Análise Discriminante
|
|
|
- Matilde Gesser de Andrade
- 9 Há anos
- Visualizações:
Transcrição
1 Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Análise Discriminante Análise Discriminante 1
2 Análise discriminante - A análise discriminante - Verificação de pressupostos - Determinação de funções discriminantes - Variáveis a considerar na análise - Determinação de funções de classificação - Classificação Análise Discriminante 2
3 Análise discriminante Método estatístico multivariado que se emprega para descobrir as características que distinguem os membros de um grupo dos de outro, de modo que, conhecidas as características de um novo indivíduo, se possa prever a que grupo pertence. Foi originalmente desenvolvida na botânica tendo por objectivo fazer a distinção de grupos de plantas com base no tamanho e no tipo de folhas o que tornaria possível, posteriormente classificar as novas espécies encontradas. Em 1936, Fisher foi o responsável pelo desenvolvimento da análise para dois grupos. Análise Discriminante 3
4 Passos da análise Início Verificação de Pressupostos Continua? S Determinação de funções discriminantes N Classifica? N S Geração de Funções de Classificação Fim Classificação Análise Discriminante 4
5 Verificação de pressupostos - Remoção de outliers - Testes de normalidade às variáveis - Homogeneidade das matrizes de variância-covariância - Existência de diferenças significativas entre os grupos Acção: Executar todos os testes de validade e interpretar Análise Discriminante 5
6 Remoção de outliers Uma análise discriminante é altamente sensível à presença de outliers ou valores extremos de variáveis que têm um largo impacto nas médias e também aumentam as variâncias podendo erroneamente resultar em significância estatística. Assim, os outliers devem ser identificados e removidos antes da análise. Análise Discriminante 6
7 Testes de normalidade às variáveis Assume-se que os dados representam uma distribuição normal multivariada. O exame da sua distribuição em termos gráficos através de histogramas permite visualizar se são ou não normalmente distribuídas. Todavia as violações de normalidade, neste particular, não são usualmente fatais o que significa que os testes de significância resultantes são fidedignos. Análise Discriminante 7
8 Homogeneidade das matrizes de variância-covariância Assume-se que as matrizes de variância/covariância são homogénas entre os grupos. Também neste caso, desvios menores são pouco importantes pelo que é possível uma decisão para prosseguir a análise apesar da violação do pressuposto. Análise Discriminante 8
9 Existência de diferenças significativas entre os grupos A estatística Λ de Wilks é uma medida inversa do grau de diferenciação entre os grupos: quanto menor o seu valor, maior esse grau de diferenciação Λ = W T = W B + W Determinante de W: medida da variabilidade dentro dos grupos. Determinante de T: medida da variabilidade total. Quanto maior for a semelhança entre os dois determinantes, menores serão as diferenças entre os grupos e mais o valor do Lambda de Wilks se aproximará de 1. Análise Discriminante 9
10 Determinação de funções discriminantes O número máximo de funções discriminantes é igual ao número de grupos menos um, ou ao número de variáveis discriminantes, sendo o critério de escolha baseado no menor destes dois valores. No caso de dois grupos, a função discriminante é uma função linear do tipo: Y = a + b 1 *x 1 + b 2 *x b m *x m onde a é uma constante e b 1..b m são um conjunto de coeficientes cujo valor representa o seu grau de contribuição para a predição do grupo a que pertence. Análise Discriminante 10
11 Determinação de funções discriminantes No caso de mais de dois grupos, pode ser estimada mais do que uma função discriminante como a anterior e o significado dos coeficientes é idêntico. No entanto, estes coeficientes não nos dizem entre que grupos as respectivas funções discriminam podendo tal interpretação ser obtida a partir de uma representação gráfica ou do exame das médias das funções entre grupos. Análise Discriminante 11
