 Alcinópolis-MS 6 Alvorada-TO 7 São Miguel do Araguaia-GO 8 Luziânia-GO 9 Icém-SP 10 Monte Alegre de Minas-MG 11 Estrela do Norte-GO 12 Santa Terezinha-GO 13 Arinos-MG 14 Pintópolis-MG 15 Paraíso-MS (Chapadão do Sul) 16 Paraíso/Camapuã-MS (Camapuã) 17 Camapuã-MS 18 Indiara-GO 19 Araguaia-MT (Barra do Garça) 20 Araguaia-GO (Aragarças) 21 Jandaia-GO 22 Natividade-TO 23 Arraias-TO 24 Aquidauana- MS 25 Cáceres- MT

61 E. Dysenterica ( cagaiteira ) pops 11 loci N 200 km

62 Delta K Number of clusters (K)

63 1.5] 2] 2.5] 3] 3.5]

64 TÈCNICAS DE ORDENAÇÃO Representar a variação p-dimensional em um espaço (eixos) contínuo que compacte essa variação variação em um numero com m > p de dimensões (normalmente 1, 2 ou 3)

65 MAPAS SINTÉTICOS baseados em Análise de Componentes Principais (ACP) -Eliminar estrutura de correlação entre variáveis transformando-as em eixos ortogonais (os componentes principais); -Interpretar os eixos principais como conseqüência de processos microevolutivos. Hotteling, H Analysis of a complex of statistical variables into principal componentes. Journal of Educational Psychology. v. 24, p

66 R- I =0 Em resumo, na ACP três matrizes são importantes 1) Autovalores importância de cada eixo; 2) Autovetores coeficientes das variáveis nos eixos; 3) Escores componentes principais (eixo)

67 Autovalores e Autovetores Y 1 Y 2 Y 3 Y 4 Y 5 R = Y 1 Y 2 1 Y Y Y Ra = a

68 Exemplo numérico X1 X2 X1P X2P u u u u u Matriz de correlação entre variáveis: R- I =0 R 1 0,82 0,82 1

69 λ,, λ λ λ,, λ,, λi R

70 Determinante de uma matriz 2 x 2: a c b d ( ad) - ( bc) 1 λ 0,82 0,82 1 λ 0 (1 λ 2 λ) 2 (0,82) 2 λ 0, o primeiro termo ao quadrado, menos duas vezes o produto dos dois termos mais o quadrado do segundo)

71 a b c λ 2 2λ 0,33 0 λ b b 2 2a 4ac 2 (2 2 ) 4(0,33) λ 2 2 λ I ,82 (Ignore o sinal) λ II ,18 (Ignore o sinal)

72 % de explicação do CP 1 = I / = 1,82/2 = 91 % % de explicação do CP 2 = II / = 0,18/2 = 9 % Total = 100 % Conclusões Redistribuiu (não perdeu...) a variação; 2. Reorganizou em 2 eixos ortogonais

73

74 Aspectos importantes do PCA - Muitas variáveis quantitativas - Reduzir a dimensão, com alguma perda de informação - Interpretação dos eixos - Critérios de Parada (Stopping rules...)

75

76

77 How many principal components? Stopping rules Autovalores Observado Distribuição de Broken-Stick Ordem dos componentes

78 Principal Component 1

79

80

81 Diffusion of farming (cultural) or farmers (genetic)?

82

83

84 Nature Genetics 35: , 2003

85

86

87

88

89

90

91

92

93

94 Dados do Baru (1 locus DA20)

95

96 Principal Component 1 ase: 14 Longitude: Latitude: Principal Component 1: Principal Component 2 Case: 23 Longitude: Latitude: Principal Component 2:

97 OUTRAS TÉCNICAS DE ORDENAÇÃO ANALISE DE COORDENADAS PRINCIPAIS (PCOA) - resolve o problema do PCA de poucas populações, pois extrai os autovetores de uma matriz de distâncias (transformada) - Pode utilizar qualquer métrica de distância (incluindo distancias de Nei, F ST, etc) ESCALONAMENTO MULTIDIMENSIONAL NÃO-MÉTRICO (NMDS) -Técnica de otimização não-linear para espaço com m dimensões (medida de stress ) -Pode iniciar com a PCOA e melhorar a configuração

98

99 NMDS Final STRESS1 = CCC = PCOA CCC = 0.907

100 Ordination Distance Non-metric fit, R Linear fit, R Observed Dissimilarity

101

102 NMDS Final STRESS1 = CCC = PCOA CCC = 0.907

103 Structure PCOA1 1.5] 2] 2.5] 3] 3.5] -0.1] -0.05] 0] 0.05]

104

105 Spatial autocorrelation (I) 14 d = 2 d = Connection network 15 8 Score 1 d = 2 d = 2 Score 1 Score 1 Eigenvalues Eigenvalues decomposition Variance

