Métodos Quantitativos Aplicados
|
|
|
- Raíssa Diana Gomes Lameira
- 9 Há anos
- Visualizações:
Transcrição
1 Métodos Quantitativos Aplicados Aula 7
2 Tópicos apresentação Relações de interdependência entre variáveis quantitativas: A Análise Factorial
3 Análise Factorial: técnica estatística de simplificação da informação, utilizada para representar as relações entre um conjunto de variáveis, através de um menor número de características relações entre as variáveis observadas decorrem da sua relação com variáveis não observadas os factores comuns expressam o que existe de comum nas varáveis originais
4 Objectivos da análise factorial Reduzir o número de variáveis iniciais identificando os factores comuns subjacentes eliminar a informação que possa ser considerada como redundante e garantindo perda mínima de informação; Evidenciar a estrutura fundamental implícita nos dados iniciais identificar factores independentes (número reduzido) que representam as variações das observações originais num espaço multidimensional.
5 O modelo da análise factorial para cada variável J Análise factorial X b F b F b F U j j1 1 j jk K j F 1, F 2,...,F K - factores comuns faz sentido análise se k<p U j - variável residual ou factores únicos - não estão correlacionados, entre si, nem com os factores comuns b j1,..,b jk - coeficientes utilizados na combinação dos K factores factor loadings medem a correlação entre factores comuns e variáveis observadas Factores comuns podem ser expressos como combinações lineares das variáveis originais w são os loadings ou pesos J F w X w X w X w X i ij j j1 i1 1 i ij J
6 Etapas da análise factorial: Operações Prévias: i) Relativização da dimensão; ii) Normalização das variáveis; Etapa 1 - testar a possibilidade de utilização da técnica; Etapa 2 - extracção dos factores; Etapa 3 - Rotação dos factores com objectivo de melhor evidenciar a estrutura fundamental dos dados iniciais e interpretar o significado dos factores comuns considerados; Etapa 4 determinação dos valores dos factores para as diferentes observações das variáveis
7 Etapa 1 - Testar a possibilidade de utilização desta técnica estatística utilização das matrizes dos coeficientes de correlação só faz sentido se as variáveis originais significativamente correlacionadas entre si. testes KMO e Bartlett testam a hipótese de existir correlação entre variáveis KMO com coeficientes de correlação e coeficientes de correlação parcial e Bartlett testa hipótese da matriz dos coeficientes de correlação ser uma matriz identidade Matrizes de anti-imagem simétricos dos coeficientes de correlação parcial valores fora da diagonal principal devem ser baixos
8 Etapa 1 testar utilização da técnica - Estatística KMO e utilização da Análise Factorial KMO Utilização da Análise Factorial Muito Boa Boa Média Medíocre Muito má < 0.50 Inaceitável
9 Etapa 2 - Extracção dos factores - escolha do modelo de ajustamento a utilizar e determinação dos factores a serem considerados na representação da informação inicial Método das componentes principais - técnica de análise estatística multivariada - tem por objectivo transformar um conjunto J de variáveis correlacionadas, num novo conjunto de J de variáveis combinações lineares das variáveis originais não correlacionadas e que explicam igualmente a variância das variáveis originais - novas variáveis denominam-se componentes principais técnica é independente da análise factorial Toma-se como primeira componente principal (F 1 ) a combinação linear das variáveis X 1, X 2,...,X J, que for capaz de explicar a maior percentagem da variância das variáveis originais - factores seguintes explicam progressivamente menos e são ortogonais
10 Componentes principais A análise das componentes principais: Transforma um conjunto de variáveis correlacionadas num conjunto menor de variáveis independentes, combinações lineares das primeiras (as componentes principais) Um método de redução da complexidade dos dados F X X... X p F X X... X p F X X... X p p1 1 p2 2 pp p p p