12 Variáveis a considerar numa análise Em muitos estudos, um investigador pode querer considerar todas as variáveis no modelo. No entanto, em muitas aplicações, um objectivo chave é identificar um subconjunto útil de variáveis para concretizar a predição. Alguns produtos, como o SPSS, fornecem métodos para construir um modelo de um modo passo a passo (stepwise discriminant analysis): fazendo entrar ou removendo em cada passo uma variável do modelo. Análise Discriminante 12
13 Método Stepwise O método começa por determinar a variável para a qual a média é mais diferente e continua, passo a passo, a juntar a próxima melhor variável. Reis (1997) apresenta várias estatísticas de apoio à determinação de variáveis a integrar ou remover do modelo, designadamente, o lambda de Wilks, a distância de Mahalanobis, o rácio do F mais pequeno, o V de Rao e a soma da variância não explicada. Análise Discriminante 13
14 Determinação de funções de classificação As funções de classificação podem ser utilizadas para determinar a que grupo cada caso pertence. Há tantas funções de classificação quantos os grupos. Cada função permite-nos calcular scores de classificação para cada caso em cada grupo aplicando a expressão: S i = c i +w i1 *x 1 + w i2 *x w im *x m onde i representa o grupo respectivo, 1,2,... m as variáveis, c i um valor constante para o gupo i, w ij o peso da variável j no cálculo do scores do grupo i, x j o valor observado do caso respectivo para a variável j. Análise Discriminante 14
15 Classificação Dispondo das funções de classificação associadas a cada grupo, todos os casos são relacionados com cada uma das funções de classificação. Considera-se que um caso determinado pertence ao grupo para o qual se encontrou o score mais elevado. É possível ter uma avaliação do rigor da predição através da elaboração de uma matriz de classificação onde se mostra para cada grupo o número de casos correctamente classificados e o número de casos mal classificados. Análise Discriminante 15
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada
UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Discriminante Professor: Valdecy Pereira, D. Sc. email: [email protected]
ANÁLISE DISCRIMINANTE
ANÁLISE DISCRIMINANTE 56 ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria 4 º Simpósio de Estatística Aplicada à Experimentação Agronômica Prof. Edwirde L. Silva 5 A 9 de Julho
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
Instituto Nacional de Pesquisas Espaciais - INPE. Divisão de Processamento de Imagens - DPI
1 Sumário 2 Introdução Técnicas de ESDA Matrizes de Proximidade Espacial Média Espacial Móvel (m i ) Indicadores Globais de Autocorrelação Espacial Índices Globais de Moran (I), Geary (C) e Getis e Ord
ANÁLISE DISCRIMINANTE (MÓDULO I)
Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Estatística Aplicada ANÁLISE DISCRIMINANTE (MÓDULO I) Franciely Farias da Cunha (201007840014), aluna do curso
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
ÍNDICE Janelas Menus Barras de ferramentas Barra de estado Caixas de diálogo
XXXXXXXX ÍNDICE INTRODUÇÃO 15 1. VISÃO GERAL DO SPSS PARA WINDOWS 17 1.1. Janelas 17 1.2. Menus 20 1.3. Barras de ferramentas 21 1.4. Barra de estado 21 1.5. Caixas de diálogo 22 2. OPERAÇÕES BÁSICAS 23
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais. Eraylson Galdino
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais [email protected] Agenda Séries Temporais: Definições Exemplos Modelos simples com média zero: Ruído I.I.D Processo Binário Random
Disciplina de Modelos Lineares
Disciplina de Modelos Lineares 2012-2 Seleção de Variáveis Professora Ariane Ferreira Em modelos de regressão múltipla é necessário determinar um subconjunto de variáveis independentes que melhor explique
Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0
Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0
Seleção de Variáveis e Construindo o Modelo
Seleção de Variáveis e Construindo o Modelo Seleção de modelos candidatos A idéia é selecionar um conjunto menor de variáveis explanatórias de acordo com algum(s) critério(s), e assim selecionar o modelo
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.