106

107

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 7 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Relações de interdependência entre variáveis quantitativas: A Análise Factorial Análise Factorial: técnica

Leia mais

Estatistica Espacial em Genética de Populações e da Paisagem

Estatistica Espacial em Genética de Populações e da Paisagem GENÉTICA GEOGRÁFICA: Estatistica Espacial em Genética de Populações e da Paisagem JOSÉ ALEXANDRE FELIZOLA DINIZ FILHO LABORATORIO DE ECOLOGIA TEÓRICA & SÍNTESE Departamento de Ecologia, ICB, Universidade

Leia mais

Escalonamento Multidimensional

Escalonamento Multidimensional Programa de Pós-Graduação em Administração de Organizações (PPGAO) Análise de dados multivariados I Escalonamento Multidimensional Escalonamento Multidimensional (EMD) CAPÍTULO 9 Escalonamento Multidimensional

Leia mais

GENÉTICA GEOGRÁFICA:

GENÉTICA GEOGRÁFICA: GENÉTICA GEOGRÁFICA: Estatistica Espacial em Genética de Populações e da Paisagem JOSÉ ALEXANDRE FELIZOLA DINIZ FILHO LABORATORIO DE ECOLOGIA TEÓRICA & SÍNTESE Departamento de Ecologia, ICB, Universidade

Leia mais

Análise de componentes principais (PCA)

Análise de componentes principais (PCA) Análise de componentes principais (PCA) Redução de dados Sumarizar os dados que contém muitas variáveis (p) por um conjunto menor de (k) variáveis compostas derivadas a partir do conjunto original. p k

Leia mais

Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações

Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações Diogo de Carvalho Bezerra Universidade Federal de Pernambuco Núcleo de Gestão e-mail:[email protected] SOBREA Sociedade

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

4 ANÁLISE DE DADOS. Erro do balanço iônico (%) = Σ cátions - Σ ânions x 100 Σ (cátions + ânions) (1)

4 ANÁLISE DE DADOS. Erro do balanço iônico (%) = Σ cátions - Σ ânions x 100 Σ (cátions + ânions) (1) ANÁLISE DE DADOS 4 ANÁLISE DE DADOS A definição das características das águas subterrânea baseou-se nas análises químicas e físico-químicas e na utilização de métodos estatísticos, como a estatística multivariada

Leia mais

Descoberta de Conhecimento em Bases de Dados. Pesquisa de Clusters

Descoberta de Conhecimento em Bases de Dados. Pesquisa de Clusters Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Descoberta de Conhecimento em Bases de Dados. Pesquisa de Clusters Descoberta

Leia mais

Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad

Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad Aula 25: Análise Fatorial Prof. Eduardo A. Haddad Utilização específica Como identificar o potencial de desenvolvimento agropecuário dos municípios brasileiros? Banco de dados municipais: Tamanho do rebanho,

Leia mais

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.

Leia mais

M l u t l i t c i oli l n i e n arid i a d de

M l u t l i t c i oli l n i e n arid i a d de Multicolinearidade 1 Multicolinearidade Quando existem relação linear exata entre as variáveis independentes será impossível calcular os estimadores de MQO. O procedimento MQO utilizado para estimação

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível

Leia mais

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO, MATEMÁTICA E ESTATÍSTICA P/ PAPILOSCOPISTA

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO, MATEMÁTICA E ESTATÍSTICA P/ PAPILOSCOPISTA RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO, MATEMÁTICA E ESTATÍSTICA P/ PAPILOSCOPISTA Olá galera!!!! Hoje estou postando a resolução da prova de Raciocínio Lógico para agente penitenciário do DF, ocorrida

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Reconhecimento de Padrões André Tavares da Silva [email protected] Roteiro da aula Conceitos básicos sobre reconhecimento de padrões Visão geral sobre aprendizado no projeto de classificadores Seleção

Leia mais

2 Processo de Agrupamentos

2 Processo de Agrupamentos 20 2 Processo de Agrupamentos A análise de agrupamentos pode ser definida como o processo de determinação de k grupos em um conjunto de dados. Para entender o que isso significa, observe-se a Figura. Y

Leia mais

Níveis descritivos de testes estatísticos de variabilidade como medidas de similaridade entre objetos em análises de agrupamento