11 Etapa 2 Cada valor próprio (eigenvalue) dá a variância total explicada pelo respectivo factor O número de factores a considerar Com menos 30 variáveis - considerar os factores em que se verifique a condição Var(F i )> 1 - factores que consigam captar uma variância superior à de cada uma das variáveis consideradas individualmente Mais de 30 variáveis usar scree plot e verificar quando aumento dos factores dá ganho reduzido linha mais horizontal NOTA: Se Nº obs for maior que 250 e valor médio comunalidades (variância cada variável explicada pelos factores comuns) for maior que 0,6 ambos dão o mesmo resultado Sinal de poucos factores retidos - análise da matriz de correlações finais muitos pares de variáveis com correlações elevadas significa poucos factores retidos
12 Etapa 2 a matriz dos ponderadores dos factores (factor loadings) - permite expressar as variáveis iniciais estandardizadas em função dos factores comuns - os ponderadores representam os coeficientes de correlação entre as variáveis e os factores comuns
13 Etapa 3 - Rotação dos factores com objectivo de melhor evidenciar a estrutura fundamental dos dados iniciais e interpretar o significado dos factores comuns considerados solução original apresenta vários factores correlacionados com as mesmas variáveis etapa 3 transforma matriz dos ponderadores numa outra mais facilmente interpretável - Matriz de componentes rodada rotação dos factores não altera valores da variância comum das variáveis - apenas redistribui a variância explicada pelos diferentes factores comuns
14 Etapa 3 - Métodos de rotação ortogonais gera factores que não se correlacionam. Ex: o varimax - procura minimizar o número de variáveis que apresentam elevados valores nos ponderadores associados a um determinado factor comum torna loadings próximos de 0 ou de 1. Oblíqua factores correlacionados para interpretar solução necessário considerar simultaneamente a matriz de correlações e os loadings
15 Etapa 4 - Estimação dos valores dos factores para diferentes observações Análise factorial valores dos factores são determinados para as diferentes observações das variáveis a Factor Score Coefficient Matrix Permite calcular posição da observação nos factores (uma alternativa a considerar os scores pode ser calcular índices ex: médias simples das variáveis que pesam para cada factor)
16 Bibliografia Maroco, Cap. 10 Pestana e Gageiro, Cap.8
Estatística II. Tópico: Análise Fatorial. Exemplo completo (Livro Corrar modificado)
Estatística II Tópico: Análise Fatorial Exemplo completo (Livro Corrar modificado) Bibliografia: L.J. Corrar; E. Paulo; J.M. Dias Filho, Analise multivariada..., Atlas, 2007 1 Análise Fatorial x i explicada
Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 )
ROTAÇÃO E INTERPRETAÇÃO DAS COMPONENTES PRINCIPAIS Consideremos o seguinte exemplo (exercício 6): 15 alunos de uma determinada escola foram sujeitos a testes de 6 disciplinas e os resultados obtidos encontram-se
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Análise Fatorial Exploratória (AFE) Disciplina: Medidas em Psicologia Professora: Ana Carolina Rodrigues
Análise Fatorial Exploratória (AFE) Disciplina: Medidas em Psicologia Professora: Ana Carolina Rodrigues O que é análise fatorial? É uma técnica de interdependência, cujo propósito principal é definir
Estudo dirigido de Análise Multivariada
Estudo dirigido de Análise Multivariada Conceitos Iniciais De um modo geral, os métodos estatísticos de análise multivariada são aplicados para analisar múltiplas medidas sobre cada indivíduo ou objeto
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 8 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação A análise de relações de interdependência para variáveis qualitativas: a Análise factorial de correspondências
RAD5017 Estatística II Aula 2 Análise Fatorial (Conceitos Teóricos) 1. Validade (definição do conceito) x Confiabilidade (consistência da medida)
Aula 2 Análise Fatorial (Conceitos Teóricos) 1 Conceitos importantes: Validade (definição do conceito) x Confiabilidade (consistência da medida) Análise Fatorial Técnica adequada para analisar os padrões
Universidade Federal do Pará UFPA Instituto de Ciências Exatas e Naturais - ICEN Faculdade de Estatística