Transformação de dados como alternativa a análise variância. univariada
Transformação de dados como alternativa a análise variância 1 Introdução univariada 1 Katia Alves Campos 1 Crysttian Arantes Paixão 2 Augusto Ramalho Morais 3 Normalmente nos experimentos, realizados em
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Multicolinariedade e Autocorrelação
Multicolinariedade e Autocorrelação Introdução Em regressão múltipla, se não existe relação linear entre as variáveis preditoras, as variáveis são ortogonais. Na maioria das aplicações os regressores não
Professora: Cira Souza Pitombo. Disciplina: Aplicações de técnicas de análise de dados
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MESTRADO EM ENGENHARIA AMBIENTAL E URBANA Apresentação do Curso Introdução Professora: Cira Souza Pitombo Disciplina: Aplicações de técnicas de análise
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 10 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise Regressão: Avaliação de relações de dependência em que se explica o comportamento de uma/várias
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA CALEB SOUZA GRR DENNIS LEÃO GRR LUAN FIORENTIN GRR
UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA CALEB SOUZA GRR -20149072 DENNIS LEÃO GRR - 20160239 LUAN FIORENTIN GRR - 20160219 MODELAGEM DA QUANTIDADE DE MATRÍCULAS NO ENSINO REGULAR NO ESTADO DO
Descoberta de Conhecimento em Bases de Dados. Pesquisa de Clusters
Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Descoberta de Conhecimento em Bases de Dados. Pesquisa de Clusters Descoberta
Disciplina de Modelos Lineares Professora Ariane Ferreira
Disciplina de Modelos Lineares 2012-2 Regressão Logística Professora Ariane Ferreira O modelo de regressão logístico é semelhante ao modelo de regressão linear. No entanto, no modelo logístico a variável
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 7 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Relações de interdependência entre variáveis quantitativas: A Análise Factorial Análise Factorial: técnica
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
Predição do preço médio anual do frango por intermédio de regressão linear
Predição do preço médio anual do frango por intermédio de regressão linear João Flávio A. Silva 1 Tatiane Gomes Araújo 2 Janser Moura Pereira 3 1 Introdução Visando atender de maneira simultânea e harmônica
VERIFICAÇÃO DA ADEQUAÇÃO DO MODELO DE ANÁLISE DE VARIÂNCIA ANÁLISE DE RESÍDUOS
VERIFICAÇÃO DA ADEQUAÇÃO DO MODELO DE ANÁLISE DE VARIÂNCIA ANÁLISE DE RESÍDUOS Conforme foi apresentado anteriormente, o modelo de análise de variância assume que as observações são independentes e normalmente
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
Regressão linear simples
Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação
Mais Informações sobre Itens do Relatório
Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo
Estudo dirigido de Análise Multivariada
Estudo dirigido de Análise Multivariada Conceitos Iniciais De um modo geral, os métodos estatísticos de análise multivariada são aplicados para analisar múltiplas medidas sobre cada indivíduo ou objeto
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
Análise de variância (ANOVA)
Análise de variância (ANOVA) Universidade Estadual de Santa Cruz Ivan Bezerra Allaman CRONOGRAMA 1. História 2. Concepção da ideia 3. Formalização da ideia e o surgimento da distribuição F 4. Hipóteses
Contabilometria. Análise Discriminante
Contabilometria Análise Discriminante Fonte: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Contabilidade e Administração, Editora Atlas, São Paulo, 010 Cap. 3 Análise Discriminante
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
1. Iniciação ao IBM-SPSS 22
Índice Prefácio 17 Introdução 1. Iniciação ao IBM-SPSS 22 1.1. Ficheiro de dados 22 1.2. Definição de variáveis e casos 22 1.3. Análise estatística 27 1.4. Gráficos 28 1.5. Ajudas 29 1.6. Junção de informação
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA SINTRA
ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA SINTRA ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE ARTES VISUAIS DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DISCIPLINA : MATEMÁTICA
TESTE DE HIPÓTESE. Introdução
TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Processamento de erros grosseiros - Identiمحcaچcﷺao
Processamento de erros grosseiros - Identiمحcaچcﷺao Método ˆb Base: variável ˆβ interpretada como uma estimativa do erro associado à medida; verificação da magnitude do erro com relação a faixa esperada