Níveis descritivos de testes estatísticos de variabilidade como medidas de similaridade entre objetos em análises de agrupamento Níveis descritivos de testes estatísticos de variabilidade como medidas de similaridade entre objetos em análises de agrupamento Luiz Roberto Martins Pinto 1 Leonardo Evangelista Moraes 2 Priscila Ramos

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo APRESENTAÇÃO Métodos Multivariados: São métodos (ferramentas analíticas) utilizados na transformação de dados (várias medidas

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Análise de agrupamento dos dados sedimentológicos da plataforma e talude continentais da Bahia

Análise de agrupamento dos dados sedimentológicos da plataforma e talude continentais da Bahia Análise de agrupamento dos dados sedimentológicos da plataforma e talude continentais da Bahia ÂNGELA CRISTINA DA FONSECA MIRANTE 1 2 4 JOÃO DOMINGOS SCALON 2 4 TÂNIA MARIA FONSECA ARAÚJO 3 TÂNIA JUSSARA

Leia mais

DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1

DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 Departamento de Estatística Setor de Ciências Exatas Disciplina: Elementos Básicos para Estatística Código: CE065 Natureza: Semestral Carga Horária:

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Súmario APRESENTAÇÃO DA COLEÇÃO...13

Súmario APRESENTAÇÃO DA COLEÇÃO...13 Súmario APRESENTAÇÃO DA COLEÇÃO...13 CAPÍTULO I LÓGICA PROPOSICIONAL...15 1. Lógica Proposicional...15 2. Proposição...15 2.1. Negação da Proposição...18 2.2. Dupla Negação...19 2.3. Proposição Simples

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.1: Álgebra Linear e Matrizes Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica [email protected] São José

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

MATRIZ DE REFERÊNCIA PARA O ENEM 2009

MATRIZ DE REFERÊNCIA PARA O ENEM 2009 MINISTÉRIO DA EDUCAÇÃO INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA MATRIZ DE REFERÊNCIA PARA O ENEM 2009 EIXOS COGNITIVOS (comuns a todas as áreas de conhecimento) I. Dominar

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

A análise de aglomerados

A análise de aglomerados Mais importante do que saber fazer é saber o por quê (Norbert Wiener (1894 1964). Prof. Lorí Viali, Dr. [email protected]; [email protected]; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/

Leia mais

CC-226 Aula 05 - Teoria da Decisão Bayesiana

CC-226 Aula 05 - Teoria da Decisão Bayesiana CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Análise Fatorial. Matriz R de coeficientes de correlação: Não confundir análise de componentes principais com análise fatorial!

Análise Fatorial. Matriz R de coeficientes de correlação: Não confundir análise de componentes principais com análise fatorial! Análise Fatorial 1 Na análise fatorial as variáveis y1, y,..., Yp, são combinações lineares de umas poucas variáveis F1, F,..., Fm (m

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro [email protected] http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares ([email protected] ) Catarina Coimbra ([email protected] ) Rota de aprendizage m por Projetos

Leia mais

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U). 11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Aprendizado de Máquina André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP Agrupamento de dados Tópicos Agrupamento de dados Dificuldades em agrupamento Algoritmos de agrupamento

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 )

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 ) ROTAÇÃO E INTERPRETAÇÃO DAS COMPONENTES PRINCIPAIS Consideremos o seguinte exemplo (exercício 6): 15 alunos de uma determinada escola foram sujeitos a testes de 6 disciplinas e os resultados obtidos encontram-se

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Escalonamento Multidimensional Professor: Valdecy Pereira, D. Sc. /

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste

Leia mais

Análise de Correspondência em acessos de pimenta

Análise de Correspondência em acessos de pimenta Análise de Correspondência em acessos de pimenta Bruno Caetano Vidigal 1 Paulo Roberto Cecon 2. 1 Introdução A Análise de Correspondência (AC) é uma das diversas técnicas de análise multivariada desenvolvida

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

ESCOLA SECUNDÁRIA FERREIRA DIAS

ESCOLA SECUNDÁRIA FERREIRA DIAS ESCOLA SECUNDÁRIA FERREIRA DIAS ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS DISCIPLINA : MATEMÁTICA A ANO: 10.º - CONJUNTO DOS MÓDULOS 1-2-3 DURAÇÃO

Leia mais

MATEMÁTICA NÍVEL MÉDIO

MATEMÁTICA NÍVEL MÉDIO MATEMÁTICA NÍVEL MÉDIO 1. CONJUNTOS 1.1. Representação e relação: pertinência, inclusão e igualdade. 1.2. Operações: união, intercessão, diferença e complementar. 1.3. Conjuntos numéricos: Naturais, Inteiros,