Universidade Federal do Pará UFPA Instituto de Ciências Exatas e Naturais - ICEN Faculdade de Estatística Disciplina: Estatística Aplicada Aluno: Emerson de Souza Vieira Professor: Heliton Tavares Profª:
Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad
Aula 25: Análise Fatorial Prof. Eduardo A. Haddad Utilização específica Como identificar o potencial de desenvolvimento agropecuário dos municípios brasileiros? Banco de dados municipais: Tamanho do rebanho,
ESTATÍSTICA MULTIVARIADA. 2º. Semestre 2006/07
ESTATÍSTICA MULTIVARIADA º. Semestre 006/07.Março.007 José Filipe Rafael Fez um inquérito a 45 potenciais clientes de um novo produto pedindo-lhes que avaliassem nove características diferentes numa escala
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 10 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise Regressão: Avaliação de relações de dependência em que se explica o comportamento de uma/várias
Análise estatística multivariada
Análise estatística multivariada Conjunto de procedimentos para a análise simultânea de duas ou mais medidas de cada caso/observação Os dados coletados p variáveis - de uma amostra de tamanho n podem ser
A2 - ANÁLISE FATORIAL
A2 - ANÁLISE FATORIAL Prof. Evandro M Saidel Ribeiro A2.1 A Análise Fatorial A2.2 Modelo matemático da análise fatorial A2.3 Fatores em termos de variáveis A2.4 Exemplo Clientes de um banco A2.5 Exemplo
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações
Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações Diogo de Carvalho Bezerra Universidade Federal de Pernambuco Núcleo de Gestão e-mail:[email protected] SOBREA Sociedade
ESTATÍSTICA MULTIVARIADA
Entrega: 26/27.Novembro.2009 ESTATÍSTICA MULTIVARIADA 1º. Semestre 2009/10 TPC 7 (Adaptado do exercício II do teste de 23.Mar.2009) José Filipe Rafael Actualmente a ComKal tem no seu portfolio de sumos
Estatística Aplicada à Administração II. Tópico. Análise de Componentes Principais
Estatística Aplicada à Administração II Tópico Análise de Componentes Principais Bibliografia: R.A. Johnson, Applied Multivariate Statistical Analysis, Prentice Hall, 99 Análise de Componentes Principais
Tutorial SPSS Módulo 17- Análise fatorial Tutorial SPSS Geração de Tabelas
Tutorial SPSS Módulo 17- Análise fatorial Tutorial SPSS Geração de Tabelas Situação Problema Uma empresa que fabrica solados de borracha desejava saber o comportamento atitudinal do consumidor final em
O que é Análise de Fatores. As principais aplicações da técnica da Análise de Fatores (Factor Analysis) são:
Prof. Lorí Viali, Dr. [email protected]; [email protected]; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/ A teoria dos métodos estatísticos multivariados pode ser explicada razoavelmente
9 Análise Multivariada de Dados
9 Análise Multivariada de Dados 9.1 Introdução Uma das dificuldades inerentes em estatística multivariada é a visualização dos dados, principalmente em dimensões maiores que três. No entanto, é importante
ANÁLISE DE COMPONENTES PRINCIPAIS E ANÁLISE FACTORIAL. Introdução
Introdução Considere o seguinte cenário: - Um analista financeiro está interessado em determinar a saúde financeira das firmas de uma determinada indústria. Foi feita uma pesquisa que permitiu identificar
Multivariada de dados aplicada à administração
Multivariada de dados aplicada à administração PROFA. DRA. LUCIANA ORANGES CEZARINO -AULA PPGAO/FEARP 2017 11 1 AGENDA 26/7 14h: Apresentações 14:15h 15:45h: Técnicas da pesquisa quantitativa : AF e Regressão
AULA 08 Correlação e Análise Fatorial
1 AULA 08 Correlação e Análise Fatorial Ernesto F. L. Amaral 12 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F.
ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP
Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA
Ralph S. Silva
ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas
UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada
UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Fatorial Exploratória Professor: Valdecy Pereira, D. Sc. /
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
Análise Fatorial. Matriz R de coeficientes de correlação: Não confundir análise de componentes principais com análise fatorial!
Análise Fatorial 1 Na análise fatorial as variáveis y1, y,..., Yp, são combinações lineares de umas poucas variáveis F1, F,..., Fm (m
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 5 Análise Factorial de Componentes Principais
ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 21 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 5 Análise Factorial de Componentes Principais 26-4-11 5.1 5. ANÁLISE FACTORIAL DE COMPONENTES PRINCIPAIS 5.1. Admita 3 variáveis
Módulo 17- Análise fatorial Tutorial SPSS Análise dos Resultados
Tutorial SPSS Módulo 17 Análise Fatorial 1 Módulo 17- Análise fatorial Tutorial SPSS Análise dos Resultados Situação Problema Para facilitar o entendimento da análise dos resultados obtidos pelo SPSS,
M l u t l i t c i oli l n i e n arid i a d de
Multicolinearidade 1 Multicolinearidade Quando existem relação linear exata entre as variáveis independentes será impossível calcular os estimadores de MQO. O procedimento MQO utilizado para estimação
Escalonamento Multidimensional
Programa de Pós-Graduação em Administração de Organizações (PPGAO) Análise de dados multivariados I Escalonamento Multidimensional Escalonamento Multidimensional (EMD) CAPÍTULO 9 Escalonamento Multidimensional
Análise Discriminante
Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Análise Discriminante Análise Discriminante 1 Análise discriminante - A
Resultados Econométricos
Núcleo de Pesquisas em Qualidade de Vida FCECA 94 Resultados Econométricos Os resultados empíricos foram obtidos pela aplicação da técnica de Análise Fatorial à cada dimensão da qualidade de vida dos cidadãos,
Associação entre duas variáveis
Associação entre duas variáveis Questões de interesse: Será que duas variáveis são independentes ou pelo contrário dependentes? E se forem dependentes, qual o tipo e grau de dependência? Existem diversas
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
ESTATÍSTICA MULTIVARIADA
ESTATÍSTICA MULTIVARIADA º. Semestre 007/08.Outubro.007 José Filipe Rafael Joana Valente I A Portugacar, é uma empresa de produção automóvel portuguesa. Estando preocupada com a sua competitividade no
Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0
Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0
Cap. 6 Medidas descritivas
Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 6 Medidas descritivas Análise descritiva e exploratória de variáveis quantitativas
Análise de Correspondência (ANACOR)
Universidade de São Paulo Faculdade de Economia, Administração e Contabilidade EAC 0355 Análise Multivariada Análise de Correspondência (ANACOR) F 1 1 INTRODUÇÃO ANACOR: A ANÁLISE DE CORRESPONDÊNCIA SIMPLES
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
Avaliação climatológica da cidade de Uberlândia por meio da Análise de Componentes Principais
Avaliação climatológica da cidade de Uberlândia por meio da Análise de Componentes Principais Bruna Queiroz de Melo Prado 1 Heverton Rodrigues Fernandes 2 Tatiane Gomes Araújo 3 Nádia Giarette Biase 4
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
8. Análise em Componentes Principais - ACP
8. Análise em Componentes Principais - ACP 8.1 Introdução O propósito principal da ACP é substituir as variáveis originais por um número menor de variáveis que são função das variáveis originais. A ACP
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 7. Estimação 1 7.1. Estimação pontual 1 7.1.1. Propriedades dos estimadores 1 7.1.2. Métodos de estimação 4 7.1.2.1. Método dos momentos 4 7.1.2.2. Método da máxima verosimilhança 5 7.1.3. Exemplos
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Avaliação da Satisfação dos Utentes com as Consultas Externas Caso: Centro de Saúde 1 de Junho
UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE CIÊNCIAS Departamento de Matemática e Informática Trabalho de Licenciatura em Estatística Avaliação da Satisfação dos Utentes com as Consultas Externas Caso:
Lucas Santana da Cunha de julho de 2018 Londrina
Análise de Correlação e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 26 de julho de 2018 Londrina 1 / 17 Há casos em que pode existir um relacionamento entre duas variáveis:
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões PCA. Luiz Eduardo S. Oliveira, Ph.D.
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões PCA Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Objetivos Introduzir os conceitos de PCA e suas aplicações
Escala de Atitudes em relação à Estatística: estudo de validação. Resumo
1 Escala de Atitudes em relação à Estatística: estudo de validação. Juliana Alvares Duarte Bonini Campos*; Lívia Nordi Dovigo**; Fernanda Salloumé Sampaio Bonafé**; João Maroco*** *Profa. Dra. Da Disciplina
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
Introdução 5 PREFÁCIO 15
Introdução 5 ÍNDICE PREFÁCIO 15 INTRODUÇÃO 1. INICIAÇÃO AO SPSS 17 1.1. File 19 1.2. Edit 20 1.3. View 22 1.4. Data 22 1.5. Transform 24 1.5.1. Criar novas variáveis 24 1.5.2. Inversão da ordem das categorias
Técnicas Multivariadas em Saúde
Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016
CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 8- ÁLGEBRA MATRICIAL VERSÃO: 0.1 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: [email protected]
ANÁLISE FATORIAL DAS RESPOSTAS DO QUESTIONÁRIO PARA INGRESSANTES DA UFC-QUIXADÁ
ANÁLISE FATORIAL DAS RESPOSTAS DO QUESTIONÁRIO PARA INGRESSANTES DA UFC-QUIXADÁ Crislânio de Souza Macêdo, Críston Pereira de Souza, Lucas Ismaily Bezerra Freitas Universidade Federal do Ceará (UFC) Caixa
Estatística Aplicada II. } Regressão Linear
Estatística Aplicada II } Regressão Linear 1 Aula de hoje } Tópicos } Regressão Linear } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática, 007, Cap. 7
Regressão linear múltipla - Correlação parcial
Regressão linear múltipla - Correlação parcial trigo Matriz de correlações: trigo % matéria orgânica 40 103 32 1 58 192 45 28 50 300 39 5 72 420 46 11 61 510 34 14 69 630 38 2 63 820 32 12 % matéria orgânica
Análise fatorial aplicada à avaliação da satisfação de discentes do Instituto de Ciências Sociais Aplicadas da Universidade Federal de Ouro Preto.
Análise fatorial aplicada à avaliação da satisfação de discentes do Instituto de Ciências Sociais Aplicadas da Universidade Federal de Ouro Preto. Flávia Sílvia Corrêa Tomaz 1, Camila Regina Carvalho 2.
10 a Lista de Exercícios
Álgebra Linear Licenciaturas: Eng. Biológica, Eng. Ambiente, Eng. Química, Química 1 ō ano 2004/05 10 a Lista de Exercícios Problema 1. Decida quais das expressões seguintes definem um produto interno.
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 EXAME: DATA 24 / 02 / NOME DO ALUNO:
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO PORTO Ano lectivo 2009/20010 Estudos de Mercado EXAME: DATA 24 / 02 / 20010 NOME DO ALUNO: Nº INFORMÁTICO: TURMA: PÁG. 1_ PROFESSOR: ÉPOCA: Grupo I (10
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo
4 ANÁLISE DE DADOS. Erro do balanço iônico (%) = Σ cátions - Σ ânions x 100 Σ (cátions + ânions) (1)
ANÁLISE DE DADOS 4 ANÁLISE DE DADOS A definição das características das águas subterrânea baseou-se nas análises químicas e físico-químicas e na utilização de métodos estatísticos, como a estatística multivariada
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
Revisão de Álgebra Linear
Introdução: Revisão de Álgebra Linear Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2121 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) Revisão de
Desenvolvimento da Versão em Português do PSWQ
3 Estudo 1 3.1 Metodologia da pesquisa 3.1.1 Participantes A amostra consistiu de 871 graduandos de diferentes Universidades do Rio de Janeiro com uma faixa de idade de 17 a 68 anos (M = 23,41; DP = 5,80).