A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:
A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal
Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa
2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante
2 Processo de Agrupamentos
20 2 Processo de Agrupamentos A análise de agrupamentos pode ser definida como o processo de determinação de k grupos em um conjunto de dados. Para entender o que isso significa, observe-se a Figura. Y
Planejamento de Experimentos
Planejamento de Experimentos 1 6.4 Os Modelos fatoriais 2 k : o caso geral. O modelo estatístico para um plano 2 k inclui k ( k 2 ( k ) ) efeitos principais efeitos de interação de ordem 2 efeitos de interação
Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:
DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES
ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES 18 aula META Fazer com que o aluno seja capaz de realizar os procedimentos existentes para a avaliação da qualidade dos ajustes aos modelos. OBJETIVOS Ao final
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
ESTATÍSTICA EXPERIMENTAL. ANOVA. Aula 05
ESTATÍSTICA EXPERIMENTAL ANOVA. Aula 05 Introdução A ANOVA ou Análise de Variância é um procedimento usado para comparar a distribuição de três ou mais grupos em amostras independentes. A análise de variância
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo k-nearest Neighbors (knn) Como os filmes são categorizados em gêneros? O que
Peso (mg) Número de cigarros [760,780[ 3 [780,800[ 7 [800,820[ 19 [820,840[ 25 [840,860[ 17 [860,880[ 12 [880,900[ 8
Escola Superior de Tecnologia de Viseu Tratamento Estatístico de Dados 2008/2009 Ficha Revisões 1. A Tabaqueira SA faz um apertado controlo da qualidade dos cigarros que produz; o peso é uma das características
Reconhecimento de Padrões. Reconhecimento de Padrões
Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.
Teste de Cochran (Homogeneidade de Variância)
ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de
Inferência para várias populações normais análise de variância (ANOVA)
Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo
Cap. 8 - Intervalos Estatísticos para uma Única Amostra
Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO
Análise de Correlação Canônica
Análise de Correlação Canônica Objetivos de aprendizagem Ao concluir este capítulo, você deverá ser capaz de: Enunciar as semelhanças e diferenças entre regressão múltipla, análise fatorial, análise discriminante
Função prcomp. 1. Introdução
Função prcomp 1. Introdução Apresentamos alguns exemplos de utilização da função prcomp do pacote stats em R. Esta função permite realizar uma análise de componentes principais a partir de uma matriz de
Transformações e Ponderação para corrigir violações do modelo
Transformações e Ponderação para corrigir violações do modelo Diagnóstico na análise de regressão Relembrando suposições Os erros do modelo tem média zero e variância constante. Os erros do modelo tem
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal MEDIDAS DE DISPERSÃO As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual,
Análise de dados, tipos de amostras e análise multivariada
Les-0773: ESTATÍSTICA APLICADA III Análise de dados, tipos de amostras e análise multivariada AULA 1 12/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Introdução O que significa o termo estatística? No
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica e M ANalysis Of Variance Permite determinar se as médias de 2 ou mais populações são iguais População: o grupo (universo)
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Função prcomp em R. 1. Introdução
Função prcomp em R 1. Introdução Apresentamos alguns exemplos de utilização da função prcomp do pacote stats em R. Esta função permite realizar uma análise de componentes principais a partir de uma matriz
ANÁLISE DISCRIMINANTE. Análise discriminante. Função discriminante. Análise de agrupamentos e Análise das componentes principais
Análise de agrupamentos e Análise das componentes principais Ambas as análises são técnicas de redução de dados. ANÁLISE DISCRIMINANTE Objetivo da análise de agrupamentos é formar grupos, reduzindo o número
Ajustamento de Observações
Ajustamento de Observações Teoria dos Erros Prof. Dr. Marcos Aurélio Basso IFSULDEMINAS Campus Incondentes MG Teoria dos Erros - Introdução Observações e erros de observação; Factores que caracterizam
CORRELAÇÃO. Flávia F. Feitosa
CORRELAÇÃO Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Junho de 2015 Revisão Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros
