ANÁLISE DISCRIMINANTE
|
|
|
- Arthur Schmidt Tavares
- 8 Há anos
- Visualizações:
Transcrição
1 ANÁLISE DISCRIMINANTE 56 ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria 4 º Simpósio de Estatística Aplicada à Experimentação Agronômica Prof. Edwirde L. Silva 5 A 9 de Julho de 0 Maringá, PR
2 Aplicação do teste Box M Prof. Edwirde Luiz Silva - UEPB
3 PRINCIPAIS PRESSUPOSTO PARA FUNÇÃO FUNÇÃO DISCRIMINANTE Igualdade das matrizes de covariâncias Box definiu o teste M utilizando o método de quociente de verossimilhanças e pressupondo que os valores de médias dos grupos são conhecidos. As hipóteses a testar são: H H o : Σ : Σ i = Σ Σ j =... = Σ, i j k Σ ˆ = S e µˆ = j j X j Seja n a dimensão total da amostra e v j os graus de liberdade associados a cada grupo, S j a matriz de covariância do grupo j e S a matriz de covariância total. J=,...,k grupos Prof. Edwirde Luiz Silva - UEPB
4 PRINCIPAIS PRESSUPOSTO PARA FUNÇÃO FUNÇÃO DISCRIMINANTE igualdade das matrizes de covariâncias Mbox = ( n k) ln S k = j v j ln S j Sendo: K é o número de grupos; n é número total da amostra (em todos os grupos); p é número de variáveis; Determinante da matriz de covariância comum Determinante da matriz de covariância do grupo j v j = n j - os graus de liberdade associados a cada grupo j. S = S i = ( n n i= ). S n + + ( n n ( x ) i= x i n n n = n i= ) S ( x x) i n Matriz de covariância comum Variância de x i, i=. Prof. Edwirde Luiz Silva - UEPB
5 PRINCIPAIS PRESSUPOSTO PARA FUNÇÃO FUNÇÃO DISCRIMINANTE igualdade das matrizes de covariâncias Aproximações a Qui-quadrada: k k p + 3p ( n k)ln S v j ln S j ~ = j 6( p )( k ) j vj n k = Mbox B χ [ p( p+ )( k )] Teste M de Box Ajuste para Qui-quadrada H H o = Σ = Σ i Mbox = Σ Σ j ~ χ. B [ p( p+ )( k )] =... = Σ, i j Prof. Edwirde Luiz Silva - UEPB k Mbox.B
6 PRINCIPAIS PRESSUPOSTO PARA FUNÇÃO FUNÇÃO DISCRIMINANTE igualdade das matrizes de covariâncias Mbox = ( n k) ln S k = j v j ln S j Sendo: K é o número de grupos; n é número total da amostra (em todos os grupos); p é número de variáveis; Determinante da matriz de covariância comum Determinante da matriz de covariância do grupo j v j = n j - os graus de liberdade associados a cada grupo j. S = S i = ( n n i= ). S n + + ( n n ( x ) i= x i n n n = n i= ) S ( x x) i n Matriz de covariância comum Variância de x i, i=. Prof. Edwirde Luiz Silva - UEPB
7 PRINCIPAIS PRESSUPOSTO PARA FUNÇÃO FUNÇÃO DISCRIMINANTE igualdade das matrizes de covariâncias Aproximações a Qui-quadrada: k k p + 3p ( n k)ln S v j ln S j ~ = j 6( p )( k ) j vj n k = Mbox B χ [ p( p+ )( k )] Teste M de Box Ajuste para Qui-quadrada H H o = Σ = Σ i Mbox = Σ Σ j ~ χ. B [ p( p+ )( k )] =... = Σ, i j Prof. Edwirde Luiz Silva - UEPB k Mbox.B
8 Testar se a matriz covariância entre os grupos I e II são iguais ou diferente entre si.
9 Matriz de covariância dos grupos I e II Cálculos de determinante e logaritmo de determinantes Prof. Edwirde Luiz Silva - UEPB
10 Decisão: Não rejeitar a hipótese nula de igualdade das matrizes de covariância. Prof. Edwirde Luiz Silva - UEPB
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 SEQUÊNCIA BÁSICA DE INVESTIGAÇÃO COM ANÁLISE DISCRIMINANTE Pergunta de investigação.diferencia multivariada entre os grupos?.que funções discriminam os grupos? 3.Classificar indivíduos em grupos? Experimento na investigação. Que variáveis de agrupamento, quantos níveis?. Os grupos são iguais? Tamanho da amostra? Avaliação dos pressupostos e limitações Normalidade multivariada Independência dos erros Homogeneidade da variância /covariância Linearidade Casos extremos
27 SEQUÊNCIA BÁSICA DE INVESTIGAÇÃO COM ANÁLISE DISCRIMINANTE Estimação das funções discriminantes lineares. Aplicação da MANOVA para determinar diferencias entre grupos. Estimação simultânea ou por acaso? Se por acaso: Que método para introduzir variáveis se emprega? Função de classificação linear.determinar os coeficientes das funções.classificar os indivíduos 3.Elaborar um tabela de classificação 4.É significativo o ajuste de predição? A Interpretação dos resultados.resolveu o problema da investigação?.outras investigação se deriva da análise discriminante? 3.Que importância tem os resultados obtidos? 4.Elaboração do informe da investigação.
28 Espero que esta simples trabalho sirva de introdução ao gigantesco mundo de análise discriminante. Muito obrigado!
Análise Discriminante
Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Análise Discriminante Análise Discriminante 1 Análise discriminante - A
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,
Análise de Dados Longitudinais Aula
1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual
Transformações e Ponderação para corrigir violações do modelo
Transformações e Ponderação para corrigir violações do modelo Diagnóstico na análise de regressão Relembrando suposições Os erros do modelo tem média zero e variância constante. Os erros do modelo tem
Tratamento Estatístico de Dados em Física Experimental
Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 10 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise Regressão: Avaliação de relações de dependência em que se explica o comportamento de uma/várias
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 7. Estimação 1 7.1. Estimação pontual 1 7.1.1. Propriedades dos estimadores 1 7.1.2. Métodos de estimação 4 7.1.2.1. Método dos momentos 4 7.1.2.2. Método da máxima verosimilhança 5 7.1.3. Exemplos
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada
UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Discriminante Professor: Valdecy Pereira, D. Sc. email: [email protected]
Análise estatística multivariada
Análise estatística multivariada Conjunto de procedimentos para a análise simultânea de duas ou mais medidas de cada caso/observação Os dados coletados p variáveis - de uma amostra de tamanho n podem ser
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Disciplina de Modelos Lineares Professora Ariane Ferreira
Disciplina de Modelos Lineares 2012-2 Regressão Logística Professora Ariane Ferreira O modelo de regressão logístico é semelhante ao modelo de regressão linear. No entanto, no modelo logístico a variável
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
Ralph S. Silva
ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S. Silva http://www.im.ufrj.br/ralph/multivariada.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário
AVALIAÇÃO DOS TESTES MULTIVARIADOS DA RAZÃO DE VEROSSIMILHANÇAS E T² DE HOTELLING: Um estudo por simulação de dados
AVALIAÇÃO DOS TESTES MULTIVARIADOS DA RAZÃO DE VEROSSIMILHANÇAS E T² DE HOTELLING: Um estudo por simulação de dados Eduardo Campana Barbosa 12 Rômulo César Manuli² Patrícia Sousa² Ana Carolina Campana
Análise de dados, tipos de amostras e análise multivariada
Les-0773: ESTATÍSTICA APLICADA III Análise de dados, tipos de amostras e análise multivariada AULA 1 12/05/17 Prof a Lilian M. Lima Cunha Maio de 2017 Introdução O que significa o termo estatística? No
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.
INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário
ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j
SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................
ROTINA PARA APLICAÇÃO DO MÉTODO PARAMÉTRICO
ROTINA PARA APLICAÇÃO DO MÉTODO PARAMÉTRICO º Passo: Estudar o problema e formular as equações matemáticas para cada uma das observações, sempre na forma F(Xa) La ; 2º Passo: Obter os valores aproximados
COMPARAÇÃO DE MODELOS MISTOS VISANDO À ESTIMAÇÃO DO COEFICIENTE DE HERDABILIDADE PARA DADOS DE PROPORÇÕES
COMPARAÇÃO DE MODELOS MISTOS VISANDO À ESTIMAÇÃO DO COEFICIENTE DE HERDABILIDADE PARA DADOS DE PROPORÇÕES Telde Natel CUSTÓDIO 1 Décio BARBIN RESUMO: O objetivo deste trabalho foi apresentar um procedimento
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 8 Análise de Regressão Múltipla: o Problema da Inferência Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus,
Ralph S. Silva
ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:
A Metodologia de Box & Jenkins
A Metodologia de Box & Jenins Aula 03 Bueno, 0, Capítulo 3 Enders, 009, Capítulo Morettin e Toloi, 006, Capítulos 6 a 8 A Metodologia Box & Jenins Uma abordagem bastante utilizada para a construção de
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
TESTE DE COMPARAÇÃO MÚLTIPLA
SUMÁRIO 1 TESTE DE COMPARAÇÃO MÚLTIPLA Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais. Mas, entre
Testes de Hipóteses para. uma Única Amostra. Objetivos de Aprendizagem. 9.1 Teste de Hipóteses. UFMG-ICEx-EST-027/031 07/06/ :07
-027/031 07/06/2018 10:07 9 ESQUEMA DO CAPÍTULO 9.1 TESTE DE HIPÓTESES 9.2 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 9.3 TESTES PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA
Análise de Variância Multivariada (MANOVA) (Johnson & Wichern, Cap. 6)
Análise de Variância Multivariada (MANOVA) (Johnson & Wichern, Cap. 6) 1. Comparações emparelhadas Começaremos com uma breve revisão deste problema no caso univariado. O problema aqui pode ser descrito
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se
Unidade IV Inferência estatística
6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses
Professora: Cira Souza Pitombo. Disciplina: Aplicações de técnicas de análise de dados
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MESTRADO EM ENGENHARIA AMBIENTAL E URBANA Apresentação do Curso Introdução Professora: Cira Souza Pitombo Disciplina: Aplicações de técnicas de análise
Exercícios Selecionados de Econometria para Concursos Públicos
1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
9 a 14 de Setembro Pós-Graduação em Produção Vegetal UFPR. Éder David Borges da Silva Renato Gonçalves de Oliveira
9 a 14 de Setembro Pós-Graduação em Produção Vegetal UFPR Éder David Borges da Silva Renato Gonçalves de Oliveira Conteúdo abordado: Revisão de Estatística básica Princípios básicos de experimentação Delineamento
Econometria. Econometria ( ) O modelo de regressão linear múltipla. O modelo de regressão linear múltipla. Aula 2-26/8/2010
Aula - 6/8/010 Econometria Econometria 1. Hipóteses do Modelo de RLM O modelo de regressão linear múltipla Estudar a relação entre uma variável dependente e uma ou mais variáveis independentes. Forma genérica:
AULA 8 Experimentos multinomiais e tabelas de contingência
1 AULA 8 Experimentos multinomiais e tabelas de contingência Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas
Regressão linear múltipla
Pós-Graduação em Agronomia - CPGA-Solos Análise Multivariada Aplicada as Ciências Agrárias Regressão linear múltipla Carlos Alberto Alves Varella Objetivo da disciplina Ensinar modelagem estatística de
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Econometria. Econometria MQO MQO. Resíduos. Resíduos MQO. 1. Exemplo da técnica MQO. 2. Hipóteses do Modelo de RLM. 3.
3. Ajuste do Modelo 4. Modelo Restrito Resíduos Resíduos 1 M = I- X(X X) -1 X Hipóteses do modelo Linearidade significa ser linear nos parâmetros. Identificação: Só existe um único conjunto de parâmetros
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
Análise de Aderência e de Associação
Análise de Aderência e de Associação Capítulo 14, Estatística Básica (Bussab & Morettin, 8a Edição) Capítulo 8, Introdução Computacional à Probabilidade e Estatística (Pedrosa & Gama, Porto Editora) 8a
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Súmario APRESENTAÇÃO DA COLEÇÃO...13
Súmario APRESENTAÇÃO DA COLEÇÃO...13 CAPÍTULO I LÓGICA PROPOSICIONAL...15 1. Lógica Proposicional...15 2. Proposição...15 2.1. Negação da Proposição...18 2.2. Dupla Negação...19 2.3. Proposição Simples
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 9 Modelos de Regressão com Variáveis Binárias Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Variáveis
mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br
Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes
UNIVERSIDADE ESTADUAL PAULISTA PLANO DE ENSINO DA DISCIPLINA
Situação: Data Aprovação: 09/04/14 00:00 Data Desativação: Nº Créditos : 8 Carga Horária Total: Carga Horária Teórica: Carga Horária Prática: Carga Horária Teórica/Prátical: Carga Horária Seminário: Carga
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
Estatística Aplicada II. } Regressão Linear
Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7
Testes de Aderência, Homogeneidade e Independência
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa
Os Mínimos Quadrados Ordinários Assintóticos
Os Mínimos Quadrados Ordinários Assintóticos Enquadramento 1. A analise assintótica, é o método matemático que descreve a limitação de um determinado comportamento. O termo assintótico significa aproximar-se
Análise de Dados Longitudinais Modelos de Regressão - Perspecitva Histórica
1/41 Análise de Dados Longitudinais Modelos de Regressão - Perspecitva Histórica Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Revisão para Dados Transversais 1 Características Informações amostrais
CONHECIMENTOS ESPECÍFICOS
clientes em atraso (N) 45 0 0 3 meses em atraso (X) 0 3 4 A tabela acima mostra a distribuição de frequências do número de meses em atraso nos pagamentos das prestações dos financiamentos de crédito em
Testes de Aderência, Homogeneidade e Independência. Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais
Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Teste de hipótese Queremos saber se a evidência que temos em mãos significa que encontramos
ANÁLISE DISCRIMINANTE (MÓDULO I)
Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Estatística Aplicada ANÁLISE DISCRIMINANTE (MÓDULO I) Franciely Farias da Cunha (201007840014), aluna do curso
variável dependente natureza dicotômica ou binária independentes, tanto podem ser categóricas ou não estimar a probabilidade associada à ocorrência
REGRESSÃO LOGÍSTICA É uma técnica recomendada para situações em que a variável dependente é de natureza dicotômica ou binária. Quanto às independentes, tanto podem ser categóricas ou não. A regressão logística
Filho, não é um bicho: chama-se Estatística!
Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!
1 Introdução aos Métodos Estatísticos para Geografia 1
1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões
3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25
3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.