Leia mais

PRÁTICA 8. A Distância Euclidiana entre dois vetores n-dimensionais x e y é definida como o escalar: d = norm(x y)

PRÁTICA 8. A Distância Euclidiana entre dois vetores n-dimensionais x e y é definida como o escalar: d = norm(x y) PRÁTICA 8 1) Medidas de Distância. A Distância Euclidiana entre dois vetores n-dimensionais e y é definida como o escalar: d 1 2 2 [( y ) + + ( y ) ] 2 e (, y) = y = y = 1 1 L n n esta epressão é a Norma

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

Aula 7 Medidas de Distância. Profa. Elaine Faria UFU

Aula 7 Medidas de Distância. Profa. Elaine Faria UFU Aula 7 Medidas de Distância Profa. Elaine Faria UFU - 2017 Agradecimentos Este material é baseado No livro Tan et al, 2006 Nos slides do prof Andre C. P. L. F. Carvalho Agradecimentos Ao professor André

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em

Leia mais

Técnicas Multivariadas em Saúde

Técnicas Multivariadas em Saúde Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

Elementos de Matemática Avançada

Elementos de Matemática Avançada Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos

Leia mais

Matriz de referência de MATEMÁTICA - SAERJINHO 5 ANO ENSINO FUNDAMENTAL

Matriz de referência de MATEMÁTICA - SAERJINHO 5 ANO ENSINO FUNDAMENTAL 17 5 ANO ENSINO FUNDAMENTAL Tópico Habilidade B1 B2 B3 ESPAÇO E FORMA GRANDEZAS E MEDIDAS TRATAMENTO DA INFORMAÇÃO H01 H03 H04 H06 Identificar a localização/movimentação de objeto em mapas, croquis e outras

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Calendarização da Componente Letiva Ano Letivo 2016/2017

Calendarização da Componente Letiva Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)

Leia mais

CORRELAÇÃO LINEAR. Referência Cap. 7 - Métodos Estatísticos para Geografia

CORRELAÇÃO LINEAR. Referência Cap. 7 - Métodos Estatísticos para Geografia CORRELAÇÃO LINEAR Referência Cap. 7 - Métodos Estatísticos para Geografia Correlação linear - Definição Permite verificar se duas variáveis independentes estão associadas uma com a outra Questionamentos

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal

Leia mais

Modelos de Escolha Discreta. a)pretende-se conhecer os coeficientes da função de utilidade, assim como a sua significância estatística.

Modelos de Escolha Discreta. a)pretende-se conhecer os coeficientes da função de utilidade, assim como a sua significância estatística. Nº Observações espaço Lx centro espaço periferia nº clientes (15 min) centro Lx nº clientes (15 min) periferia estacionamento centro Lx estacionamento periferia tc rodo centro Lx tc rodo periferia Código

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

Análise Discriminante

Análise Discriminante Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Análise Discriminante Análise Discriminante 1 Análise discriminante - A

Leia mais

ANÁLISE DE CLUSTER APLICADA À LOGÍSTICA: DEFINIÇÃO DE ZONAS DE TRANSPORTE PARA UMA EMPRESA DO SETOR SIDERÚRGICO

ANÁLISE DE CLUSTER APLICADA À LOGÍSTICA: DEFINIÇÃO DE ZONAS DE TRANSPORTE PARA UMA EMPRESA DO SETOR SIDERÚRGICO ANÁLISE DE CLUSTER APLICADA À LOGÍSTICA: DEFINIÇÃO DE ZONAS DE TRANSPORTE PARA UMA EMPRESA DO SETOR SIDERÚRGICO Alvaro Simões da Conceição Neto (UFMG) [email protected] Juliana Jacob Ferreira (UFMG)

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

MELHORIA DA CORRELAÇÃO COFENÉTICA PELA EXCLUSÃO DE UNIDADES EXPERIMENTAIS NA CONSTRUÇÃO DE DENDROGRAMAS

MELHORIA DA CORRELAÇÃO COFENÉTICA PELA EXCLUSÃO DE UNIDADES EXPERIMENTAIS NA CONSTRUÇÃO DE DENDROGRAMAS MELHORIA DA CORRELAÇÃO COFENÉTICA PELA EXCLUSÃO DE UNIDADES EXPERIMENTAIS NA CONSTRUÇÃO DE DENDROGRAMAS IMPROVEMENT OF COPHENETIC CORRELATION FOR THE EXPERIMENTAL UNITS EXCLUSION IN THE DENDROGRAMS CONSTRUCTION

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais